
Math 402 Exam 2 is Wed. March. 29. You are allowed 12 sheets of notes and

a calculator. The exam emphasizes HW4-7, and Q4-7. 1) - 38) on Exam 1 review will
be useful.

ch. 9. In multiple decrement models, (x) is subject to multiple contingencies where
each type of failure is called a decrement. There are m distinct causes of failure. On ex-
ams, usually m = 2 and double decrement models are used. Symbols with the superscript
(τ ) are similar to those used for life tables.

74) Know: Given x, q(1)
x , q(2)

x and the initial group size = l(τ )
x for the smallest x in the

table, be able to fill in the double decrement table (m = 2) with headers shown below. A

useful fact is l
(τ )
x+1 = l(τ )

x − d(1)
x − d(2)

x except for rounding. If m > 2, then there are more

columns, q(τ )
x = q(1)

x + · · · + q(m)
x , and l

(τ )
x+1 = l(τ )

x − d(1)
x − · · · − d(m)

x except for rounding.

x q(1)
x q(2)

x q(τ )
x = q(1)

x + q(2)
x p(τ )

x = 1 − q(τ )
x l(τ )

x = p
(τ )
x−1 l

(τ )
x−1 d(1)

x = l(τ )
x q(1)

x d(2)
x = l(τ )

x q(2)
x

75) Know: Use the above table to find the following quantities.
i) q(j)

x = P [(x) fails in the next year due to the jth cause].
ii) q(τ )

x =
∑m

j=1 q(j)
x = P [(x) fails in the next year].

iii) p(τ )
x = 1 − q(τ )

x = P [(x) does not fail in the next year].
iv) d(j)

x = l(τ )
x q(j)

x = (expected) number of people in group at age x who will fail before
age x + 1 due to cause j.

v) d(τ )
x = l(τ )

x q(τ )
x =

∑m
j=1 d(j)

x = (expected) number of people in group at age x who
will fail before age x + 1.

vi) l(τ )
x =

∑m
j=1 l(j)x = (expected) total number in the group at age x.

vii) l(j)x = (expected) number in the group at age x who eventually fail due to cause
j.

For viii)-xii), note that n = 1 is usually omitted, so 1q
(τ )
x = q(τ )

x , et cetera.

viii) nq(j)
x =

nd(j)
x

l
(τ )
x

=

∑n−1
t=0 d

(j)
x+t

l
(τ )
x

= P( of failure due to cause j in (x, x + n])

ix) nq
(τ )
x =

m
∑

j=1

nq(j)
x = P( of failure in (x, x + n])

x) np(τ )
x =

l
(τ )
x+n

l
(τ )
x

= 1 − nq(τ )
x = P( of survival in (x, x + n])

xi) nd(j)
x = l(τ )

x nq(j)
x =

∑n−1
t=0 d

(j)
x+t = (expected) number who fail due to cause j in

(x, x + n]
xii) nd(τ )

x = l(τ )
x nq

(τ )
x =

∑m
j=1 nd

(j)
x = (expected) number who fail in (x, x + n]

xiii) P[(x) will die between x + n and x + n + m due to cause j] = n|mq(j)
x =

d
(j)
x+n + · · · + d

(j)
x+n+m−1

l
(τ )
x

so k|q
(j)
x =

d
(j)
x+k

l
(τ )
x

= pKx,Jx(k, j). (Note m = 1 is suppressed.)

xiv) k|q
(τ )
x = kp

(τ )
x − k+1p

(τ )
x =

l
(τ )
x+k

l
(τ )
x

−
l
(τ )
x+k+1

l
(τ )
x

=
d

(τ )
x+k

l
(τ )
x

=

∑m
j=1 d

(j)
x+k

l
(τ )
x

= P (Kx = k)

76) Some more life table formulas:

a) l
(τ )
x+1 = l(τ )

x − d(τ )
x

b) l
(τ )
x+k = l(τ )

x kp
(τ )
x
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c) d
(τ )
x+k = l(τ )

x kp
(τ )
x q

(τ )
x+k = l(τ )

x k|q
(τ )
x

d) d
(j)
x+k = l(τ )

x kp
(τ )
x q

(j)
x+k = l(τ )

x k|q
(j)
x

77) A useful fact is np(τ )
x = p(τ )

x p
(τ )
x+1 · · · p

(τ )
x+n−1 .

78) Kx = k means (x) fails in the (k + 1)th interval (year) and Jx = j means failure
was due to the jth cause. The joint probability function of Kx and Jx is pKx,Jx(k, j) =

P (Kx = k, Jx = j) = k|q
(j)
x =

d
(j)
x+k

l
(τ )
x

given by point 75xiii).

