
Math 403 Exam 1 is Wed. Sept. 20. You are allowed 7 sheets of notes and a
calculator. The exam covers HW1-3, and Q1-3. Numbers refer to types of problems on
exam. In this class log(t) = ln(t) = loge(t) while exp(t) = et. See 9) for eX(d) = E(Y P ).

0) Get familiar with the following distributions. For continuous distributions, assume
formulas are given on the support, and the support is x > 0, unless told otherwise.

a) Exponential(θ)= Gamma(α = 1, θ): f(x) =
1

θ
e−x/θ where x, θ > 0.

F (x) = 1 − e−x/θ, E(X) = θ, V (X) = θ2, E[X ∧ x] = θ(1 − e−x/θ), eX(d) = θ.
E(Xk) = θkΓ(k + 1) for k > −1. If k is a positive integer, E(Xk) = θkk!.
M(t) = (1−θt)−1, t < 1/θ. V aRp(X) = −θ ln(1−p). TV aRp(X) = −θ ln(1−p)+θ.
b) Gamma(α, θ): f(x) =

1

θαΓ(α)
xα−1e−x/θ where α, θ, and x are positive.

E(X) = αθ, V (X) = αθ2, E(Xk) =
θkΓ(α + k)

Γ(α)
for k > −α.

M(t) = (1 − θt)−α for t < 1/θ.

c) (two parameter) Pareto(α, θ): f(x) =
αθα

(θ + x)α+1
where α, θ, and x are positive.

F (x) = 1 −
(

θ

x+ θ

)α

, E(X) =
θ

α− 1
for α > 1, V(X) =

θ2α

(α− 1)2(α − 2)
for α > 2.

eX(d) =
θ + d

α− 1
, E(Xk) =

θkΓ(k + 1)Γ(α − k)

Γ(α)
for −1 < k < α.

If k < α is a positive integer, E(Xk) =
θkk!

(α − 1) · · · (α− k)
.

E[X ∧ x] =
θ

α− 1



1 −
(

θ

x+ θ

)α−1


 , for α 6= 1, and E[X ∧ x] = −θ ln

(

θ

x+ θ

)

for

α = 1.

V aRp(X) = θ[(1 − p)−1/α − 1], TV aRp(X) = V aRp(X) +
θ(1 − p)−1/α

α − 1
for α > 1.

d) If X ∼ single parameter Pareto(α, θ): f(x) =
αθα

xα+1
I(x > θ) where α > 0 and θ is

real. Note the support is x > θ. F (x) = 1−
(

θ

x

)α

for x > θ. E(X) =
αθ

α− 1
for α > 1.

V (X) =
αθ2

α− 2
−

(

αθ

α− 1

)2

for α > 2. E(Xk) =
αθk

α − k
for k < α. E(X ∧ x) =

αθ

α− 1
− θα

(α − 1)xα−1
for x ≥ θ. E(X ∧ x) = x for x < θ. Use θ ≥ 0 for loss models.

V aRp(X) = θ[(1−p)−1/α], TV aRp(X) =
αθ(1 − p)−1/α

α− 1
= V aRp(X)+

1

α − 1
V aRp(X)

for α > 1.

e) Uniform(a, b). This distribution has support on a ≤ x ≤ b, f(x) =
1

b− a
, F (x) =

(x−a)/(b−a), E(X) = (a+ b)/2, V (X) = (b−a)2/12, eX(d) =
b− d

2
, 0 ≤ a ≤ d ≤ b.

f) Weibull(θ, τ ): f(x) =
τ (x/θ)τe−(x/θ)τ

x
where θ > 0 and τ > 0.
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F (x) = 1 − e−(x/θ)τ

, E(Xk) = θkΓ(1 + k/τ ) for k > −τ . Here θ, τ > 0 and the
Weibull(θ, τ = 1) RV is the Exponential(θ) RV. V aRp(X) = θ[− ln(1 − p)]1/τ .

g) Inverse Weibull(θ, τ ): f(x) =
τ (θ/x)τe−(θ/x)τ

x
.

