Math 402 Exam 1 is Wed. Feb. 15. You are allowed 12 sheets of notes and a calculator. The exam covers HW1-3, and Q1-3. Numbers refer to types of problems on exam. In this class $\log(t) = \ln(t) = \log_e(t)$ while $\exp(t) = e^t$. Chapters 2, and 3:

1) Memorize the following distributions:

a) exponential(μ) = gamma($\nu = 1, \mu$) where $\mu > 0$ is the force of mortality:

$$f(x) = \mu \exp(-\mu x) \ I(x \ge 0).$$

 $E(X) = 1/\mu$, $VAR(X) = 1/\mu^2$. $F(x) = 1 - \exp(-\mu x)$, $x \ge 0$. Here $I(x \ge 0) = 1$ if $x \ge 0$ and $I(x \ge 0) = 0$, otherwise. (The parameterization with $\lambda = 1/\mu$ is common. Then $E(X) = \lambda$ and $V(X) = \lambda^2$.) $S(x) = \exp(-\mu x)$, $x \ge 0$.

b) uniform (θ_1, θ_2) and De Moivre (θ) = uniform $(0, \theta)$:

$$f(x) = \frac{1}{\theta_2 - \theta_1} I(\theta_1 \le x \le \theta_2).$$

 $F(x) = (x - \theta_1)/(\theta_2 - \theta_1) \text{ for } \theta_1 \le x \le \theta_2.$ $E(X) = (\theta_1 + \theta_2)/2. \quad VAR(X) = (\theta_2 - \theta_1)^2/12.$

2) The cdf $F(x) = P(X \le x)$, the survival function S(x) = P(X > x), the pdf $f(x) = F'(x), \mu(x)$ = force of mortality = hazard rate function, $E(X) = \stackrel{\circ}{e}_0$.

3) (x) denotes a person alive at age x.

4) Let $X = T_0$ where $T_x = T(x)$ is the time until failure for a person alive at age x. Then $T_0 = x + T_x$ given $T_0 > x$. Also, $tp_0 = S_0(t) = P(T_0 > t)$, $tq_0 = F_0(t) = P(T_0 \le t)$, and $E(T_0) = \int_0^\infty tf_0(t)dt = \int_0^\infty S_0(t)dt$ if $\lim_{t\to\infty} tS_0(t) = 0$.

5) Let t > 0. Let $G_x = G_{T_x}$ where G is T, S, F, μ , or f. If there is no subscript x, then $G = G_0$.

i)
$$_{t}p_{x} = S_{x}(t) = \frac{S_{0}(x+t)}{S_{0}(x)} = 1 - _{t}q_{x} = P(T_{x} > t) = P(T_{0} > x+t|T_{0} > x)$$

$$= \exp(-\int_{x}^{x+t} \mu_{y} \, dy) = \exp(-\int_{0}^{t} \mu_{x+w} \, dw)$$

Note that $S_0(x+t) = S_0(x)S_x(t)$.

ii)
$$_{t}q_{x} = F_{x}(t) = 1 - _{t}p_{x} = 1 - \frac{S_{0}(x+t)}{S_{0}(x)} = P(T_{x} \le t) = P(T_{0} \le x+t|T_{0} > x)$$

iii)
$$_{t}p_{x} \mu_{x+t} = f_{x}(t) = \frac{f_{0}(x+t)}{S_{0}(x)} = \frac{d}{dt}F_{x}(t) = -\frac{d}{dt}S_{x}(t)$$

iv) $\mu_{x+t} = \mu_{x}(t) = -\mu_{0}(x+t) = \frac{f_{0}(x+t)}{S_{0}(x+t)} = \frac{f_{x}(t)}{S_{x}(t)}$

6) If t = 1 the subscript is often suppressed so $p_x = {}_1p_x =$ and $q_x = {}_1q_x$.

7) The complete expectation of life at age x or the expected future lifetime at age x is $\stackrel{\circ}{e}_x = E(T_x) = \int_0^\infty t f_x(t) dt = \frac{1}{S_0(x)} \int_0^\infty t f_0(x+t) dt = \int_0^\infty t p_x dt = \int_0^\infty S_x(t) dt$. Note that $\stackrel{\circ}{e}_0 = E(T_0)$.

8) $V(T_x) = E(T_x^2) - [E(T_x)]^2$ where $E(T_x) = \overset{o}{e}_x$ and $E(T_x^2) = \int_0^\infty t^2 f_x(t) dt = 2\int_0^\infty t t p_x dt = 2\int_0^\infty t S_x(t) dt$. Note that $E(T_0^2)$ can be found using x = 0.

9) Memorize: If $T_x \sim EXP(\mu)$ where $\mu > 0$, then for t > 0, $\mu_{x+t} = \mu$, $f_x(t) = \mu e^{-\mu t}$, $F_x(t) = 1 - e^{-\mu t}$, $S_x(t) = e^{-\mu t}$, $E(T_x) = \stackrel{o}{e_x} = 1/\mu$ and $V(T_x) = 1/\mu^2$. The exponential distribution is the only distribution with a constant force of mortality $\mu_x(t) \equiv \mu$. Often you are told $\mu_{x+t} = \mu$ for some constant $\mu < 1$.

10) **Memorize**: If $T_0 \sim U(0, \omega)$, then T_x has a De Moivre $(\omega - x)$ distribution: $T_x \sim U(0, \omega - x)$ with support $0 < t < \omega - x$. For such t, $S_x(t) = {}_t p_x = \frac{\omega - x - t}{\omega - x} = 1 - \frac{t}{\omega - x}$, $\mu_x(t) = \mu_{x+t} = \frac{1}{\omega - x - t}$ and $E(T_x) = \stackrel{\circ}{e}_x = \frac{\omega - x}{2}$. Often need to recognize the distribution from ${}_t p_x$.

function to approximate	linear or UDD approx	exponential or constant force approx
$S_0(x+t)$	$(1-t)S_0(x) + tS_0(x+1)$	$[S_0(x)]^{1-t} [S_0(x+1)]^t$
$_t p_x$	$1 - t(q_x)$	$(p_x)^t = \exp(-\mu t)$
$_tq_x \ (=1- {_tp_x})$	$t(q_x)$	$1 - (p_x)^t = 1 - (1 - q_x)^t$
μ_{x+t}	$\frac{q_x}{1-t(q_x)}$	$-\log(p_x) = \mu$
$f_0(t) = {}_t p_x \ \mu_{x+t}$	q_x	$-(p_x)^t \log(p_x) = \mu \exp(-\mu t)$
$_tq_{x+v}$	$\frac{(t)q_x}{1-v(q_x)}$	$1 - (p_x)^t \approx {}_t q_x$
$_{t}p_{x+v}$	$1-\frac{(t)q_x}{1-v(q_x)}$	$(p_x)^t \approx {}_t p_x$

11) Suppose $x \ge 0$ and 0 < t < 1.