79) The marginal probability function of Kx is pKx(k) = P (Kx = k) = k|q
(τ )
x =

∑m
j=1 d

(j)
x+k

l
(τ )
x

given by point 75xiv). Note that the numerator corresponds to the sum of

the d(j) values in the row of the multiple decrement table corresponding to age x + k.

80) The marginal probability function of Jx is pJx(j) = P (Jx = j) =

∑∞
k=0 d

(j)
x+k

l
(τ )
x

.

Note that the numerator corresponds to the sum of the d(j) values in the column of the
multiple decrement table corresponding to cause j.

81) Let T (j)
x be the time until failure RV for (x) due to cause j in the absence of all

other m − 1 decrements. Then T (j)
x is like Tx in ch. 2-5. A prime will be used in the

actuarial notation for p and q but not for µ in the absence of all other m− 1 decrements.
Assume t > 0. The rules from point 5) still hold.

i) cdf: F
T

(j)
x

(t) = P (T (j)
x < t) = tq

′(j)
x = 1 − tp

′(j)
x =

∫ t

0
f

T
(j)
x

(s)ds =
∫ t

0
sp

′(j)
x µ

(j)
x+sds

ii) survival function: S
T

(j)
x

(t) = tp
′(j)
x = 1− tq

′(j)
x = P (T (j)

x > t) = exp[−
∫ t

0
µ

(j)
x+s ds].

iii) force of failure: µ
T

(j)
x

(t) = µ
(j)
x+t =

− d
dt

S
T

(j)
x

(t)

S
T

(j)
x

(t)
=

− d
dt tp

′(j)
x

tp
′(j)
x

=
f

T
(j)
x

(t)

S
T

(j)
x

(t)

iv) pdf f
T

(j)
x

(t) = S
T

(j)
x

(t) µ
(j)
x+t = tp

′(j)
x µ

(j)
x+t =

d

dt
F

T
(j)
x

(t) = −
d

dt
S

T
(j)
x

(t)

82) Consider the time until failure RV for (x) when all m decrements are present. A
τ will be used in the actuarial notation for p, q and µ. The rules from point 5) still hold,

but there are special equations for tp
(τ )
x and µ

(τ )
x+t using terms from 81).

i) cdf: tq
(τ )
x = 1 − tp

(τ )
x =

∫ t

0
sp

(τ )
x µ

(τ )
x+sds

ii) survival function: tp
(τ )
x = 1 − tq

(τ )
x = exp[−

∫ t

0
µ

(τ )
x+s ds] =

m
∏

j=1

tp
′(j)
x .

iii) force of failure: µ
(τ )
x+t =

− d
dt tp

(τ )
x

tp
(τ )
x

=
m
∑

j=1

µ
(j)
x+t

83) If cause j was the only cause of failure (decrement), then the absolute rate of
decrement due to cause j over (x, x +n] is nq

′(j)
x = P(failing due to cause j in (x, x +n])

if no other of the m − 1 causes of failure (decrements) were acting. Also, 1q
′(j)
x = q

′(j)
x .

84) Recall that nq(j)
x = P(failing due to cause j in (x, x+n]) when there are m causes

of decrement, and 1q
(j)
x = q(j)

x .
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85) The following three quantities are found when there are m causes of decrement.
Note that these quantities do not have a prime ’ in the superscript.

i) tq
(j)
x =

∫ t

0
sp

(τ )
x µ

(j)
x+sds = P(of failing to cause j in (x, x + t]) when there are m

causes of decrement.

ii) ∞q(j)
x = lim

t→∞
tq

(j)
x = P(of failing to cause j eventually) when there are m causes

of decrement.

iii) µ
(j)
x+t =

d
dt tq

(j)
x

tp
(τ )
x

[Also see 81 iii).]

Note that the superscript (τ ) is used for all m causes of failure and corresponds to the
RV “W = Tx”, the superscript ′(j) corresponds to RV T (j)

x which is failure from the jth
cause when none of the other m − 1 causes of failure (decrements) are present, and the
superscript (j) corresponds to failure due to cause j when there are m causes of failure.

An exception is µ
(j)
x+t = µ

′(j)
x+t, so actuarial notation omits the prime. Another exception

is T (j)
x does not have a prime. These 3 superscripts are used for continuous multiple

decrement models.

86) a) tq
(τ )
x =

m
∑

j=1

tq
(j)
x = P[ (x) fails in the next t years].

b) t|q
(j)
x = tp

(τ )
x q

(j)
x+t = P[ (x) fails between x + t and x + t + 1 due to cause j].

c) t|mq(j)
x =

t+m−1
∑

k=t

kp
(τ )
x q

(j)
x+k =

P[ (x) fails between x + t and x + t + m due to cause j].
87) The l(τ )

x are sometimes called active lives. Hence if decrements are (d) for
death, (w) for withdrawal, (i) for disability and (r) for retirement, as for the illustrative

service table, then a life is not active at age x + t if the person died, withdrew, had a
disability, or retired in the interval (x, x + t]. Be able to use the illustrative service table.

