
Math 402 Exam 1 is Wed. Feb. 15. You are allowed 12 sheets of notes and a

calculator. The exam covers HW1-3, and Q1-3. Numbers refer to types of problems on
exam. In this class log(t) = ln(t) = loge(t) while exp(t) = et. Chapters 2, and 3:

1) Memorize the following distributions:
a) exponential(µ)= gamma(ν = 1, µ) where µ > 0 is the force of mortality:

f(x) = µ exp(−µx) I(x ≥ 0).

E(X) = 1/µ, V AR(X) = 1/µ2. F (x) = 1 − exp(−µx), x ≥ 0. Here I(x ≥ 0) = 1 if
x ≥ 0 and I(x ≥ 0) = 0, otherwise. (The parameterization with λ = 1/µ is common.
Then E(X) = λ and V (X) = λ2.) S(x) = exp(−µx), x ≥ 0.

b) uniform(θ1, θ2) and De Moivre(θ) = uniform(0, θ):

f(x) =
1

θ2 − θ1

I(θ1 ≤ x ≤ θ2).

F (x) = (x− θ1)/(θ2 − θ1) for θ1 ≤ x ≤ θ2.
E(X) = (θ1 + θ2)/2. V AR(X) = (θ2 − θ1)

2/12.

2) The cdf F (x) = P (X ≤ x), the survival function S(x) = P (X > x), the pdf

f(x) = F ′(x), µ(x) = force of mortality = hazard rate function, E(X) =
o
e0 .

3) (x) denotes a person alive at age x.

4) Let X = T0 where Tx = T (x) is the time until failure for a person alive at age x.
Then T0 = x + Tx given T0 > x. Also, tp0 = S0(t) = P (T0 > t), tq0 = F0(t) = P (T0 ≤ t),
and E(T0) =

∫∞
0 tf0(t)dt =

∫∞
0 S0(t)dt if limt→∞ tS0(t) = 0.

5) Let t > 0. Let Gx = GTx where G is T, S, F, µ, or f . If there is no subscript x,
then G = G0.

i) tpx = Sx(t) =
S0(x + t)

S0(x)
= 1 − tqx = P (Tx > t) = P (T0 > x + t|T0 > x)

= exp(−
∫ x+t

x
µy dy) = exp(−

∫ t

0
µx+w dw)

Note that S0(x + t) = S0(x)Sx(t).

ii) tqx = Fx(t) = 1 − tpx = 1 −
S0(x + t)

S0(x)
= P (Tx ≤ t) = P (T0 ≤ x + t|T0 > x)

iii) tpx µx+t = fx(t) =
f0(x + t)

S0(x)
=

d

dt
Fx(t) = −

d

dt
Sx(t)

iv) µx+t = µx(t) = µ0(x + t) =
f0(x + t)

S0(x + t)
=

fx(t)

Sx(t)

6) If t = 1 the subscript is often suppressed so px = 1px = and qx = 1qx.
7) The complete expectation of life at age x or the expected future lifetime at age x

is
o
ex= E(Tx) =

∫∞
0 tfx(t)dt = 1

S0(x)

∫∞
0 tf0(x+ t)dt =

∫∞
0 tpx dt =

∫∞
0 Sx(t)dt. Note that

o
e0= E(T0).
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8) V (Tx) = E(T 2
x ) − [E(Tx))]

2 where E(Tx) =
o
ex and E(T 2

x ) =
∫∞
0 t2fx(t)dt =

2
∫∞
0 t tpx dt = 2

∫∞
0 t Sx(t) dt. Note that E(T 2

0 ) can be found using x = 0.

9) Memorize: If Tx ∼ EXP (µ) where µ > 0, then for t > 0, µx+t = µ, fx(t) = µe−µt,

Fx(t) = 1 − e−µt, Sx(t) = e−µt, E(Tx) =
o
ex= 1/µ and V (Tx) = 1/µ2. The exponential

distribution is the only distribution with a constant force of mortality µx(t) ≡ µ. Often
you are told µx+t = µ for some constant µ < 1.

10) Memorize: If T0 ∼ U(0, ω), then Tx has a De Moivre(ω − x) distribution:

Tx ∼ U(0, ω − x) with support 0 < t < ω − x. For such t, Sx(t) = tpx =
ω − x − t

ω − x
=

1−
t

ω − x
, µx(t) = µx+t =

1

ω − x− t
and E(Tx) =

o
ex =

ω − x

2
. Often need to recognize

the distribution from tpx.