12) The curtate duration at failure RV $K_x = \lfloor T_x \rfloor$. Here $\lfloor 7.7 \rfloor = 7$. Suppose the person died in the kth time interval (k - 1, k] which means T_0 is in the time interval (x + k - 1, x + k], given $T_0 > x$. Then $K_x = k - 1$. K_x is a discrete random variable where $k = 0, 1, 2, \ldots$ Suppose the interval of failure for T_x is (k, k + 1] (so T_0 fails in interval (x + k, x + k + 1]). Then $K_x = k$. The probability (mass) function of K_x is

$${}_{k}|q_{x} = p_{K_{x}}(k) = P(K_{x} = k) = P(k < T_{x} \le k+1) = P(x+k < T_{0} \le x+k+1|T_{0} > x) =$$
$${}_{k}p_{x} - {}_{k+1}p_{x} = F_{x}(k+1) - F_{x}(k) = S_{x}(k) - S_{x}(k+1).$$

13) The curtate expectation of life at age x is

$$e_x = E(K_x) = \sum_{k=0}^{\infty} k \ P(K_x = k) = \sum_{k=0}^{\infty} k \ _k |q_x|$$

14) **Know:** The probability that (x) will die between x + n and x + n + m is $_{n|m}q_x = P(x+n < T_0 \le x+n+m|T_0 > x) = P(n < T_x \le n+m) = {}_{n}p_x - {}_{n+m}p_x = {}_{n+m}q_x - {}_{n}q_x = {}_{n}p_x {}_{m}q_{x+n}$. For m = 1, ${}_{n|1}q_x = {}_{n}|q_x = P(K_x = n) = {}_{n}p_x {}_{q_{x+n}} = P(n < T_x \le n+1)$.

15) multiplication rule: $_{n+m}p_x = _n p_x \ _m p_{x+n}$

16) $\hat{e}_{x:\overline{n}|} =$ expected number of years lived in (x, x + n] by a (randomly selected) survivor to age x. (The : $\overline{n}|$ in the subscript means take the formula for \hat{e}_x but replace the upper limit ∞ in the integrand by n.) So $\hat{e}_{x:\overline{n}|} = \int_0^n t p_x dt = \int_0^n S_x(t) dt = \int_0^n t f_x(t) dt$.

Chapter 4: 17) From interest theory, i) the *compound interest factor* $v = \frac{1}{1+i}$ and 0 < v < 1.

ii) The effective rate of interest $i = \frac{1-v}{v} > 0$. Often i = 0.05.

iii) The force of interest $\delta = \log(1+i) > 0$. Note that $1+i = e^{\delta}$ so $v = e^{-\delta}$.

iv) The effective rate of discount $d = \frac{i}{1+i} = iv = 1 - v > 0.$

18) The life insurance model has a *benefit function* b_t and a *discount function* v_t where t = the length of time from issue of insurance until death (or until insurance payment). Often $v_t = v^t$ and $b_t = 1$ unit. The present value function $z_t = b_t v_t$ is the present value, at time t from policy issue, of the benefit payment. Let $T = T_x =$ insured's future lifetime RV and the claim random variable or present value random variable $Z = z_{T_x} = b_{T_x} v_{T_x}$. Or $K_x = \lfloor T_x \rfloor$ = the curtate future lifetime RV, and $Z = z_{1+K_x} = b_{1+K_x} v_{1+K_x}$.

19) E(Z) is the actuarial present value (APV) = expected present value (EPV) = net single premium (NSP) of the insurance, the expected value of the present value of the payment.

20) Formulas are given for unit payment. Let A = E(Z) and ${}^{2}A = E(Z^{2})$. For nonunit payment c, multiply the unit payment formula for A by c and the unit formula payment for ${}^{2}A$ by c^{2} .

21) Suppose (x) buys insurance and dies at $t \in (k - 1, k]$ years from purchase so $K_x = k - 1$ where $k \in \{0, 1, 2, ...\}$. Consider the following discrete life insurance models.

i) (Discrete) whole life insurance makes unit payment at time t = k with $v_t = v^t, t \ge 0$ and $b_t = 1, t \ge 0$. Then $z_t = b_t v_t = v^t, t \ge 0$. The present value random variable $Z_x = z_{1+K_x} = v^{1+K_x}$. Then the actuarial present value APV = EPV = NSP = $A_x = E(Z_x) = E(v^{1+K_x}) = \sum_{k=0}^{\infty} v^{k+1} P(K_x = k)$, and ${}^2A_x = E[(Z_x)^2] = E[(v^{1+K_x})^2] = \sum_{k=0}^{\infty} v^{2(k+1)} P(K_x = k)$.

ii) (Discrete) *n year term insurance* = (discrete) *n year temporary insurance* makes unit payment at time t = k only if $k \le n$, otherwise no payment is made. Now

 $v_t = v^t, t \ge 0, \ b_t = \begin{cases} 1, & t \le n \\ 0, & t > n \end{cases} \text{ and } z_t = b_t v_t = \begin{cases} v^t, & t \le n \\ 0, & t > n. \end{cases} \text{ The present value} \\ \text{random variable (note } 1 + K_x \le n \text{ if } K_x < n) \text{ is } Z^1_{x:\overline{n}|} = \begin{cases} v^{1+K_x}, & K_x < n \\ 0, & K_x \ge n. \end{cases} \text{ Then the} \\ \text{actuarial present value } \text{APV} = \text{EPV} = \text{NSP} = A^1_{x:\overline{n}|} = E(Z^1_{x:\overline{n}|}) = \sum_{k=0}^{n-1} v^{k+1} P(K_x = k), \\ \text{and } {}^2A^1_{x:\overline{n}|} = E[(Z^1_{x:\overline{n}|})^2] = \sum_{k=0}^{n-1} v^{2(k+1)} P(K_x = k). \text{ The 1 above the } x \text{ means unit benefit} \end{cases}$

is payable after (x) dies if death is before time n.

iii) (Discrete) *n* year deferred insurance makes unit payment at time t = k only if k > n so $k \ge n + 1$, otherwise no payment is made. Now $v_t = v^t, t \ge 0$,

$$b_t = \begin{cases} 0, & t \le n \\ 1, & t > n \end{cases} \text{ and } \mathbf{z}_t = \mathbf{b}_t \mathbf{v}_t = \begin{cases} 0, & t \le n \\ v^t, & t > n. \end{cases}$$