88) The probability that someone succumbed (became inactive) due to cause j at

time t, given that someone succumbed (to some decrement) at time t is
µ

(j)
x+t

µ
(τ )
x+t

.

89) The prime ′ denotes a single decrement quantity. To go from multiple to single

decrement quantities i) find tp
(τ )
x = 1 −

m
∑

j=1

tq
(j)
x . ii) Find µ

(j)
x+t =

d
dt tq

(j)
x

tp
(τ )
x

, and iii) find

tp
′(j)
x = exp[−

∫ t
0 µ

(j)
x+s ds].

90) To go from single to multiple decrement quantities i) find µ
(j)
x+t =

d
dt tq

′(j)
x

tp
′(j)
x

=

−d
dt tp

′(j)
x

tp
′(j)
x

. ii) Find tp
(τ )
x =

m
∏

j=1

tp
′(j)
x = exp[−

∫ t

0
µ

(τ )
x+s ds]. iii) Find tq

(j)
x =

∫ t

0
sp

(τ )
x µ

(j)
x+sds.

∮

10.7
91) For the common shock model (x) and (y) are dependent and are exposed to a

common hazard, called a common shock. Let µ∗
x+t be the forces of failure specific to (x)

but not to (y) at time t. Let µ∗
y+t be the forces of failure specific to (y) but not to (x)

at time t. Let the common hazard = common shock for both (x) and (y) be a constant
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µC
t ≡ λ for t ≥ 0.

92) An equivalent way to develop the common shock model is to let T ∗
x and T ∗

y denote
the future lifetime random variables for (x) and (y) without regard to the common shock
hazard function. Let W ∼ EXP (λ) denote the future lifetime of either (x) or (y) with
regard to the common shock hazard factors only. Assume T ∗

x T ∗
Y W . Let µ∗

x+t be
the force of failure for T ∗

x , and µ∗
y+t that of T ∗

y . Then the survival function ST ∗
x
(t) =

tp
∗
x = exp(−

∫ t
0 µ∗

x+rdr) and the survival function ST ∗

y
(t) = tp

∗
y = exp[−

∫ t
0 µ∗

y+rdr]. Then

tpx = exp[−
∫ t
0(µ

∗
x+r + λ)dr], tpy = exp[−

∫ t
0(µ

∗
y+r + λ)dr], and

tpxy = exp[−
∫ t
0(µ

∗
x+r + µ∗

y+r + λ)dr].

93) Know For the common shock model,
i) µx+t = µ∗

x+t + λ, tpx = tp
∗
x e−λt;

ii) µy+t = µ∗
y+t + λ, tpy = tp

∗
y e−λt;

iii) the total force of failure for the joint life status (xy) is
µxy(t) = µTxy(t) = µx+t:y+t = µ∗

x+t + µ∗
y+t + λ = µx+t +µy+t −λ, tpxy = tp

∗
x tp

∗
y e−λt =

tpx tpy eλt;

iv) P (Tx = Ty) =
∫ ∞

0
tpxy λdt.

94) Know Chapter 10 formulas still hold for the common shock model, but Tx is not
independent of Ty. So for the last survivor status (xy),
i) Txy + Txy = Tx + Ty. Also g(Txy) + g(Txy) = g(Tx) + g(Ty), and Txy = Tx + Ty − Txy.
ii) survival function: STxy

(t) = tpxy = P (Txy > t) = tpx + tpy − tpxy.
iii) cdf: FTxy

(t) = tqxy = P (Txy ≤ t) = 1 − STxy
(t)

iv)
o
exy = E(Txy) =

∫ ∞

0
tfTxy

(t)dt =
∫ ∞

0
tpxy dt =

o
ex +

o
ey −

o
exy.

v) Axy = Ax + Ay −Axy.
vi) axy = ax + ay − axy.

95) Know Suppose T ∗
x ∼ EXP (µ∗

x) and T ∗
y ∼ EXP (µ∗

y) in the common shock model
(so W ∼ EXP (λ)). Then i) Tx ∼ EXP (µx = µ∗

x + λ),
ii) Ty ∼ EXP (µy = µ∗

y + λ),
iii) Txy ∼ EXP (µ∗

x + µ∗
y + λ = µx + µy − λ),

iv) Ax =
µ∗

x + λ

µ∗
x + λ + δ

, Ay =
µ∗

y + λ

µ∗
y + λ + δ

, Axy =
µ∗

x + µ∗
y + λ

µ∗
x + µ∗

y + λ + δ
.

v) ax =
1

µ∗
x + λ + δ

, ay =
1

µ∗
y + λ + δ

, axy =
1

µ∗
x + µ∗

y + λ + δ
.

vi) P (Tx = Ty) =
λ

µ∗
x + µ∗

y + λ
.