F (x) = e−(θ/x)τ

, E(Xk) = θkΓ(1 − k/τ ) for k < τ . Here θ, τ > 0 and the
Inverse Weibull(θ, τ = 1) RV is the Inverse Exponential(θ) RV. V aRp(X) = θ[− ln(p)]−1/τ .

h) normal(µ, σ): E(X) = µ, V (X) = σ2. The support is (−∞,∞). If Z ∼ N(0, 1),
then the cdf of Z is Φ(x) and the pdf of Z is φ(x). If X ∼ N(µ, σ2), then the cdf of X

is F (x) = Φ
(

x− µ

σ

)

. If X ∼ N(µ, σ2), then the cdf FX(x) = Φ
(

x− µ

σ

)

, and the pdf

fX(x) =
1

σ
√

2π
exp

[−1

2σ2
(x− µ)2

]

. TV aRp(X) = µ + σ
φ(zp)

1 − p
where P (Z ≤ zp) = p if

Z ∼ N(0, 1). V aRp(X) = µ+ σzp. Here σ > 0 and µ is real.
i) lognormal(µ, σ): E(X) = exp(µ + 1

2
σ2), V (X) = exp(σ2)(exp(σ2) − 1) exp(2µ),

F (x) = Φ

(

ln(x)− µ

σ

)

, E(X∧x) = exp(µ+
1

2
σ2)Φ

(

lnx− µ − σ2

σ

)

+x[1−Φ(
ln x− µ

σ
)].

If X ∼ LN(µ, σ), then ln(X) ∼ N(µ, σ2). Here x > 0, σ > 0 and µ is real.
V aRp(X) = exp(µ + zpσ). For a > 0, aX ∼ LN(µ + ln(a), σ).

j) beta(a, b): The support is [0,1]. The pdf f(x) =
Γ(a + b)

Γ(a)Γ(b)
xa−1(1 − x)b−1 where

a > 0 and b > 0. E(X) =
a

a+ b
. V (X) =

ab

(a + b)2(a + b+ 1)
.

The following are discrete distributions. These are used to count the number of claims,
so the random variable X is often denoted by N . Note: pk = P (X = k) = p(k).

k) binomial(q,m): m is a (usually known) positive integer

pk =

(

m

k

)

qk(1 − q)m−k for k = 0, 1, . . . ,m where 0 < q < 1.

E(N) = mq, V (N) = mq(1 − q), P (z) = [1 + q(z − 1)]m.

l) Poisson(λ): pk =
e−λλk

k!
for k = 0, 1, . . ., where λ > 0. E(N) = λ = V (N),

P (z) = eλ(z−1).
m) Negative Binomial(β, r): β, r > 0 and p0 = (1 + β)−r. For k = 1, 2, ...,

pk =
r(r + 1) · · · (r + k − 1)βk

k!(1 + β)r+k
and pk =

(k + r − 1)!βk

k!(r− 1)!(1 + β)r+k
for integer r.

E(N) = rβ, V (N) = rβ(1 + β), P (z) = [1 − β(z − 1)]−r. The Geometric(β) is the

special case with r = 1 and pk =
βk

(1 + β)k+1
for k = 0, 1, . . ..

Some properties of the gamma function follow.
i) Γ(k) = (k − 1)! for integer k ≥ 1.
ii) Γ(x + 1) = x Γ(x) for x > 0.
iii) Γ(x) = (x− 1) Γ(x− 1) for x > 1.
iv) Γ(0.5) =

√
π.
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Let X ≥ 0 be a nonnegative random variable.
Then the cumulative distribution function (cdf) F (x) = P (X ≤ x). Since X ≥ 0,

F (0) = 0, F (∞) = 1, and F (x) is nondecreasing.
The probability density function (pdf) f(x) = F ′(x).
The survival function S(x) = P (X > x). S(0) = 1, S(∞) = 0 and S(x) is nonin-

creasing.

The hazard rate function = force of mortality = µ(x) = h(x) =
f(x)

1 − F (x)
=
f(x)

S(x)
for x > 0 and F (x) < 1. Note that h(x) ≥ 0 if F (x) < 1.

The cumulative hazard function H(x) =
∫ x
0 h(t)dt for x > 0. It is true that

H(0) = 0, H(∞) = ∞, and H(x) is nondecreasing.

Assume X ≥ 0 unless told otherwise.
1) Given one of F (x), f(x), S(x), h(x), or H(x), be able to find the other 4 quantities

for x > 0. See HW1.
A) F (x) =

∫ x
0 f(t)dt = 1 − S(x) = 1 − exp[−H(x)] = 1 − exp[− ∫ x0 h(t)dt].