The present value random variable (note $1+K_x > n$ if $K_x \ge n$) is $_n | Z_x = \begin{cases} 0, & K_x < n \\ v^{1+K_x}, & K_x \ge n. \end{cases}$ Then the actuarial present value APV = EPV = NSP = $_n|A_x = E(_n|Z_x) =$ $\sum_{k=n}^{\infty} v^{k+1} P(K_x = k), \text{ and } {}^2_n | A_x = E[(_n | Z_x)^2] = \sum_{k=n}^{\infty} v^{2(k+1)} P(K_x = k).$ iv) (Discrete) *n* year endowment life insurance makes unit payment at time t = k if t < k < n and at time n if t > n. Then $b_t = 1, t \ge 0$ and $v_t = \begin{cases} v^t, & t \le n \\ v^n, & t > n, \end{cases}$ and $z_t =$ $\mathbf{b}_{\mathbf{t}}\mathbf{v}_{\mathbf{t}} = \begin{cases} v^t, & t \le n \\ v^n, & t > n. \end{cases}$ The present value random variable $Z_{x:\overline{n}|} = \begin{cases} v^{K_x+1}, & K_x < n \\ v^n, & K_x \ge n. \end{cases}$ Note that the n year endowment present value random variable $Z_{x:\overline{n}|} = Z_{x:\overline{n}|}^1 + Z_{x:\overline{n}|}^1$, the sum of the n year term and n year pure endowment present value RVs. Then the actuarial present value APV = EPV = NSP = $A_{x:\overline{n}|} = E[Z_{x:\overline{n}|}]$ $=A_{x:\overline{n}|}^{1}+A_{x:\overline{n}|}^{1}=\sum_{k=0}^{n-1}v^{k+1}P(K_{x}=k)+v^{n}P(K_{x}\geq n)=\sum_{k=0}^{n-1}v^{k+1}P(K_{x}=k)+v^{n}\sum_{k=n}^{\infty}P(K_{x}=k).$ Similarly, $[Z_{x:\overline{n}}]^2 = [Z_{x:\overline{n}}^1]^2 + [Z_{x:\overline{n}}]^2$ and ${}^2A_{x:\overline{n}} = {}^2A_{x:\overline{n}}^1 + {}^2A_{x:\overline{n}}^1$ $=\sum_{k=1}^{n-1} v^{2(k+1)} P(K_x = k) + v^{2n} P(K_x \ge n) = \sum_{k=1}^{n-1} v^{2(k+1)} P(K_x = k) + v^{2n} \sum_{k=1}^{\infty} P(K_x = k).$ v) (Discrete = continuous) n year pure endowment insurance makes unit payment at time *n* only if t > n, otherwise no payment is made. Now $v_t = \begin{cases} v^t, & t \le n \\ v^n, & t > n, \end{cases}$ $b_t =$ $\begin{cases} 0, & t \le n \\ 1, & t > n \end{cases} \text{ and } \mathbf{z}_{t} = \mathbf{b}_{t} \mathbf{v}_{t} = \begin{cases} 0, & t \le n \\ v^{n}, & t > n. \end{cases} \text{ The present value random variable}$ $Z_{x:\overline{n}|} = \begin{cases} 0, & T_x \le n \\ v^n, & T_x > n. \end{cases}$ Then the actuarial present value APV = EPV = NSP = $A_{x:\overline{n}|}$ $E(Z_{x:\overline{n}|}) = {}_{n}E_{x} = v^{n}P(T_{x} > n) = v^{n}S_{x}(n) = e^{-\delta n}S_{x}(n) \text{ and } {}^{2}A_{x:\overline{n}|} = E[(Z_{x:\overline{n}|})^{2}] = E[(Z_{x:\overline{n}|})^{2}]$ $v^{2n}P(T_x > n) = v^{2n}S_x(n) = e^{-2\delta n}S_x(n)$. The 1 above the \overline{n} means unit benefit is payable after (x) dies if death is after time n. Also $V(Z_{x:\overline{n}}) = v^{2n} p_x p_x q_x$. Note the book does

not use \overline{Z} and \overline{A} for this insurance because payment is made iff $T_x > n$ iff $K_x \ge n$ so the discrete insurance and continuous insurance are technically equivalent.

 $22) \ Z_x = Z_{x:\overline{n}|}^1 + {}_n|Z_x, \ A_x = A_{x:\overline{n}|}^1 + {}_n|A_x, \ [Z_x]^2 = [Z_{x:\overline{n}|}^1]^2 + [{}_n|Z_x]^2, \ {}^2A_x = 2A_{x:\overline{n}|}^1 + {}^2{}_n|A_x, \ Z_{x:\overline{n}|} = Z_{x:\overline{n}|}^1 + Z_{x:\overline{n}|}^1, \ A_{x:\overline{n}|} = A_{x:\overline{n}|}^1 + A_{x:\overline{n}|}^1, \ [Z_{x:\overline{n}|}]^2 = [Z_{x:\overline{n}|}^1]^2 + [Z_{x:\overline{n$

23) Suppose (x) buys insurance and dies at t > 0 years from purchase so $T = T_x = t$. Consider the following discrete life insurance models (note that 21 v) n year pure endowment insurance is both continuous and discrete).

i) (Continuous) whole life insurance makes unit payment at time t = k with $v_t = v^t, t \ge 0$ and $b_t = 1, t \ge 0$. Then $z_t = b_t v_t = v^t, t \ge 0$. The present value random variable

 $\overline{Z}_x = z_T = v^T.$ Then the actuarial present value APV = EPV = NSP = $\overline{A}_x = E(\overline{Z}_x) = E(v^T) = E(e^{-\delta T}) = \int_0^\infty v^t f_T(t) \, dt = \int_0^\infty e^{-\delta t} f_T(t) \, dt = \int_0^\infty v^t \, {}_t p_x \, \mu_{x+t} \, dt, \text{ and}$ ${}^2\overline{A}_x = E[(\overline{Z}_x)^2] = E[(v^T)^2] = E(e^{-2\delta T}) = \int_0^\infty v^{2t} f_T(t) \, dt = \int_0^\infty e^{-2\delta t} f_T(t) \, dt = \int_0^\infty v^{2t} \, {}_t p_x \, \mu_{x+t} \, dt.$

ii) (Continuous) *n year term insurance* makes unit payment at time t > 0 only if $t \le n$, otherwise no payment is made. Now $v_t = v^t, t \ge 0$,

$$b_t = \begin{cases} 1, & t \le n \\ 0, & t > n, \end{cases} \quad z_t = b_t v_t = \begin{cases} v^t, & t \le n \\ 0, & t > n, \end{cases} \text{ and } \overline{Z}_{\mathbf{x}:\overline{\mathbf{n}}|}^1 = \begin{cases} v^{T_x}, & T \le n \\ 0, & T > n, \end{cases}$$

Then the actuarial present value APV = EPV = NSP =

$$\overline{A}_{x:\overline{n}|}^{1} = E(\overline{Z}_{x:\overline{n}|}^{1}) = \int_{0}^{n} e^{-\delta t} f_{T}(t) \ dt = \int_{0}^{n} v^{t} f_{T}(t) \ dt = \int_{0}^{n} v^{t} {}_{t} p_{x} \ \mu_{x+t} \ dt, \text{ and}$$

$${}^{2}\overline{A}_{x:\overline{n}|}^{1} = E[(\overline{Z}_{x:\overline{n}|}^{1})^{2}] = \int_{0}^{n} e^{-2\delta t} f_{T}(t) \ dt = \int_{0}^{n} v^{2t} f_{T}(t) \ dt = \int_{0}^{n} v^{2t} {}_{t} p_{x} \ \mu_{x+t} \ dt.$$

The 1 above the x means unit benefit is payable after (x) dies if death is not after time n.

iii) (Continuous) *n* year deferred insurance makes unit payment at time t > 0 only if t > n, otherwise no payment is made. Now $v_t = v^t, t \ge 0$,

$$b_{t} = \begin{cases} 0, & t \le n \\ 1, & t > n, \end{cases} \quad z_{t} = b_{t}v_{t} = \begin{cases} 0, & t \le n \\ v^{t}, & t > n, \end{cases} \text{ and } _{n}|\overline{Z}_{x}| = \begin{cases} 0, & T \le n \\ v^{T}, & T > n. \end{cases}$$