Warning: Could be given Tx ∼ EXP (µx), Ty ∼ EXP (µy), and λ. Then µ∗
x = µx−λ

and µ∗
y = µy − λ. Suppose you are told that the force of mortalities for (x) and (y) are u

and v. If you are told common shock is incorporated into the forces of mortality u and v,
then u = µx+t and v = µy+t. If you are told the noncommon forces of mortality for (x)
and (y) are u and v, then u = µ∗

x+t and v = µ∗
y+t. End

∮

10.7 material
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Some ch. 10 material from Exam 1 review:

41) A joint life status for (xy) fails as soon as x or y dies. Let Txy = min(Tx, Ty) =
time until 1st death. Convert q’s to p’s, then convert back to q’s if needed.

43) Know: Consider a joint life status (xy) and Txy.

i) survival function: Sxy(t) = tpxy = P (Txy > t). If Tx Ty, then tpxy = ( tpx)( tpy).

ii) cdf: Fxy(t) = tqxy = P (Txy ≤ t). If Tx Ty, then tqxy = tqx + tqy − ( tqx)( tqy).

iv) force of mortality: µxy(t) =
fxy(t)

Sxy(t)
. If Tx Ty, then µxy(t) = µx+t + µy+t ≡

µx+t:y+t.

vi)
o
exy= E(Txy) =

∫ ∞

0
tfxy(t)dt =

∫ ∞

0
tpxydt.

45) If Tx ∼ EXP (µx) Ty ∼ EXP (µy), then Txy = min(Tx, Ty) ∼ EXP (µx + µy).

46) A two life last survivor status for (xy) fails after both x and y die. Let
Txy = max(Tx, Ty) = time until 2nd death. Then Txy + Txy = Tx + Ty. Convert p’s to
q’s, then convert back to p’s if needed.

48) Know: Consider a last survivor status (xy) and Txy.

i) survival function: STxy
(t) = Sxy(t) = tpxy = P (Txy > t) = tpx + tpy − tpxy. If

Tx Ty, then tpxy = 1 − ( tqx)( tqy) = tpx + tpy − ( tpx)( tpy).

ii) cdf: Fxy(t) = tqxy = P (Txy ≤ t) = 1 − Sxy(t). If Tx Ty, then

tqxy = ( tqx)( tqy) = Fx(t)Fy(t) = FTx(t)FTy(t).

vi)
o
exy = E(Txy) =

∫ ∞

0
tfxy(t)dt =

∫ ∞

0
tpxy dt =

o
ex +

o
ey −

o
exy.

50) Txy is one of Tx or Ty, and Txy is the other. Hence Txy + Txy = Tx + Ty, and
Txy = Tx + Ty − Txy. Similarly, P (Txy > t) + P (Txy > t) = P (Tx > t) + P (Ty > t), and
P (Txy > t) = P (Tx > t) + P (Ty > t) − P (Txy > t). See point 48) i) and vi).

72) Know: Let Tx1, ..., Txm be independent EXP(µi) RVs. Let u = (x1 · · · xm) or

u = x1 · · · xm. Then T = Tu = Tx1···xm = min(Tx1, ..., Txm) ∼ EXP (
m
∑

i=1

µi). Then µT (t) =

∑m
i=1 µi, ST (t) = exp(−t

∑m
i=1 µi),

o
eu= E(T ) = 1/(

m
∑

i=1

µi) and V (T ) = 1/(
∑m

i=1 µi)
2. a)

For whole life insurance, Au = E[Zu] =

∑m
i=1 µi

δ +
∑m

i=1 µi

, and 2Au = E[(Zu)
2] =

∑m
i=1 µi

2δ +
∑m

i=1 µi

.

b) For a whole life annuity, au = E[Y u] =
1

δ +
∑m

i=1 µi

, and V [Y u] =
2Au − (Au)

2

δ2
.
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chapter 18

96) The indicator function IA(x) ≡ I(x ∈ A) = 1 if x ∈ A and 0, otherwise.
Sometimes an indicator function such as I(0,∞)(y) will be denoted by I(y > 0).

97) If none of the survival times are censored or truncated, then the empirical sur-

vival function = (number of individual with survival times > t)/(number of individuals)

= nt/n = ŜE(t) =
1

n

n
∑

i=1

I(Ti > t) = p̂t = sample proportion of lifetimes > t.

Let t(1) ≤ t(2) ≤ · · · ≤ t(n) be the observed ordered survival times (= lifetimes =
death times). Let t0 = 0 and let 0 < t1 < t2 < · · · < tm be the distinct survival times.
Let di = number of deaths at time ti. If m = n and di = 1 for i = 1, ..., n then there are
no ties. If m < n and some di ≥ 2, then there are ties.