B) f(x) = F ′(x) = −S ′(x) = h(x)[1 − F (x)] = h(x)S(x) = h(x) exp[−H(x)] =
H ′(x) exp[−H(x)].

C) S(x) = 1 − F (x) = 1 − ∫ x
0 f(t)dt =

∫∞
x f(t)dt = exp[−H(x)] = exp[− ∫ x0 h(t)dt].

D) h(x) =
f(x)

1 − F (x)
=
f(x)

S(x)
=

F ′(x)

1 − F (x)
=

−S ′(x)

S(x)
= − d

dx
ln[S(x)] = H ′(x).

E) H(x) =
∫ x
0 h(t)dt = − ln[S(x)] = − ln[1 − F (x)].

Tip: if F (x) = 1 − exp[G(x)] for x > 0, then H(x) = −G(x) and S(x) = exp[G(x)].

Tip: For S(x) > 0, note that S(x) = exp[ln(S(x))] = exp[−H(x)]. Finding exp[ln(S(x))]
and setting H(x) = − ln[S(x)] is easier than integrating h(x).

2) Know: Except for the inverse Gaussian distribution, the continuous distributions
in Appendix A with parameter θ are scale families with scale parameter θ if any other
parameters τ are fixed, written X ∼ SF (θ|τ ). Let a > 0. Then Y = aX ∼ SF (aθ|τ).
See 31). If X ∼ LN(µ, σ), then Y = aX ∼ LN(µ + ln(a), σ). Often a = 1 + r.

3) Let X ≥ 0 be continuous. If limx→∞ xS(x) = 0, then E(X) =
∫∞
0 xf(x)dx =

∫∞
0 S(x)dx =

∫∞
0 [1 − F (x)]dx = µ = mean. The kth raw moment = µ′

k = E(Xk) =
∫ ∞

0
xkf(x)dx. If limx→∞ xkS(x) = 0 and k ≥ 1, then E(Xk) =

∫ ∞

0
kxk−1S(x)dx.

If X is discrete, = E(Xk) =
∑

k

xkP (X = x).

4) The kth central moment µk = E[(X − µ)k]. The variance uses k = 2 and the short
cut formula for the variance is V (X) = E[(X − µ)2] = σ2 = E(X2) − [E(X)]2 where
µ = E(X). Note: µ3 = µ′

3 − 3µ′
2µ+ 2µ3 and µ4 = µ′

4 − 4µ′
3µ+ 6µ′

2µ
2 − 3µ4.

The standard deviation SD(X) =
√

V (X) = σ.

5) Suppose X ≥ 0. Then E[g(X)] =
∫∞
0 g(x)f(x)dx for X continuous and E[g(X)] =

∑

x:p(x)>0

g(x) p(x) for X discrete.
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6) The coefficient of variation = CV =
σ

µ
, skewness = γ1 =

µ3

σ3
, and kurtosis =

γ2 =
µ4

σ4
. For a statistic T , CV (T ) = SD(T )/E(T ).

7) X ∧ d = min(X, d) is the limited loss RV. This RV is right censored. The limited

expected value E[X ∧ d] =
∫ d

0
xf(x)dx + dS(d) =

∫ d

0
S(x)dx. The expected loss (per

loss) for a policy holder with deductible d is E[X ∧ d].
8) The per loss RV Y L = (X − d)+ = 0 if X ≤ d, Y L = (X − d)+ = X − d if

X > d. The RV is left censored since values X ≤ d are not ignored but are set to d. So
values of X − d < 0 are set to 0. Note that (X − d)+ is the positive part of X − d, and
represents payment for insurance with a deductible. The superscript L represents
the “payment,” possibly 0, made per loss. E[(X−d)+] = eX(d)[1−F (d)] = eX(d)S(d) =
∫ ∞

d
(x− d)f(x)dx =

∫ ∞

d
S(x)dx = E(Y L) = E(Y P )S(d).