Then the actuarial present value APV = EPV = NSP =

$${}_{n}[\overline{A}_{x} = E(n|\overline{Z}_{x}) = \int_{n}^{\infty} e^{-\delta t} f_{T}(t) dt = \int_{n}^{\infty} v^{t} f_{T}(t) dt = \int_{n}^{\infty} v^{t} {}_{t} p_{x} \mu_{x+t} dt, \text{ and}$$

$${}^{2} {}_{n}[\overline{A}_{x} = E[(n|\overline{Z}_{x})^{2}] = \int_{n}^{\infty} e^{-2\delta t} f_{T}(t) dt = \int_{n}^{\infty} v^{2t} f_{T}(t) dt = \int_{n}^{\infty} v^{2t} {}_{t} p_{x} \mu_{x+t} dt.$$

iv) (Continuous) *n* year endowment life insurance makes unit payment at time t > 0 if t < n and at time *n* if t > n. Then $b_t = 1, t \ge 0$ and

$$v_t = \begin{cases} v^t, & t \le n \\ v^n, & t > n, \end{cases} \quad z_t = b_t v_t = \begin{cases} v^t, & t \le n \\ v^n, & t > n, \end{cases} \quad \text{and} \quad \overline{Z}_{\mathbf{x}:\overline{\mathbf{n}}|} = \begin{cases} v^T, & T \le n \\ v^n, & T > n. \end{cases}$$

$$\text{Then } \overline{Z}_{x:\overline{\mathbf{n}}|} = \overline{Z}_{x:\overline{\mathbf{n}}|}^1 + Z_{x:\overline{\mathbf{n}}|}^1, \quad \overline{A}_{x:\overline{\mathbf{n}}|} = E[\overline{Z}_{x:\overline{\mathbf{n}}|}] = \overline{A}_{x:\overline{\mathbf{n}}|}^1 + A_{x:\overline{\mathbf{n}}|}^1, \quad [\overline{Z}_{x:\overline{\mathbf{n}}|}]^2 = [\overline{Z}_{x:\overline{\mathbf{n}}|}^1]^2 + [Z_{x:\overline{\mathbf{n}}|}^1]^2,$$

$$\text{and } {}^2\overline{A}_{x:\overline{\mathbf{n}}|} = {}^2\overline{A}_{x:\overline{\mathbf{n}}|}^1 + {}^2A_{x:\overline{\mathbf{n}}|}^1.$$

24) **KNOW:** Let $T \sim EXP(\mu)$. Then $E(T) = \int_0^\infty t\mu e^{-\mu t} dt = \int_0^\infty e^{-\mu t} dt = 1/\mu$. So $\int_0^\infty tDe^{-t(D)} dt = \int_0^\infty e^{-t(D)} dt = 1/D$ for D > 0. Use $\stackrel{E}{=}$ when exponential RV is used.

25) In 24) and 26), often
$$\int_0^\infty$$
 is replaced by \int_a^b . If $D > 0$, $\int_0^n De^{-tD} dt = 1 - e^{-nD}$, $\int_n^\infty De^{-tD} dt = e^{-nD}$, $\int_0^n e^{-tD} dt = \frac{1}{D} [1 - e^{-nD}]$, and $\int_n^\infty e^{-tD} dt = \frac{1}{D} e^{-nD}$.

26) Whole life insurance with the exponential(μ) distribution often has $\overline{Z} = b_T v^T$ where $b_t = e^{\theta t}$. Now $\int_0^\infty \mu e^{-\mu t} dt = 1$ so $\int_0^\infty e^{-\mu t} dt = 1/\mu$ if $\mu > 0$. Hence $E[\overline{Z}] = \int_0^\infty b_t e^{-\delta t} \mu e^{-\mu t} dt = \int_0^\infty e^{\theta t} e^{-\delta t} \mu e^{-\mu t} dt = \mu \int_0^\infty e^{-t[\mu+\delta-\theta]} dt = \frac{\mu}{\mu+\delta-\theta}$ provided $\mu + \delta - \theta > 0$. Also $E[(\overline{Z})^j] = \int_0^\infty [b_t e^{-\delta t}]^j \mu e^{-\mu t} dt = \int_0^\infty e^{\theta j t} e^{-\delta j t} \mu e^{-\mu t} dt = \mu \int_0^\infty e^{-t[\mu+\delta j-\theta j]} dt = \frac{\mu}{\mu+\delta j-\theta j}$ provided $\mu+\delta j-\theta j > 0$. Note that $\theta = 0$ corresponds to unit payment.

27) Often unit benefits are not used for continuous insurance. Let $\overline{B}_x = \overline{Z} = z_{T_x} = b_{T_x}v_{T_x}$. Then ${}^j\overline{A} = E[(\overline{Z})^j] = \int_0^\infty (b_t v_t)^j f_T(t) dt$. Note that APV = $\overline{A} = E[\overline{Z}] = E[\overline{B}_x] = \int_0^\infty b_t v_t f_T(t) dt$. The bars on A and Z are often omitted. Usually $v_t = v^t = e^{-\delta t}$. 28) **KNOW:** Let $T \sim EXP(\mu)$. $S(t) = e^{-\mu t}$ for t > 0. Often use Z instead of \overline{Z} . i) If $b_t = ce^{\theta t}$ and $Z = b_T v_T$, then $E[Z^j] = E[(b_T v_T)^j] = c^j E[(e^{\theta T} v_T)^j]$. So multiply c = 1 formulas by c^j . Usually want j = 1, 2. a) Special whole life insurance: $b_t = e^{\theta t}$, $v_t = e^{-\delta t}$, and $Z = b_T v_T = e^{\theta T} e^{-\delta T}$. $E(Z^j) \stackrel{E}{=} \frac{\mu}{\mu + \delta j - \theta j}$ if $\mu + \delta j - \theta j > 0$. See 26). b) Whole life insurance: special case of a) with $\theta = 0$. See 28i). $\overline{Z}_x = e^{-\delta T}$. $\overline{A}_x = E(\overline{Z}_x) = E(e^{-\delta T}) \stackrel{E}{=} \frac{\mu}{\mu + \delta}$, and ${}^2\overline{A}_x = E[(\overline{Z}_x)^2] = E(e^{-2\delta T}) \stackrel{E}{=} \frac{\mu}{\mu + 2\delta}$. $V(\overline{Z}_x) = {}^2\overline{A}_x - (\overline{A}_x)^2$. c) Whole life annuity. See 32). $\overline{Y}_x = \frac{1 - \overline{Z}_x}{\delta}$. $E[\overline{Y}_x] = \overline{a}_x = \int_0^\infty e^{-\delta t} S_T(t) dt \stackrel{E}{=} \frac{1}{\mu + \delta}$. $V(\overline{Y}_x) = \frac{V(\overline{Z}_x)}{\delta^2} = \frac{2\overline{A}_x - (\overline{A}_x)^2}{\delta^2}$. Chapter 5: 29) $a_{\overline{n}|} = v + v^2 + v^3 + \dots + v^n = \sum_{j=1}^n v^j = \frac{1 - v^n}{i}$, where $d = iv = \frac{i}{1+i}$, and $\overline{a}_{\overline{n}|} = \int_0^n v^t dt = \frac{1 - v^n}{\delta}$.

30) A (discrete annual) immediate whole life annuity pays (x) 1 unit at times t = 1, 2, ..., as long as (x) survives. For integer $t, P(K_x \ge t) = P(T_x > t) = {}_t p_x$. Let $Y_x = a_{\overline{K_x}|}$ be the present value random variable and let $a_x = E(Y_x)$ be the APV = EPV = NSP of the annuity. Then $a_x = E(Y_x) = \sum_{t=1}^{\infty} v^t {}_t p_x$. Then $Y_x = \frac{1 - v^{K_x}}{i} = \frac{1}{i} [1 - (1 + i)Z_x]$. Note the immediate annuity has an i in the denominator. Also, $V(Y_x) = \frac{^2A_x - (A_x)^2}{^{d_2}}$.