ŜE(t) is a step function with ŜE(0) = 1 and ŜE(t) = ŜE(ti−1) for ti−1 ≤ t < ti. Note
that

∑m
i=1 di = n.

98) know: A linear or Wald 95% confidence interval (CI) for θ is θ̂ ± 1.96 SE(θ̂).
99) know: Let ŜE(t) = nt/n, as in 97). Then

SE(ŜE(t)) = ŜE(t)

√

1

nt

−
1

n
.

Thus a 95% CI for S(t) is ŜE(t) ± 1.96 SE(ŜE(t)).
100) know: Suppose n people aged x buy a t year life insurance policy. Then the

estimated number of claims that will be filed is

n

[

1 −
Ŝ(t + x)

Ŝ(x)

]

.

101) know:

interval length Li deaths di Ŝx(
∑i

j=1(Li))

[x, x1) L1 d1 Ŝx(L1) =
n − d1

n
= Ŝx(0) −

d1

n

[x1, x2) L2 d2 Ŝx(L1 + L2) =
n − (d1 + d2)

n
= Ŝx(L1) −

d2

n
...

...
...

...

[xi−1, xi) Li di Ŝx(
i
∑

j=1

Lj) =
n − (d1 + d2 + · · · + di)

n
= Ŝx(

i−1
∑

j=1

Lj) −
di

n
...

...
...

...

[xk−1, xk) Lk dk Ŝx(
k
∑

j=1

Lj) =
n − (d1 + d2 + · · · + dk)

n
= Ŝx(

k−1
∑

j=1

Lj) −
dk

n

6



Suppose we have n lives observed from exact age x to xk as tabled below. Then

Ŝx(0) = 1, Ŝx(L1) =
n − d1

n
= Ŝx(0) −

d1

n
, Ŝx(

i
∑

j=1

Lj) =
n − (d1 + d2 + · · · + di)

n
=

Ŝx(
i−1
∑

j=1

Lj)−
di

n
. Linear interpolation is used to find the ogive empirical survival function

ŜX(t) =
(tU − t)Ŝx(tL) + (t − tL)Ŝx(tU)

tU − tL

for tL ≤ t < tU .
Know how to compute Ŝx(t) with a table like the one above. The second and third

columns need to be given.
102) Let Y ∗

i = Yi+ = Ti = min(Yi, Zi) where Yi and Zi are independent. Let δi =
I(Yi ≤ Zi) so δi = 1 if Ti is uncensored and δi = 0 if Ti is censored. Let t(1) ≤ t(2) ≤
· · · ≤ t(n) be the observed ordered survival times. Let γj = 1 if t(j) is uncensored and
0, otherwise. Let t0 = 0 and let 0 < t1 < t2 < · · · < tm be the distinct survival times
corresponding to the t(j) with γj = 1. Let di = number of deaths at time ti. If m = n
and di = 1 for i = 1, ..., n then there are no ties. If m < n and some di ≥ 2, then there
are ties.

103)

ti ri di ŜK(t)

t0 = 0 ŜK(0) = 1

t1 r1 d1 ŜK(t1) = ŜK(t0)[1 −
d1

r1
]

t2 r2 d2 ŜK(t2) = ŜK(t1)[1 −
d2

r2
]

...
...

...
...

tj rj dj ŜK(tj) = ŜK(tj−1)[1 −
dj

rj
]

...
...

...
...

tm−1 rm−1 dm−1 ŜK(tm−1) = ŜK(tm−2)[1 −
dm−1

rm−1
]

tm rm dm ŜK(tm) = 0 = ŜK(tm−1)[1 −
dm

rm
]

Know: Let ri =
∑n

j=1 I(t(j) ≥ ti) = # at risk at ti = # alive and not yet censored
just before ti. Let di = # of events (deaths) at ti. The Kaplan Meier estimator of
SY (ti) = P (Y > ti) is ŜK(0) = 1 and ŜK(ti) =

∏i
k=1(1−

dk

rk
) = ŜK(ti−1)(1−

di

ri
). ŜK(t) is a

step function with ŜK(t) = ŜK(ti−1) for ti−1 ≤ t < ti and i = 1, ..., m. If t(n) is uncensored

then tm = t(n) and ŜK(t) = 0 for t > tm. If t(n) is censored, then ŜK(t) = ŜK(tm) for

tm ≤ t ≤ t(n), but ŜK(t) is undefined for t > t(n).