9) For a given value of d > 0 with P (X > d) > 0, the excess loss variable or per
payment RV Y P = (X − d)|X > d. This is a left truncated and shifted RV. The

mean excess loss function eX(d) = E(Y P ) = E[(X − d)|X > d] =

∫∞
d (x− d)f(x)dx

1 − F (d)
=

∫∞
d S(x)dx

S(d)
=
E(Y L)

S(d)
. The superscript P represents “payment” per payment> 0 actually

made (so the loss > d).
10) Since insurance with a limit d plus insurance with a deductible d equals full

coverage insurance: X ∧d + (X−d)+ = X, we get E[X ∧d] + E[(X−d)+] = E[X],
and E[X ∧ d] = E[X] − E[(X − d)+]. So E(Y L) = E(X) − E(X ∧ d).

11) E[(d−X)+] = d− E[X ∧ d]
12) The 100pth percentile V aRp(X) = πp satisfies F (πp) = P (X ≤ πp) = p if X is a

continuous RV with increasing F (x). Then to find πp, let π = πp and solve F (π)
set
= p for

π.
For a general RV X, πp satisfies F (πp−) = P (X < πp) ≤ p ≤ F (πp) = P (X ≤ πp).

So F (πp−) ≤ p and F (πp) ≥ α. Then graphing F (x) can be useful for finding πp.
13) Assume all relevant expectations exist. Let Sn =

∑n
i=1 Xi. Then E(Sn) =

E(
∑n
i=1Xi) =

∑n
i=1 E(Xi). If theXi are independent, V (Sn) = V (

∑n
i=1Xi) =

∑n
i=1 V (Xi).

14) Central Limit Theorem (CLT). Let X1, ..., Xn be iid with E(X) = µ and
V (X) = σ2. Let the sample mean Xn = 1

n

∑n
i=1Xi. Then

√
n(Xn − µ)

D→ N(0, σ2).

Hence
√
n

(

Xn − µ

σ

)

=
√
n

(

∑n
i=1Xi − nµ

nσ

)

=
√
n
(

Sn − nµ

nσ

)

D→ N(0, 1).

15) The notation Yn
D→ X means that for large n we can approximate the cdf of Yn by

the cdf of X. The distribution of Xis the limiting distribution or asymptotic distribution
of Yn, and the limiting distribution does not depend on n.

16) The notation
Xn ≈ N(µ, σ2/n),
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also written as Xn ∼ AN(µ, σ2/n), means approximate the cdf of Xn as if Xn ∼
N(µ, σ2/n). Note that the approximate distribution, unlike the limiting distribution,
does depend on n. By the CLT, Xn ∼ AN(µ, σ2/n) and Sn =

∑n
i=1Xi ∼ AN(nµ, nσ2).

17) The moment generating function (mgf) of a random variable X is MX(t) =
E[etX]. If X is discrete, then MX(t) =

∑

x e
txp(x), and if X is continuous, then MX(t) =

∫∞
−∞ etxf(x)dx. If the mgf MX(t) exists for |t| < δ for some constant δ > 0, find the kth

derivative M
(k)
X (t). Then E[Xk] = M

(k)
X (0). In particular, E[X] = M ′

X(0) and E[X2] =
M ′′

X(0).
18) The probability generating function (pgf) of a random variable X is PX(z) =

E[zX]. If X is discrete, then PX(z) =
∑

x z
xp(x), and if X is continuous, then PX(z) =

∫∞
−∞ zxf(x)dx. If the pgf PX (z) exists for z ∈ (1 − ε, 1 + ε) for some constant ε > 0, find

the kth derivative P
(k)
X (z). Then E[X(X−1) · · · (X−k+1)] = P

(k)
X (1) where the product

has k terms. In particular, E[X] = P ′
X(1) and E[X2 −X] = E(X2) − E(X) = P ′′

X(1).
19) MX(t) = PX(et) and PX(z) = MX(ln(z)).
20) Let Sn =

∑n
i=1Xi where the Xi are independent with mgf MXi

(t) and pgf PXi
(z).

The mgf of Sn is MSn
(t) =

n
∏

i=1

MXi
(t) = MX1

(t)MX2
(t) · · ·MXn

(t). The pgf of Sn is

PSn
(z) =

n
∏

i=1

PXi
(z) = PX1

(z)PX2
(z) · · ·PXn

(z).