31) A (discrete annual) whole life annuity-due pays (x) 1 unit at times t = 0, 1, 2, ...,as long as (x) survives. Let \ddot{Y}_x be the present value random variable and let $\ddot{a}_x = E(\ddot{Y}_x)$ be the APV = EPV = NSP of the annuity. Then $\ddot{a}_x = E(\ddot{Y}_x) = a_x + 1 = \sum_{t=0}^{\infty} v^t t_t p_x$. $\ddot{Y}_x = \ddot{a}_{1+K_x|} = \frac{1-v^{1+K_x}}{d} = \frac{1-Z_x}{d} = Y_x + 1$. Note the d in the denominator for an annuity-due. Then $E(\ddot{Y}_x) = a_x + 1$ and $V(\ddot{Y}_x) = V(Y_x)$.

32) A continuous whole life annuity makes a continuous payment at an annual rate of 1 unit per year as long as (x) survives. The present value RV $\overline{Y}_x = \overline{a}_{\overline{T}_x|} = \frac{1 - v^{T_x}}{\delta} = \frac{1 - \overline{Z}_x}{\delta}$. The APV is $\overline{a}_x = E(\overline{Y}_x) = \int_0^\infty v^t {}_t p_x dt = \int_0^\infty e^{-\delta t} S_x(t) dt \stackrel{E}{=} \frac{1}{\mu + \delta}$. $V(\overline{Y}_x) = \frac{V(\overline{Z}_x)}{\delta^2} = \frac{2\overline{A}_x - (\overline{A}_x)^2}{\delta^2}$. Note the δ in the denominator of the continuous annuity.

33) The (discrete) immediate n year temporary annuity pays (x) 1 unit at times t = 1, ..., n if $K_x \ge n$ and at times t = 1, ..., k-1 if $1 \le K_x = k-1 \le n-1$. No payment is made if $K_x = 0$. The present value RV $Y_{x:\overline{n}|} = \sum_{t=1}^n Z_{x:\overline{t}|} = \begin{cases} a_{\overline{K_x}|}, & K_x < n \\ a_{\overline{n}|}, & K_x \ge n. \end{cases}$ The APV

$$a_{x:\overline{n}|} = E(Y_{x:\overline{n}|}) = \sum_{t=1}^{n} v^t {}_t p_x.$$

34) The (discrete) n year temporary annuity-due pays (x) 1 unit at times t = 0, 1, ..., n - 1 if $K_x \ge n$ and at times t = 0, 1, ..., k - 1 if $K_x = k - 1 < n$. The present value RV $\ddot{Y}_{x:\overline{n}|} = \sum_{t=0}^{n-1} Z_{x:\overline{t}|} = Y_{x:\overline{n}|} + 1 - Z_{x:\overline{n}|} = \frac{1 - Z_{x:\overline{n}|}}{d}$. The APV $\ddot{a}_{x:\overline{n}|} = E(\ddot{Y}_{x:\overline{n}|}) = \sum_{t=0}^{n-1} v^t {}_t p_x = \frac{1 - A_{x:\overline{n}|}}{d} = a_{x:\overline{n}|} + 1 - {}_n E_x.$

35) A (continuous) temporary *n* year annuity makes a continuous payment at annual rate of 1 unit a year for *n* years if $T_x > n$ and for T_x years if $T_x < n$. The present value RV is $\overline{Y}_{x:\overline{n}|} = \frac{1 - \overline{Z}_{x:\overline{n}|}}{\delta} = \begin{cases} \overline{a}_{\overline{T_x}|}, & T_x \leq n \\ \overline{a}_{\overline{n}|}, & T_x > n \end{cases}$ Then $\overline{a}_{x:\overline{n}|} = E(\overline{Y}_{x:\overline{n}|}) = \int_0^n e^{-\delta t} S_x(t) dt$. $V(\overline{Y}_{x:\overline{n}|}) = \frac{2\overline{A}_{x:\overline{n}|} - (\overline{A}_{x:\overline{n}|})^2}{\delta^2}.$

36) A (discrete) immediate *n* year deferred whole life annuity makes no payment if $K_x \leq n$. If $K_x = k-1 \geq n+1$, then unit payment is made at times t = n+1, n+2, ..., k-1. The present value RV $_n|Y_x = Y_x - Y_{x:\overline{n}}| = \sum_{t=n+1}^{\infty} Z_{x:\overline{t}}|$. The APV

$$|a_x = E(n|Y_x) = a_x - a_{x:\overline{n}}| = \sum_{t=n+1} v^* t p_x.$$

37) A (discrete) *n* year deferred whole life annuity-due makes no payment if $K_x < n$.
If $K_x = k - 1 \ge n$, then unit payment is made at times $t = n, n+1, n+2, ..., k-1$. The

present value RV
$$_{n}|Y_{x} = Y_{x} - Y_{x:\overline{n}|} = Z_{x:\overline{n}|} + _{n}|Y_{x} = \sum_{t=n}^{\infty} Z_{x:\overline{t}|}^{-1}$$
. The APV $_{n}|\ddot{a}_{x} = E(_{n}|\ddot{Y}_{x}) = \ddot{a}_{x} - \ddot{a}_{x:\overline{n}|} = v^{n} _{n}p_{x} + _{n}|a_{x} = \sum_{t=n}^{\infty} v^{t} _{t}p_{x}.$

38) A (continuous) *n* year deferred annuity makes no payment if $T_x \leq n$. If $T_x = t > n$ then continuous payment at annual unit rate is made from time *n* to time *t*. The present value RV is $_n |\overline{Y}_x = \overline{Y}_x - \overline{Y}_{x:\overline{n}}| = \begin{cases} 0, & T_x \leq n \\ v^n \overline{a_{\overline{T_x - n}}}, & T_x > n. \end{cases}$ Then $_n |\overline{a}_x = E(_n |\overline{Y}_x) =$

 $\overline{a}_x - \overline{a}_{x:\overline{n}|} = \int_n^\infty e^{-\delta t} S_x(t) dt. \quad E[(_n | \overline{Y}_x)^2] = \frac{2}{\delta} v^{2n} {}_n p_x [\overline{a}_{x+n} - {}^2 \overline{a}_{x+n}] \text{ where } \overline{a}_{x+n} = \int_0^\infty e^{-\delta t} S_{x+n}(t) dt \text{ and } {}^2 \overline{a}_{x+n} = \int_0^\infty e^{-2\delta t} S_{x+n}(t) dt.$

39) Contingent annuities paid *m*thly are paid *m* times a year with payment 1/m where $m \ge 1$. So annual payment is 1 unit per year. A discrete immediate *m*thly whole life annuity pays 1/m units at the end of each *m*thly time interval while (x) survives. The APV is $a_x^{(m)}$. A discrete *m*thly whole life annuity-due pays 1/m units at the beginning of each *m*thly time interval while (x) survives. The APV is $\ddot{a}_x^{(m)} = a_x^{(m)} + \frac{1}{m}$. The Woolhouse approximation is $a_x^{(m)} \approx a_x + \frac{m-1}{2m} \approx a_x + \frac{m-1}{2m} + \frac{m^2-1}{12m^2}(\mu_x + \delta)$. Then $\ddot{a}_x^{(m)} = a_x^{(m)} + \frac{1}{m} \approx \ddot{a}_x - \frac{m-1}{2m}$ where \ddot{a}_x is given by the illustrative life table. Also $\ddot{a}_x \approx a_x + 1$. Also $\bar{a}_x \approx \ddot{a}_x - 0.5 \approx a_x + 0.5 \approx \ddot{a}_x - 0.5 - (\mu_x + \delta)/12$ since a continuous annuity is the limiting case of an *m*thly annuity as $m \to \infty$. The approximation is good for m > 12.