Know how to compute Ŝk(ti) given a) the t(j) and γj, or b) given the ti, ni and di, or
c) given a small data set.
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104) Know: The Kaplan Meier estimator, given tj, dj, cj, and r0, can be computed
for a big data set. Let cj = number of exits − number of new entrants in [tj, tj+1). Let
the risk set at tj be rj = number of observed lives at risk just before time tj (so at time
t−j ). Let r0, tj, dj and cj be given. Then r1 = r0 − c0 and rj+1 = rj − dj − cj. Then we

still have ŜK(ti) =
i
∏

k=1

(1 −
dk

rk

) = ŜK(ti−1)(1 −
di

ri

). Given the first 3 columns and r0, be

able to fill in the last two columns of the table below.
tj dj cj rj ŜK(t)

t0 = 0 c0 r0 ŜK(0) = 1

t1 d1 c1 r1 ŜK(t1) = ŜK(t0)[1 −
d1

r1
]

t2 d2 c2 r2 ŜK(t2) = ŜK(t1)[1 −
d2
r2

]

...
...

...
...

...

tj dj cj rj ŜK(tj) = ŜK(tj−1)[1 −
dj

rj
]

...
...

...
...

...

tm−1 dm−1 cm−1 rm−1 ŜK(tm−1) = ŜK(tm−2)[1 −
dm−1

rm−1
]

tm dm cm rm ŜK(tm) = 0 = ŜK(tm−1)[1 −
dm

rm
]

105) For both 103) and 104), Greenwood’s formula is

V̂ (ŜK(t)) = [ŜK(t)]2
∑

j:tj≤t

dj

rj(rj − dj)

where t0 is not used. Then SE(ŜK(t)) =
√

V̂ (ŜK(t)). For t = ti use the sum
∑i

j=1.
106) The Nelson Aalon estimator of H(t) is the step function

ĤN (ti) =
i
∑

j=1

dj

rj

= ĤN (ti−1) +
di

ri

with ĤN (0) = 0 and

V̂ (ĤN (ti)) =
i
∑

j=1

dj(rj − dj)

r3
j

.

For general t, can replace
∑i

j=1 by
∑

j:tj≤t.

107) ŜN(t) = e−ĤN (t) is a step function.
ĤK(ti) = − log(ŜK(ti)) is a step function with ĤK(0) = 0
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Chapter 6–Premiums

In chapters 4 and 5, wanted to know the lump sum paid at time t = 0 the insured
should pay for insurance or an annuity. The lump sum was equal to the APV A or a.
In this chapter the insured pays premiums P at times 0, 1, ..., w. Hence the insured
is paying the insurance company with an annuity-due (with payment P made at the
beginning of each year). Now want to know what should P be. The equivalence

principle says E(present value of premiums] = E[present value of benefits]. If ä is
the unit APV that the insured pays the insurance company, then E(present value of
premiums] = the annuity-due APV paid by the insured = (P )(ä). E[present value of
benefits] = APV of the insurance or deferred annuity paid by the insurance company to
the insured’s beneficiary. So the equivalence principle sets (P )(ä) = insurance company
APV. The premium payments (P )(ä) are the funding used to pay for the insurance or
deferred annuity. Funding should not extend beyond the event that triggers payment nor
beyond n years for n year term insurance or n year deferred annuity.

108) The loss random variable for discrete insurance is L = Z − PŸ and under the

equivalence principle, E(L) = 0 so P =
A

ä
. The subscripts on P , L and Z are the same,

but äx is used if premium payment could be indefinite while äx:m| is used if payment is
for at most m years where m = n or m = t < n.

109) Now suppose the funding payment is made continously at rate (or with contin-
uous premium) P . Discrete insurance with continuous premium P .

i) whole life: P x =
Ax

ax

.

ii) n year term: P
1
x:n| =

A1
x:n|

ax:n|

.

iii) n year pure endowment: P
x:

1

n|
=

A
x:

1

n|

ax:n|

.

iv) n year endowment: P x:n| =
Ax:n|

ax:n|

.

v) n year deferred insurance: P ( n|Ax) =
n|Ax

ax:n|

.

110) Continuous whole life insurance with continuous premium:

P (Ax) =
Ax

ax

=
1 − δ ax

ax

=
1

ax

− δ =
δ Ax

1 −Ax

.

L(Ax) = Zx − [P (Ax)]Y x.

V (L(Ax)) =

(

1 +
[P (Ax)]

δ

)2

[ 2Ax−(Ax)
2] =

(

1

δ ax

)2

[ 2Ax−(Ax)
2] =

2Ax − (Ax)
2

(1 − Ax)2
.

Know: If Tx ∼ EXP (µ), then P (Ax) = µ, and V (L(Ax)) =
µ

µ + 2δ
= 2Ax.

111) Continuous n year endowment life insurance with continuous premium:
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P (Ax:n|) =
Ax:n|

ax:n|

=
1

ax:n|

− δ =
δ Ax:n|

1 − Ax:n|

.