Tips: a) in the product, anything that does not depend on the product index i is
treated as a constant. b) exp(a) = ea and log(y) = ln(y) = loge(y) is the natural

logarithm. c)
n
∏

i=1

abθi = a
∑n

i=1
bθi . In particular,

n
∏

i=1

exp(bθi) = exp(
n
∑

i=1

bθi). d)
∑n
i=1 b =

nb. e)
∏n
i=1 a = an.

21) Assume the Xi are independent.
a) If Xi ∼ N(µi, σ

2
i ), with support (−∞,∞), then

∑n
i=1 Xi ∼ N(

∑n
i=1 µi,

∑n
i=1 σ

2
i ), and

∑n
i=1(aiXi + bi) ∼ N(

∑n
i=1(aiµi + bi),

∑n
i=1 a

2
iσ

2
i ).

b) If Xi ∼ G(αi, θ), then
∑n
i=1 Xi ∼ G(

∑n
i=1 αi, θ). Note that the Xi have the same θ,

and if αi ≡ α, then
∑n
i=1 α = nα. G stands for Gamma.

c) If Xi ∼ EXP (θ) ∼ G(1, θ), then
∑n
i=1 Xi ∼ G(n, θ).

d) If Xi ∼ Poisson(λi) then
∑n
i=1 Xi ∼ Poisson(

∑n
i=1 λi). Note that if λi ≡ λ, then

∑n
i=1 λ = nλ.

e) If Xi ∼ χ2
pi
∼ G

(

pi
2
, 2
)

, then
n
∑

i=1

Xi ∼ χ2
∑n

i=1
pi
.

f) If Xi ∼ BIN(q,mi), then
∑n
i=1 Xi ∼ BIN(q,

∑n
i=1 mi). Note that the Xi have the

same q, and if mi ≡ m, then
∑n
i=1m = nm.

g) LetNB stand for negative binomial. IfXi ∼ NB(β, ri), then
∑n
i=1 Xi ∼ NB(β,

∑n
i=1 ri).

Note that the Xi have the same β, and if ri ≡ r, then
∑n
i=1 r = nr.

h) Let Xi ∼ geom(β) ∼ NB(β, 1). Then
∑n
i=1Xi ∼ NB(β, n).

22) X has a heavier tail than Y is one of the following holds:
i) X has fewer moments than Y : E(Xk) does not exist but E(Y k) does exist for some
positive integer k.

ii) lim
x→∞

SX(x)

SY (x)
= lim

x→∞

S ′
X(x)

S ′
Y (x)

= lim
x→∞

fX(x)

fY (x)
= ∞.
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23) Let decreasing = nonincreasing and increasing = nondecreasing.
i) X has a “heavy tail” if h(x) decreases (often to 0), and a light tail if h(x) increases as
x → ∞.
ii) X has a “light tail” if E(Xk) exists for all positive integers k, and has a heavy tail
otherwise. Existence of an mgf implies a light tail, but the converse is false: the lognormal
distribution has all moments but not an mgf.
iii) X has a “heavy tail” if eX(x) increases, and a light tail if eX(x) decreases as x → ∞.

24) lim
x→∞

eX(x) = lim
x→∞

1

h(x)
if the limit exists. lim

x→∞
h(x) = − lim

x→∞

f ′(x)

f(x)
= − lim

x→∞

d

dx
ln(f(x)).

25) The Value at Risk of X at the 100p% level = 100pth percentile V aRp(X) = πp
satisfies F (πp) = P (X ≤ πp) = p if X is a continuous RV with increasing F (x). Then to

find πp, let π = πp and solve F (π)
set
= p for π.

For a general RV X, πp satisfies F (πp−) = P (X < πp) ≤ p ≤ F (πp) = P (X ≤ πp).
So F (πp−) ≤ p and F (πp) ≥ α. Then graphing F (x) can be useful for finding πp.

26) Let c > 0 be a constant. A risk measure ρ(X) is coherent if it satisfies
i) subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ),
ii) monotonicity: if X < Y , in that P (X > Y ) = 0, then ρ(X) ≤ ρ(Y ),
iii) positive homogeneity: for any c > 0, ρ(cX) = cρ(X),
iv) translation invariance: for any c > 0, ρ(X + c) = ρ(X) + c.

27) V aRp(X) = πp does not satisfy subadditivity, and so in not a coherent risk
measure.