11) Suppose x ≥ 0 and 0 < t < 1.
function to approximate linear or UDD approx exponential or constant force approx

S0(x + t) (1 − t)S0(x) + tS0(x + 1) [S0(x)]1−t [S0(x + 1)]t

tpx 1 − t(qx) (px)
t = exp(−µt)

tqx (= 1 − tpx) t(qx) 1 − (px)
t = 1 − (1 − qx)

t

µx+t

qx

1 − t(qx)
− log(px) = µ

f0(t) = tpx µx+t qx −(px)
t log(px) = µ exp(−µt)

tqx+v

(t)qx

1 − v(qx)
1 − (px)

t ≈ tqx

tpx+v 1 −
(t)qx

1 − v(qx)
(px)

t ≈ tpx

12) The curtate duration at failure RV Kx = bTxc. Here b7.7c = 7. Suppose the
person died in the kth time interval (k − 1, k] which means T0 is in the time interval
(x+k−1, x+k], given T0 > x. Then Kx = k−1. Kx is a discrete random variable where
k = 0, 1, 2, ..... Suppose the interval of failure for Tx is (k, k + 1] (so T0 fails in interval
(x + k, x + k + 1]). Then Kx = k. The probability (mass) function of Kx is

k|qx = pKx(k) = P (Kx = k) = P (k < Tx ≤ k + 1) = P (x + k < T0 ≤ x + k + 1|T0 > x) =

kpx − k+1px = Fx(k + 1) − Fx(k) = Sx(k) − Sx(k + 1).

13) The curtate expectation of life at age x is

ex = E(Kx) =
∞
∑

k=0

k P (Kx = k) =
∞
∑

k=0

k k|qx.

14) Know: The probability that (x) will die between x+n and x+n+m is n|mqx =
P (x+n < T0 ≤ x+n+m|T0 > x) = P (n < Tx ≤ n+m) = npx− n+mpx = n+mqx− nqx =

npx mqx+n. For m = 1, n|1qx = n|qx = P (Kx = n) = npx qx+n = P (n < Tx ≤ n + 1).

15) multiplication rule: n+mpx = npx mpx+n

16)
o
ex:n| = expected number of years lived in (x, x + n] by a (randomly selected)

survivor to age x. (The : n| in the subscript means take the formula for
o
ex but replace the

upper limit ∞ in the integrand by n.) So
o
ex:n|=

∫ n

0
tpx dt =

∫ n

0
Sx(t) dt =

∫ n

0
t fx(t) dt.
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Chapter 4: 17) From interest theory, i) the compound interest factor v =
1

1 + i
and

0 < v < 1.

ii) The effective rate of interest i =
1 − v

v
> 0. Often i = 0.05.

iii) The force of interest δ = log(1 + i) > 0. Note that 1 + i = eδ so v = e−δ.

iv) The effective rate of discount d =
i

1 + i
= iv = 1 − v > 0.

18) The life insurance model has a benefit function bt and a discount function vt where
t = the length of time from issue of insurance until death (or until insurance payment).
Often vt = vt and bt = 1 unit. The present value function zt = btvt is the present value, at
time t from policy issue, of the benefit payment. Let T = Tx = insured’s future lifetime
RV and the claim random variable or present value random variable Z = zTx = bTxvTx.
Or Kx = bTxc = the curtate future lifetime RV, and Z = z1+Kx = b1+Kx v1+Kx.

19) E(Z) is the actuarial present value (APV) = expected present value (EPV) = net

single premium (NSP) of the insurance, the expected value of the present value of the
payment.

20) Formulas are given for unit payment. Let A = E(Z) and 2A = E(Z2). For
nonunit payment c, multiply the unit payment formula for A by c and the unit formula
payment for 2A by c2.

21) Suppose (x) buys insurance and dies at t ∈ (k − 1, k] years from purchase so
Kx = k − 1 where k ∈ {0, 1, 2, ...}. Consider the following discrete life insurance models.

i) (Discrete) whole life insurance makes unit payment at time t = k with vt = vt, t ≥ 0
and bt = 1, t ≥ 0. Then zt = btvt = vt, t ≥ 0. The present value random variable
Zx = z1+Kx = v1+Kx. Then the actuarial present value APV = EPV = NSP = Ax =

E(Zx) = E(v1+Kx) =
∞
∑

k=0

vk+1P (Kx = k), and 2Ax = E[(Zx)
2] = E[(v1+Kx)2] =

∞
∑

k=0

v2(k+1)P (Kx = k).

ii) (Discrete) n year term insurance = (discrete) n year temporary insurance makes
unit payment at time t = k only if k ≤ n, otherwise no payment is made. Now

vt = vt, t ≥ 0, bt =

{

1, t ≤ n
0, t > n

and zt = btvt =

{

vt, t ≤ n
0, t > n.