V (L(Ax:n|)) =

(

1 +
[P (Ax:n|)]

δ

)2

[ 2Ax:n| − (Ax:n|)
2] =

2Ax:n| − (Ax:n|)
2

(1 − Ax:n|)2
.

Know: If Tx ∼ EXP (µ), then P (Ax:n|) = µ, and V (L(Ax:n|)) =
µ

µ + 2δ
.

Note that the difference between 110) and 111) is that the whole life insurance drops
the n|.

112) If the benefit is b instead of 1, and bP is the premium for b units of insurance,
multiply the variances (in 110) and 111)) by b2.

113) Some other continuous insurances with continuous premium:

i) n year term insurance: P (A
1

x:n|) =
A

1

x:n|

ax:n|

Know: If Tx ∼ EXP (µ), then P (A
1

x:n|) = µ.

ii) n year deferred insurance: nP ( n|Ax) =
n|Ax

ax:n|

Here premiums are paid only during the n year deferral period.

iii) n-pay whole life insurance: nP (Ax) =
Ax

ax:n|

Here benefit is payable at death and premium is payable for n years.

iv) n year deferred annuity: nP ( n|ax) =
n|ax

ax:n|

114) V (L) =
2A − (A)2

(1 −A)2
for L = Lx, Lx:n|, Lx, and Lx:n| under the equivalence prin-

ciple.
115) Discrete insurance under the equivalence principle.

i) whole life: Lx = Zx − PxŸx with Px =
Ax

äx

=
1

äx

− d =
dAx

1 − Ax

.

ii) n year term: L1
x:n| = Z1

x:n| − P 1
x:n|Ÿx:n| with P 1

x:n| =
A1

x:n|

äx:n|

.

iii) n year pure endowment: L
x:

1

n|
= Z

x:
1

n|
− P

x:
1

n|
Ÿx:n| with P

x:
1

n|
=

A
x:

1

n|

äx:n|

.

iv) n year endowment: Lx:n| = Zx:n| − Px:n|Ÿx:n| with Px:n| =
Ax:n|

äx:n|

=
1

äx:n|

− d =

dAx:n|

1 − Ax:n|

.

116) For the insurance models in 115), L = Z−PŸ and Ÿ =
1 − Z

d
. It can be shown

that V (L) =
(

1 +
P

d

)2

[ 2A − (A)2].

i) whole life: V (Lx) =
(

1 +
Px

d

)2

[ 2Ax − (Ax)
2] =

(

1

däx

)2

[ 2Ax − (Ax)
2] =
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2Ax − (Ax)
2

(1 − Ax)2
.

ii) n year term: V (L1
x:n|) =

(

1 +
P 1

x:n|

d

)2

[ 2A1
x:n| − (A1

x:n|)
2]

iii) n year pure endowment: V (L
x:

1

n|
) =





1 +

P
x:

1

n|

d







2

[ 2A
x:

1

n|
− (A

x:
1

n|
)2]

iv) n year endowment: V (Lx:n|) =

(

1 +
Px:n|

d

)2

[ 2Ax:n|−(Ax:n|)
2] =

2Ax:n| − (Ax:n|)
2

(1 − Ax:n|)2

117) The above variance formulas are for unit payment where L ≡ L(1). For payment
X, let L(X) be the loss RV. Then V [L(X)] = X2V [L(1)].

118) Px:n| = P 1
x:n| + P

x:
1

n|

119) Limited payment of t-pay insurance funds the insurance for t < n years.

i) limited payment (t-pay) whole life has tPx =
Ax

äx:t|

.

ii) limited payment (t-pay) n year term has tP
1
x:n| =

A1
x:n|

äx:t|

.

120) i) An n year deferred insurance has P ( n|Ax) =
n|Ax

äx

.

ii) For t < n, a limited payment (t-pay) n year deferred insurance has

tP ( n|Ax) =
n|Ax

äx:t|

.

121) Suppose the continuous insurance pays the claim immediately but the premiums
are paid annually.

i) whole life has P (Ax) =
Ax

äx

.

ii) n year term has P (A
1

x:n|) =
A

1

x:n|

äx:n|

.

iii) n year endowment has P (Ax:n|) =
Ax:n|

äx:n|

.

122) i) n year deferred immediate annuity has L = n|Yx − [P ( n|ax)] Ÿx:n| with

P ( n|ax) =
n|ax

äx:n|

.

ii) n year deferred annuity-due has L = n|Ÿx − [P ( n|äx)] Ÿx:n| with P ( n|äx) =
n|äx

äx:n|

.

iii) n year continuous deferred annuity P ( n|ax) =
n|ax

äx:n|

.