End of Math 401 Material

Chapter 10

40) Multiple life functions consider failure or survival of a *status* of multiple lives. Insurance is payable when the status fails. Annuities are payable as long as the status survives. For 2 life functions the x and y are separated by a colon. So think of (xy) as (x:y), and (\overline{xy}) as $(\overline{x:y})$. Notation x + n : y + n is also used. Let $T_x \perp T_y$ mean that T_x and T_y are independent. Usually assume $T_{x_1} \perp T_{x_2} \perp \ldots \perp T_{x_k}$.

41) A joint life status for (xy) fails as soon as x or y dies. Let $T_{xy} = \min(T_x, T_y) =$ time until 1st death. Convert q's to p's, then convert back to q's if needed.

42) If n = 10, x = 40, and y = 20, want $T_{40:20}$, $S_{T_{40:20}}(t) = S_{40:20}(t) = {}_{t}p_{40:20}$, $F_{40:20}(t) = {}_{t}q_{40:20}$, $f_{40:20}(t)$, $\mu_{40:20}(t)$, ${}_{10}|q_{40:20}$, $\stackrel{\circ}{e}_{40:20}$, $K_{40:20}$, $e_{40:20}$ and $e_{40:20:\overline{10}}$.

43) **Know:** Consider a joint life status (xy) and T_{xy} .

i) survival function: $S_{xy}(t) = {}_t p_{xy} = P(T_{xy} > t)$. If $T_x \perp T_y$, then ${}_t p_{xy} = ({}_t p_x)({}_t p_y)$.

ii) cdf: $F_{xy}(t) = {}_t q_{xy} = P(T_{xy} \le t)$. If $T_x \perp T_y$, then ${}_t q_{xy} = {}_t q_x + {}_t q_y - ({}_t q_x)({}_t q_y)$. iii) pdf: $f_{xy}(t) = \frac{d}{dt} F_{xy}(t) = \frac{-d}{dt} S_{xy}(t)$. If $T_x \perp T_y$, then $f_{xy}(t) = {}_t p_{xy}(\mu_{x+t} + \mu_{y+t})$. iv) force of mortality: $\mu_{xy}(t) = \frac{f_{xy}(t)}{S_{xy}(t)}$. If $T_x \perp T_y$, then $\mu_{xy}(t) = \mu_{x+t} + \mu_{y+t} \equiv$

 $\mu_{x+t:y+t}$.

v) a) $_{n}|q_{xy} = _{n}p_{xy} - _{n+1}p_{xy} = P(n < T_{xy} \le n+1)$. Let $p_{x+n:y+n} = \frac{n+1}{n} \frac{p_{xy}}{n}$ and $q_{x+n:y+n} = 1 - p_{x+n:y+n}$. Then $_{n}|q_{xy} = _{n}p_{xy}(1 - p_{x+n:y+n}) = _{n}p_{xy} q_{x+n:y+n}$. If $T_{x} \perp T_{y}$, then $_{n}|q_{xy} = (_{n}p_{x})(_{n}p_{y}) - (_{n+1}p_{x})(_{n+1}p_{y})$.

b) $_{n|m}q_{xy} = _{n}p_{xy} _{m}q_{x+n:y+n} = _{n}p_{xy} - _{n+m}p_{xy} = P(n < T_{xy} \le n+m)$. See 14)-15) for more formulas.

c) $_{n+m}p_{xy} = _{n}p_{xy} _{m}p_{x+n:y+n}$.

vi)
$$\stackrel{o}{e}_{xy} = E(T_{xy}) = \int_0^\infty t f_{xy}(t) dt = \int_0^\infty t p_{xy} dt.$$

vii) $E[(T_{xy})^2] = \int_0^\infty t^2 f_{xy}(t) dt = 2 \int_0^\infty t t p_{xy} dt.$

viii) Let $K_{xy} = \lfloor T_{xy} \rfloor$ be the curtate duration at failure of the joint status (xy) (the number of whole years of survival left to the status (xy)). Then $P(K_{xy} = k) = {}_n|q_{xy}$.

ix) The curtate expectation of future lifetime for the joint status is $e_{xy} = \sum_{k=1}^{\infty} {}_{k} p_{xy} = E[K_{xy}]$ is the average number of whole years of survival left to the joint status (xy).

x) The temporary curtate lifetime is $e_{xy:\overline{n}|} = \sum_{k=1}^{n} {}_{k}p_{xy}$ = average number of whole years of survival within the next n years (for time $t \in (0, n]$) of the joint status (xy).

xi) Still have $_t p_{xy} + _t q_{xy} = 1$.

- 44) $p_{xy} = {}_{1}p_{xy} = S_{T_{xy}}(1)$ and $q_{xy} = {}_{1}q_{xy} = 1 {}_{1}p_{xy} = F_{T_{xy}}(1).$
- 45) If $T_x \sim EXP(\mu_x) \perp T_y \sim EXP(\mu_y)$, then $T_{xy} = \min(T_x, T_y) \sim EXP(\mu_x + \mu_y)$.

46) A two life **last survivor status** for (\overline{xy}) fails after both x and y die. Let $T_{\overline{xy}} = \max(T_x, T_y) = \text{time until 2nd death}$. Then $T_{xy} + T_{\overline{xy}} = T_x + T_y$. Convert p's to

q's, then convert back to p's if needed.