28) If X ∼ AN(µ, σ2), then V aRp(X) = πp ≈ µ + σzp where P (Z ≤ zp) = p when
Z ∼ N(0, 1).

29) The tail value at risk of X at 100p% security level is

TV aRp(X) = E(X|X > πp) =

∫∞
πp
xf(x)dx

1 − F (πp)
=

∫ 1
p πudu

1 − p
= V aRp(X) + eX(πp) =

πp +

∫∞
πp

(x− πp)f(x)dx

1 − p
= πp +

E(X) − E(X ∧ πp)
1 − p

. TV aRp(X) ≥ V aRP (X), and

TV aR is a coherent risk measure.

30) If X ∼ AN(µ, σ2) then TV aRp(X) ≈ µ+ σ
φ(zp)

1 − p
where φ(x) =

1√
2π

exp

(

−x2

2

)

is the N(0,1) pdf.

31) Let fZ(x) be the pdf of RV Z. Then the family of pdfs fX(x) =
1

θ
fZ

(

x

θ

)

indexed

by a scale parameter θ > 0 is the scale family for the RV X = θZ with standard pdf
fZ(x). If the expected values exist, then E(X) = θE(Z) and V (X) = θ2V (Z). See 2).

32) X is a loss RV from a scale family with scale parameter θ if Y = cX is from the
same scale family with scale parameter cθ for any constant c > 0.

33) Let fZ(x) be the pdf of RV Z. Then the family of pdfs fX(x) =
1

θ
fZ

(

x− µ

θ

)

indexed by a scale parameter θ > 0 and real location parameter µ is the location scale

family for the RV X = µ + θZ with standard pdf fZ(x). If second moments exist, then
E(X) = µ+ θE(Z) and V (X) = θ2V (Z).

34) Let fZ(x) be the pdf of RV Z. Then the family of pdfs fX(x) = fZ(x−µ) indexed
by a real location parameter µ is the location family for the RV X = µ+Z with standard
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pdf fZ(x). If the variance exists, then E(X) = µ+ E(Z) and V (X) = V (Z).
35) Let Y be a random variable with cdf F (y). Let h be a function such that the

expected value E[h(Y )] exists. E[h(Y )] =
∫∞
−∞ h(y)dF (y).

36) Assume all expectations exist. a) If Y is a discrete random variable that has a
pmf p(y) with support Y, then

E[h(Y )] =
∫ ∞

−∞
h(y)dF (y) =

∑

y∈Y

h(y)p(y).

b) If Y is a continuous random variable that has a pdf f(y), then

E[h(Y )] =
∫ ∞

−∞
h(y)dF (y) =

∫ ∞

−∞
h(y)f(y)dy.

c) If Y is a random variable that has a mixture distribution with cdf FY (y) =
∑k
i=1 αiFWi

(y), then

E[h(Y )] =
∫ ∞

−∞
h(y)dF (y) =

k
∑

i=1

αiEWi
[h(Wi)]

where EWi
[h(Wi)] =

∫∞
−∞ h(y)dFWi

(y).
37) If the cdf of X is FX(x) = (1 − ε)FZ(x) + εFW (x) where 0 ≤ ε ≤ 1 and FZ

and FW are cdfs, then E[g(X)] = (1 − ε)E[g(Z)] + εE[g(W )]. In particular, E(X2) =
(1 − ε)E[Z2] + εE[W 2] = (1 − ε)[V (Z) + (E[Z])2] + ε[V (W ) + (E[W ])2].

38) If P (A), P (B) > 0, then P (A ∩ B) = P (AB) = P (A)P (B|A) = P (B)P (A|B),
and P (A|B) = P (AB)/P (B).

39) If the region of integration Ω is bounded on top by the function y = φT (x), on
the bottom by the function y = φB(x) and to the left and right by the lines x = a and
x = b then

∫ ∫

Ω f(x, y)dxdy =
∫ ∫

Ω f(x, y)dydx =

∫ b

a

[

∫ φT (x)

φB(x)
f(x, y)dy

]

dx.

Within the inner integral, treat y as the variable, anything else, including x, is treated
as a constant. If the region of integration Ω is bounded on the left by the function
x = ψL(y), on the right by the function x = ψR(y) and to the top and bottom by the
lines y = c and y = d then

∫ ∫

Ω f(x, y)dxdy =
∫ ∫

Ω f(x, y)dydx =

∫ d

c

[

∫ ψR(y)

ψL(y)
f(x, y)dx

]

dy.