The present value

random variable (note 1 + Kx ≤ n if Kx < n) is Z1
x:n| =

{

v1+Kx, Kx < n
0, Kx ≥ n.

Then the

actuarial present value APV = EPV = NSP = A1
x:n| = E(Z1

x:n|) =
n−1
∑

k=0

vk+1P (Kx = k),

and 2A1
x:n| = E[(Z1

x:n|)
2] =

n−1
∑

k=0

v2(k+1)P (Kx = k). The 1 above the x means unit benefit

is payable after (x) dies if death is before time n.

iii) (Discrete) n year deferred insurance makes unit payment at time t = k only if
k > n so k ≥ n + 1, otherwise no payment is made. Now vt = vt, t ≥ 0,

bt =

{

0, t ≤ n
1, t > n

and zt = btvt =

{

0, t ≤ n
vt, t > n.

3



The present value random variable (note 1+Kx > n if Kx ≥ n) is n|Zx =

{

0, Kx < n
v1+Kx, Kx ≥ n.

Then the actuarial present value APV = EPV = NSP = n|Ax = E(n|Zx) =
∞
∑

k=n

vk+1P (Kx = k), and 2
n|Ax = E[(n|Zx)

2] =
∞
∑

k=n

v2(k+1)P (Kx = k).

iv) (Discrete) n year endowment life insurance makes unit payment at time t = k if

t < k < n and at time n if t > n. Then bt = 1, t ≥ 0 and vt =

{

vt, t ≤ n
vn, t > n,

and zt =

btvt =

{

vt, t ≤ n
vn, t > n.

The present value random variable Zx:n| =

{

vKx+1, Kx < n
vn, Kx ≥ n.

Note that the n year endowment present value random variable
Zx:n| = Z1

x:n| + Z
x:

1

n|
, the sum of the n year term and n year pure endowment present

value RVs. Then the actuarial present value APV = EPV = NSP = Ax:n| = E[Zx:n|]

= A1
x:n|+A

x:
1

n|
=

n−1
∑

k=0

vk+1P (Kx = k)+vnP (Kx ≥ n) =
n−1
∑

k=0

vk+1P (Kx = k)+vn
∞
∑

k=n

P (Kx = k).

Similarly, [Zx:n|]
2 = [Z1

x:n|]
2 + [Z

x:
1

n|
]2 and 2Ax:n| = 2A1

x:n| +
2A

x:
1

n|

=
n−1
∑

k=0

v2(k+1)P (Kx = k) + v2nP (Kx ≥ n) =
n−1
∑

k=0

v2(k+1)P (Kx = k) + v2n
∞
∑

k=n

P (Kx = k).

v) (Discrete = continuous) n year pure endowment insurance makes unit payment at

time n only if t > n , otherwise no payment is made. Now vt =

{

vt, t ≤ n
vn, t > n,

bt =
{

0, t ≤ n
1, t > n

and zt = btvt =

{

0, t ≤ n
vn, t > n.

The present value random variable

Z
x:

1

n|
=

{

0, Tx ≤ n
vn, Tx > n.

Then the actuarial present value APV = EPV = NSP = A
x:

1

n|
=

E(Z
x:

1

n|
) = nEx = vnP (Tx > n) = vnSx(n) = e−δnSx(n) and 2A

x:
1

n|
= E[(Z

x:
1

n|
)2] =

v2nP (Tx > n) = v2nSx(n) = e−2δnSx(n). The 1 above the n| means unit benefit is payable
after (x) dies if death is after time n. Also V (Z

x:
1

n|
) = v2n

npx nqx. Note the book does

not use Z and A for this insurance because payment is made iff Tx > n iff Kx ≥ n so the
discrete insurance and continuous insurance are technically equivalent.

22) Zx = Z1
x:n| + n|Zx, Ax = A1

x:n| + n|Ax, [Zx]
2 = [Z1

x:n|]
2 + [n|Zx]

2, 2Ax =
2A1

x:n| +
2

n|Ax, Zx:n| = Z1
x:n| +Z

x:
1

n|
, Ax:n| = A1

x:n| +A
x:

1

n|
, [Zx:n|]

2 = [Z1
x:n|]

2 +[Z
x:

1

n|
]2

and 2Ax:n| = 2A1
x:n| +

2A
x:

1

n|

23) Suppose (x) buys insurance and dies at t > 0 years from purchase so T = Tx =
t. Consider the following discrete life insurance models (note that 21 v) n year pure
endowment insurance is both continuous and discrete).