47) If n = 10, x = 40 and y = 20, want $T_{\overline{40:20}}$, $S_{T_{\overline{40:20}}}(t) = S_{\overline{40:20}}(t) = C_{\overline{40:20}}(t)$ $_{t}p_{\overline{40:20}},$ $F_{\overline{40:20}}(t) = {}_{t}q_{\overline{40:20}}, f_{\overline{40:20}}(t), \mu_{\overline{40:20}}(t), {}_{10}|q_{\overline{40:20}}, e_{\overline{40:20}}, K_{\overline{40:20}}, e_{\overline{40:20}}, e_{\overline$ 48) **Know:** Consider a last survivor status (\overline{xy}) and $T_{\overline{xy}}$ i) survival function: $S_{T_{\overline{xy}}}(t) = S_{\overline{xy}}(t) = {}_t p_{\overline{xy}} = P(T_{\overline{xy}} > t) = {}_t p_x + {}_t p_y - {}_t p_{xy}.$ If $T_x \perp T_y$, then $tp_{\overline{xy}} = 1 - (tq_x)(tq_y) = tp_x + tp_y - (tp_x)(tp_y)$. ii) cdf: $F_{\overline{xy}}(t) = {}_t q_{\overline{xy}} = P(T_{\overline{xy}} \leq t) = 1 - S_{\overline{xy}}(t)$. If $T_x \perp T_y$, then ${}_tq_{\overline{xy}} = ({}_tq_x)({}_tq_y) = F_x(t)F_y(t) = F_{T_x}(t)F_{T_y}(t).$ iii) pdf: $f_{\overline{xy}}(t) = \frac{d}{dt} F_{\overline{xy}}(t) = \frac{-d}{dt} S_{\overline{xy}}(t) = f_x(t) + f_y(t) - f_{xy}(t) =$ $({}_{t}p_{x})(\mu_{x+t}) + ({}_{t}p_{y})(\mu_{y+t}) - ({}_{t}p_{xy})(\mu_{x+t} + \mu_{y+t}) = ({}_{t}p_{x})(\mu_{x+t}) + ({}_{t}p_{y})(\mu_{y+t}) - ({}_{t}p_{xy})(\mu_{x+t:y+t}).$ iv) force of mortality: $\mu_{\overline{xy}}(t) = \frac{f_{\overline{xy}}(t)}{S_{\overline{xy}}(t)} = \frac{({}_{t}p_{x})(\mu_{x+t}) + ({}_{t}p_{y})(\mu_{y+t}) - ({}_{t}p_{xy})(\mu_{x+t:y+t})}{{}_{t}p_{x}} + {}_{t}p_{y} - {}_{t}p_{xy}}.$ If $T_x \perp T_y$, then $\mu_{\overline{xy}}(t) = \frac{({}_tq_x)({}_tp_y)(\mu_{y+t}) + ({}_tq_y)({}_tp_x)(\mu_{x+t})}{{}_tp_{\overline{xy}}}$ v) a) $_{n}|q_{\overline{xy}} = _{n}p_{\overline{xy}} - _{n+1}p_{\overline{xy}} = P(n < T_{\overline{xy}} \le n+1) = _{n}|q_{x} + _{n}|q_{y} - _{n}|q_{xy} =$ $P(K_{\overline{xy}} = n)$. See 14)–15) for more formulas. b) $_{n|m}q_{\overline{xy}} = {}_{n}p_{\overline{xy}} - {}_{n+m}p_{\overline{xy}} = P(n < T_{\overline{xy}} \le n+m)$. See 14) for more formulas. vi) $\mathring{e}_{\overline{xy}} = E(T_{\overline{xy}}) = \int_0^\infty t f_{\overline{xy}}(t) dt = \int_0^\infty t p_{\overline{xy}} dt = \mathring{e}_x + \mathring{e}_y - \mathring{e}_{xy}.$ vii) $E[(T_{\overline{xy}})^2] = \int_0^\infty t^2 f_{T_{\overline{xy}}}(t) dt = 2 \int_0^\infty t_t p_{\overline{xy}} dt.$ viii) Let $K_{\overline{xy}} = \lfloor T_{\overline{xy}} \rfloor$ be the curtate duration at failure of the status (\overline{xy}) (the number of whole years of survival left to the last survivor status (\overline{xy})).

ix) $e_{\overline{xy}} = \sum_{k=1}^{\infty} {}_{k} p_{\overline{xy}} = e_x + e_y - e_{xy} = E[K_{\overline{xy}}]$ is the average number of whole years of

survival left to the last survivor status (xy).

x) $e_{\overline{xy}:\overline{n}|} = \sum_{k=1}^{n} {}_{k} p_{\overline{xy}} = e_{x:\overline{n}|} + e_{y:\overline{n}|} - e_{xy:\overline{n}|} = \text{average number of whole years of survival}$ within the next *n* years (for time $t \in (0, n]$) of the last survivor status (\overline{xy}).

49) $p_{\overline{xy}} = {}_{1}p_{\overline{xy}} = S_{\overline{xy}}(1)$ and $q_{\overline{xy}} = {}_{1}q_{\overline{xy}} = 1 - {}_{1}p_{\overline{xy}} = F_{\overline{xy}}(1).$

50) T_{xy} is one of T_x or T_y , and $T_{\overline{xy}}$ is the other. Hence $T_{xy} + T_{\overline{xy}} = T_x + T_y$, and $T_{\overline{xy}} = T_x + T_y - T_{xy}$. Similarly, $P(T_{xy} > t) + P(T_{\overline{xy}} > t) = P(T_x > t) + P(T_y > t)$, and $P(T_{\overline{xy}} > t) = P(T_x > t) + P(T_y > t) - P(T_{xy} > t)$. See point 48) i) and vi).

51)
$$E[\min(X,j)] = \int_0^j x f_X(x) dx + \int_j^\infty j f_X(x) dx = \int_0^j x f_X(x) dx + j S_X(j).$$

52) $E[\max(X,j)] = \int_0^j j f_X(x) dx + \int_j^\infty x f_X(x) dx = j F_X(j) + \int_j^\infty x f_X(x) dx.$
53) $P[(x)$ fails before $(y)] = P(T_x < T_y) = {}_{\infty}q_{xy}^1 = \int_0^\infty \int_t^\infty f_{T_x,T_y}(t,s) ds dt = \int_0^\infty \int_t^\infty f_{T_y|T_x}(s|t) ds f_{T_x}(t) dt = \int_0^\infty P(T_y > t|T_x = t) f_{T_x}(t) dt.$ If $T_x \perp T_y$, then

 $P(T_x < T_y) = {}_{\infty}q^1_{xy} = E[S_{T_y}(T_x)] = \int_0^{\infty} S_y(t)f_x(t)dt = \int_0^{\infty} {}_{t}p_y {}_{t}p_x \mu_{x+t} dt =$ $\int_0^\infty {}_t p_{xy} \ \mu_{x+t} \ dt.$ 54) If $T_x \perp T_y$, then P[(x) fails after $(y)] = P(T_x > T_y) = {}_{\infty}q_{xy}^2 = 1 - {}_{\infty}q_{xy}^1$ 55) If $T_x \perp T_y$, then P[(x) fails before (y) and within n years] = $_n q_{xy}^1 = \int_0^n {_t p_{xy} \mu_{x+t} dt}.$ 56) If $T_x \perp T_y$, then P[(x) fails after (y) and within n years] = $_n q_{xy}^2 = \int_0^n F_y(t) f_x(t) dt =$ $_{n}q_{x} - _{n}q_{xy}^{1}$. (The 2 means (x) is the 2nd failure.) 57) If $T_x \perp T_y$, then P[(y) fails before (x) and within n years] = $_n q_{\frac{1}{xy}} = \int_0^n _t p_{xy} \mu_{y+t} dt =$ $\int_{0}^{n} S_{x}(t) f_{y}(t) dt$. (The 1 means (y) is the 1st failure.) 58) If $T_x \perp T_y$, then P[(y) fails after (x) and within n years] = $_n q_{xy}^2 = \int_0^n F_x(t) f_y(t) dt =$ $_{n}q_{y} - _{n}q_{xy}^{1}$. Note that the superscript 2 is for the 2nd failure and the 1 for the 1st. 59) $_{n}q_{xy}^{1} + _{n}q_{xy}^{1} = _{n}q_{xy}$ 60) $_{n}q_{xy}^{2} + _{n}q_{\underline{y}}^{2} = _{n}q_{\overline{xy}}$ 61) $\stackrel{o}{e}_{xy:\overline{n}|}=\int_{0}^{n} tp_{xy} dt.$ 62) $E[(T_{xy})^2] = 2 \int_0^\infty t t_p p_{xy} dt$, and $E[(T_{\overline{xy}})^2] = 2 \int_0^\infty t t_p p_{\overline{xy}} dt$. See 43 vii) and 48 vii). 63) A generalized DeMoivre $GD(\alpha, \theta)$ distribution has survival function $S_0(t) = \left(\frac{\theta - t}{\theta}\right)^{\alpha}$ for $0 < t < \theta$ where $\alpha > 0$. Often $\theta = \omega - x$. If $T_x \sim \text{DeMoivre}(\omega - x)$, then $\alpha = 1$. If $T_x \sim GD(\alpha, \omega - x)$, then for $0 < t < \omega - x$, $S_x(t) = {}_t p_x = \left(\frac{\omega - x - t}{\omega - x}\right)^{\alpha}$, $F_x(t) = {}_t q_x = 1 - \left(\frac{\omega - x - t}{\omega - x}\right)^{\alpha}, f_x(t) = {}_t p_x \ \mu_{x+t} = \frac{\alpha(\omega - x - t)^{\alpha - 1}}{(\omega - x)^{\alpha}}$ $\mu_x(t) = \mu_{x+t} = \frac{\alpha}{\omega - x - t}, \ E(T_x) = \overset{o}{e}_x = \frac{\omega - x}{\alpha + 1}, \ \text{and} \ V(T_x) = \frac{\alpha(\omega - x)^2}{(1 + \alpha)^2(2 + \alpha)}.$ If T_{x_i} are independent $GD(\alpha_i, \omega - x)$, then $T_{x_1x_2...x_k} = \min(T_{x_1}, ..., T_{x_k}) \sim$ $GD(\sum_{i=1}^{\kappa} \alpha_i, \omega - x)$. So if $T_x \sim GD(\alpha_x, \omega - x) \perp T_y \sim GD(\alpha_y, \omega - x)$, then $T_{xy} \sim GD(\alpha_x + \alpha_y, \omega - x)$. Note: only need $\omega_x - x = \omega_y - y \equiv \omega - x$. Hence if $T_x \sim U(0, \omega - x) \perp T_y \sim U(0, \omega - x)$, then $T_{xy} \sim GD(2, \omega - x)$ since DeMoivre $(\omega - x) \sim U(0, \omega - x) \sim GD(1, \omega_x)$ has $\alpha_x = \alpha_y = 1$. $T_0 \sim GD(\alpha, \omega) \Rightarrow T_x \sim CD(\alpha, \omega)$ $GD(\alpha, \omega - x).$