Within the inner integral, treat x as the variable, anything else, including y, is treated
as a constant.

40) In particular, if X|Λ = λ has conditional cdf FX |Λ=λ(x|λ) and pdf fX |Λ=λ(x|λ),
then the unconditional (marginal) pdf of X is fX(x) =

∫

fX |Λ(x|λ)fΛ(λ)dλ, and the cdf

of X is FX(x) =
∫

FX |Λ(x|λ)fΛ(λ)dλ.
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41) The conditional pdf fY |X=x(y|X = x) =
fX,Y (x, y)

fX(x)
where the marginal pdf

fX(x) =
∫ φT (x)
φB(x) fX,Y (x, y)dy. Note that fY (y) =

∫ ψR(y)
ψL(y) fX,Y (x, y)dx.

42) If E(X|Y = y) = m(y), then the random variable E(X|Y ) = m(Y ). Similarly if
V (X|Y = y) = v(y), then the random variable V (X|Y ) = v(Y ) = E(X2|Y )− [E(X|Y )]2.

43) Assume all relevant expectations exist. Then iterated expectations or the condi-
tional mean formula is E(X) = E[E(X|Y )] = EY [EX |Y (X|Y )]. The conditional variance
formula is V (X) = E[V (X|Y )] + V [E(X|Y )]. Also, E(Xk) = E[E(Xk|Y )].

44) A counting RV N is a discrete RV with support ⊆ {0, 1, 2, ...}. Let P (z) denote
the pgf and p(k) = pk = P (N = k) denote the pmf.

45) If N ∼ Poisson(λ), then E(N) = λ = V (N). If N ∼ NB(β, r), then E(N) =
rβ < V (N) = rβ(1 + β).

46) If N ∼ geom(β), then N ∼ NB(β, r), P (N ≥ n) =

(

β

1 + β

)n

. Also the geometric

RV has the memoryless property: P (N ≥ n+ k|N ≥ n) = P (N ≥ k) where n, k ≥ 0 are
integers. (This is the discrete analog of the memoryless property of X ∼ EXP (θ) where
P (X > t+ d|X > d) = P (X > t) for any t, d > 0.)

47) If N ∼ Bin(q,m) then the support is 0, 1, .., m, and E(N) = mq < V (N) =
mq(1 − q).

48) The Poisson, binomial, NB and Geometric distributions are members of the

(a, b, 0) class. X is a member of this class if
pk
pk−1

= a +
b

k
for k = 1, 2, .... Hence

k pk
pk−1

= a k + b for k = 1, 2, .... except the recursion goes up to k = m for the binomial.

In a sample ( e.g. 0,1,1,5,0,3,7,0,5,2,1,1,1,4,2,2), let nk = number in sample equal to k

and n =
∑

k nk. Plot k versus
k p̂k
p̂k−1

=
k nk
nk−1

where k is omitted if nk = 0. If the nk are

large, the plot should follow a straight line with slope a. Here the slope is zero a = 0 for
the Poisson, the slope is negative a < 0 for the binomial, and the slope is positive a > 0
for the NB and Geometric = NB(β, r = 1) distributions.

49) Let N be a counting RV with support ⊆ {0, 1, 2, ...}. Let N Xi where the Xi

are independent, E(Xi) = E(X) and V (Xi) = V (X). Let SN = X1 +X2 + · · · + XN =
∑N
i=1Xi. Then E(SN ) = E(N)E(X) and V (SN) = E(N)V (X)+[E(X)]2V (N). IfN = 0,

then SN = 0.
50) Let the Xi = Mi be iid from a discrete distribution where the Mi and N are as

in 49). Suppose that the pdf of the Mi is PM (z) and the pgf of N is PN (Z). Then the
pgf of SN =

∑N
i=1 Mi is PN (PM (z)). Then SN is called a compound distribution where

N is the primary distribution and M is the secondary distribution.
51) Bernoulli trick or shortcut: Suppose X takes on two values a and b with q =

P (X = a) = 1 − P (X = b). Then V (X) = (b− a)2P (X = a)P (X = b).
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