123) Know: The illustrative life table is often useful for calculating premiums.
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Chapter 8

Markov Chains

124) A (finite or finite state) Markov chain {Xn : n = 0, 1, 2, ...} is a discrete stochastic
process for which time only takes on integer values. Xn will have J possible values 1,
..., J called states. If Xn = i ∈ {1, ..., J}, then the Markov chain is in state i at time n.
Suppose xk ∈ {1, ..., J} for k ≥ 0. The Markov property is

P (Xn+1 = j|Xn = i, Xn−1 = xn−1, Xn−2 = xn−2, ..., X1 = x1, X0 = x0) = P (Xn+1 = j|Xn = i)

for any n ≥ 1. Hence the conditional probability of Xn+1 given the past only depends
on the state the Markov chain is in at time Xn. Or, given Xn = i, then Xn+1 is
independent of the rest of the past (time periods 0, 1, ..., n − 1). If 0 ≤ d < n then
P (Xn+1 = j|Xn = i, Xn−1 = xn−1, ..., Xd = xd) = P (Xn+1 = j|Xn = i).

125) Know: The transition probability pij = P (Xn+1 = j|Xn = i). The transition

probability matrix

P =













p11 p12 . . . p1J

p21 p22 . . . p2J

...
...

. . .
...

pJ1 pJ2 . . . pJJ













.

126) The sum of the probabilities in any row of P is
J
∑

j=1

pij = 1 for row i = 1, ..., J.

127) For small J , a transition diagram list the J states with J arrows leaving each
state and J arrows entering each state. Then there are J2 arrows corresponding to the
pij that form P . An arrow labelled pij goes from state i to state j. An arrow labelled
pii goes from state i to state i. A variant on the transition diagram leaves out pii, which
can be found using 126), and leaves out any arrow corresponding to pij = 0 for i 6= j.

128) Know: P (Xm+n = j|Xm = i) = pn
ij where pn

ij is the ijth entry of P n = PP · · ·P
where there are n matrices P in the multiplication. This formula is for a homogeneous
Markov chain where the transition probability matrix does not depend on the time period
j, so P = P (j) for j = 0, 1, 2, ....

129) State j is accessible from state i if pn
ij > 0 for some n ≥ 0. Then, starting in

state i, it is possible that the process will enter state j in a finite number of steps.

130) Two states i and j that are accessible to each other communicate, written i ↔ j.

131) States that communicate with each other form an equivalence class. A Markov
chain is irreducible if there is only one class, so all states communicate.

132) For state i, let ri denote the probability, starting in state i, that the process
will ever reenter state i. State i is recurrent if ri = 1 and transient if ri < 1. State i is
absorbing if pii = 1 so that the other entries in the ith row are 0. Once in an absorbing
state, such as death, the Markov chain stays in the absorbing state. An absorbing state
is recurrent. All of the states in an irreducible Markov chain are recurrent.

133) A recurrent state will be visited infinitely often. A transient state is not certain
to be revisited and will only be visited a finite number of times. Hence a Markov chain

12



must have at least on recurrent state to run indefinitely for n = 1, 2, .... Starting in a
transient state i, the number of time periods N the process will be in state i, including
the initial time, is geometric with finite mean E(N) = 1/(1 − ri). State i is recurrent if
E(N) = ∞ and is transient if E(N) < ∞.

134) If state i is recurrent and i ↔ j, then state j is recurrent. If state i is transient
and i ↔ j, then state j is transient.

135) Know: Let πn = (π1n, ..., πJn) denote the vector of probabilities of being in
states 1 to J at time n. Let π0 = (π10, ..., πJ0) where πi0 = P (X0 = i) is the probability
that the process is in state i at the start, time 0. Then πn is the state vector at time n
and

πn = π0P
n = π1P

n−1 = π2P
n−2 = · · · = πkP

n−k = · · · = πn−1P

and πn+1 = πnP . This formula is for a homogeneous Markov chain.

136) π0 is the initial distribution of the Markov chain. Either π0 is given or the
problem states that the Markov chain starts in state j. Then π0 = (0, ..., 0, 1, 0, ..., 0)
where the 1 is in position j.

137) Know: For a nonhomogeneous Markov chain, the matrix of transition proba-
bilities P (k) depends on the kth step of the process. Then πn = state vector at time n
satisfies πn = π0P

(1)P (2) · · ·P (n).
Sometimes the following notation is used P (j) = P j = Q(j) = Qj.

138) Know: For hand calculations multiply the state vector times the matrix. Avoid
multiplying matrices. So π3 = (π0P

(1))P (2)P (3) = (π1P
(2))P (3) = π2P

(3) for a nonho-
mogeneous Markov chain, and π3 = (π0P )PP = (π1P )P = π2P for a homogeneous
Markov chain.
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