Insurance and pensions for (xy) and (\overline{xy}) are like those for (x), but replace the subscript x by (xy) or (\overline{xy}) . Points 64) through 70) are illustrative.

64) $T_x \perp T_y$, discrete whole life insurance for (xy) has $Z_{xy} = v^{1+K_{xy}}$, $A_{xy} = E[Z_{xy}] =$

$$\sum_{k=0}^{\infty} v^{k+1}(|_k|q_{xy}) \text{ and } {}^2A_{xy} = E[(Z_{xy})^2] = \sum_{k=0}^{\infty} v^{2(k+1)}(|_k|q_{xy}).$$

65) $T_x \perp T_y$, discrete whole life insurance for (\overline{xy}) has $A_{\overline{xy}} = E[Z_{\overline{xy}}] = \sum_{k=0}^{\infty} v^{k+1} ({}_k | q_{\overline{xy}}) = A_x + A_y - A_{xy}$ and ${}^2A_{\overline{xy}} = E[(Z_{\overline{xy}})^2] = \sum_{k=0}^{\infty} v^{2(k+1)} ({}_k | q_{\overline{xy}}) = {}^2A_x + {}^2A_y - {}^2A_{xy}.$ 66) $T_x \perp T_y$, continuous whole life insurance for (xy) has $\overline{Z}_{xy} = v^{T_{xy}}, \overline{A}_{xy} = E[\overline{Z}_{xy}] = \int_0^{\infty} e^{-\delta t} f_{xy}(t) dt = \int_0^{\infty} e^{-\delta t} {}_t p_{xy} \mu_{x+t:y+t} dt$ and ${}^2\overline{A}_{xy} = E[(\overline{Z}_{xy})^2] = \int_0^{\infty} e^{-2\delta t} f_{xy}(t) dt = \int_0^{\infty} e^{-2\delta t} {}_t p_{xy} \mu_{x+t:y+t} dt.$

 $\int_{0}^{\infty} e^{-tPxyRx+ty+twot}$ 67) $T_x \perp T_y$, continuous whole life insurance for (\overline{xy}) has $\overline{Z}_{\overline{xy}} = v^{T_{\overline{xy}}}, \overline{A}_{\overline{xy}} = E[\overline{Z}_{\overline{xy}}] =$ $\int_{0}^{\infty} e^{-\delta t} f_{\overline{xy}}(t) dt = \overline{A}_x + \overline{A}_y - \overline{A}_{xy} \text{ and } {}^{2}\overline{A}_{\overline{xy}} = E[(\overline{Z}_{\overline{xy}})^2] = \int_{0}^{\infty} e^{-2\delta t} f_{\overline{xy}}(t) dt =$ ${}^{2}\overline{A}_x + {}^{2}\overline{A}_y - {}^{2}\overline{A}_{xy}.$

68) $T_x \perp T_y$, discrete annual immediate life annuity for (xy) has $a_{xy} = E[Y_{xy}] = \sum_{k=1}^{\infty} v^k (kp_{xy}).$

69) $T_x \perp T_y$, discrete annual life annuity-due for (\overline{xy}) has $\ddot{a}_{\overline{xy}} = E[\ddot{Y}_{\overline{xy}}] = \sum_{k=0}^{\infty} v^k (kp_{\overline{xy}}).$

70) $T_x \perp T_y$, a continuous temporary n year annuity for (xy) has $\overline{a}_{xy:\overline{n}|} = E(\overline{Y}_{xy:\overline{n}|}) = \int_0^n v^t {}_t p_{xy} dt = \int_0^n e^{-\delta t} S_{T_{xy}}(t) dt.$

71) Given a joint distribution for (T_x, T_y) , a) $S_{T_x, T_y}(n, n) = P(T_{xy} > n) = {}_n p_{xy}$ and b) $F_{T_x, T_y}(n, n) = P(T_{\overline{xy}} \le n) = {}_n q_{\overline{xy}}$.

72) **Know:** Let $T_{x_1}, ..., T_{x_m}$ be independent $\operatorname{EXP}(\mu_i)$ RVs. Let $u = (x_1 \cdots x_m)$ or $u = x_1 \cdots x_m$. Then $T = T_u = T_{x_1 \cdots x_m} = \min(T_{x_1}, ..., T_{x_m}) \sim EXP(\sum_{i=1}^m \mu_i)$. Then $\mu_T(t) = \sum_{i=1}^m \mu_i$, $S_T(t) = \exp(-t\sum_{i=1}^m \mu_i)$, $\hat{e}_u = E(T) = 1/(\sum_{i=1}^m \mu_i)$ and $V(T) = 1/(\sum_{i=1}^m \mu_i)^2$. a) For whole life insurance, $\overline{A}_u = E[\overline{Z}_u] = \frac{\sum_{i=1}^m \mu_i}{\delta + \sum_{i=1}^m \mu_i}$, and ${}^2\overline{A}_u = E[(\overline{Z}_u)^2] = \frac{\sum_{i=1}^m \mu_i}{2\delta + \sum_{i=1}^m \mu_i}$. b) For a whole life annuity, $\overline{a}_u = E[\overline{Y}_u] = \frac{1}{\delta + \sum_{i=1}^m \mu_i}$, and $V[\overline{Y}_u] = \frac{{}^2\overline{A}_u - (\overline{A}_u)^2}{\delta^2}$. Usually $m = 2, x_1 = x$, and $x_2 = y$. 73) For an annuity, $\overline{a}_{\overline{xy}} = \overline{a}_x + \overline{a}_y - \overline{a}_{xy}$, and if $T_x \sim EXP(\mu_x)$, then $\overline{a}_x = \frac{1}{\delta + \mu_i}$.