i) (Continuous) whole life insurance makes unit payment at time t = k with vt =
vt, t ≥ 0 and bt = 1, t ≥ 0. Then zt = btvt = vt, t ≥ 0. The present value random variable
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Zx = zT = vT . Then the actuarial present value APV = EPV = NSP =

Ax = E(Zx) = E(vT) = E(e−δT ) =
∫ ∞

0
vtfT (t) dt =

∫ ∞

0
e−δtfT (t) dt =

∫ ∞

0
vt

tpx µx+t dt, and

2Ax = E[(Zx)
2] = E[(vT )2] = E(e−2δT ) =

∫ ∞

0
v2tfT (t) dt =

∫ ∞

0
e−2δtfT (t) dt =

∫ ∞

0
v2t

tpx µx+t dt.

ii) (Continuous) n year term insurance makes unit payment at time t > 0 only if
t ≤ n, otherwise no payment is made. Now vt = vt, t ≥ 0,

bt =

{

1, t ≤ n
0, t > n,

zt = btvt =

{

vt, t ≤ n
0, t > n,

and Z
1

x:n| =

{

vTx, T ≤ n
0, T > n.

Then the actuarial present value APV = EPV = NSP =

A
1

x:n| = E(Z
1

x:n|) =
∫ n

0
e−δtfT (t) dt =

∫ n

0
vtfT (t) dt =

∫ n

0
vt

tpx µx+t dt, and

2A
1
x:n| = E[(Z

1
x:n|)

2] =
∫ n

0
e−2δtfT (t) dt =

∫ n

0
v2tfT (t) dt =

∫ n

0
v2t

tpx µx+t dt.

The 1 above the x means unit benefit is payable after (x) dies if death is not after time
n.

iii) (Continuous) n year deferred insurance makes unit payment at time t > 0 only if
t > n, otherwise no payment is made. Now vt = vt, t ≥ 0,

bt =

{

0, t ≤ n
1, t > n,

zt = btvt =

{

0, t ≤ n
vt, t > n,

and n|Zx =

{

0, T ≤ n
vT , T > n.

Then the actuarial present value APV = EPV = NSP =

n|Ax = E(n|Zx) =
∫ ∞

n
e−δtfT (t) dt =

∫ ∞

n
vtfT (t) dt =

∫ ∞

n
vt

tpx µx+t dt, and

2
n|Ax = E[(n|Zx)

2] =
∫ ∞

n
e−2δtfT (t) dt =

∫ ∞

n
v2tfT (t) dt =

∫ ∞

n
v2t

tpx µx+t dt.

iv) (Continuous) n year endowment life insurance makes unit payment at time t > 0
if t < n and at time n if t > n. Then bt = 1, t ≥ 0 and

vt =

{

vt, t ≤ n
vn, t > n,

zt = btvt =

{

vt, t ≤ n
vn, t > n,

and Zx:n| =

{

vT , T ≤ n
vn, T > n.

Then Zx:n| = Z
1

x:n| + Z
x:

1

n|
, Ax:n| = E[Zx:n|] = A

1

x:n| + A
x:

1

n|
, [Zx:n|]

2 = [Z
1

x:n|]
2 + [Z

x:
1

n|
]2,

and 2Ax:n| = 2A
1
x:n| +

2A
x:

1

n|
.

24) KNOW: Let T ∼ EXP (µ). Then E(T ) =
∫∞
0 tµe−µtdt =

∫∞
0 e−µtdt = 1/µ. So

∫∞
0 tDe−t(D)dt =

∫∞
0 e−t(D)dt = 1/D for D > 0. Use

E
= when exponential RV is used.

25) In 24) and 26), often
∫∞
0 is replaced by

∫ b
a . If D > 0,

∫ n

0
De−tDdt = 1 − e−nD,

∫ ∞

n
De−tDdt = e−nD,

∫ n

0
e−tDdt =

1

D
[1 − e−nD], and

∫ ∞

n
e−tDdt =

1

D
e−nD.
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26) Whole life insurance with the exponential(µ) distribution often has Z = bT vT

where bt = eθt. Now
∫ ∞

0
µe−µtdt = 1 so

∫ ∞

0
e−µtdt = 1/µ if µ > 0. Hence

E[Z ] =
∫ ∞

0
bte

−δtµe−µtdt =
∫ ∞

0
eθte−δtµe−µtdt = µ

∫ ∞

0
e−t[µ+δ−θ]dt =

µ

µ + δ − θ
pro-

vided µ + δ − θ > 0. Also E[(Z)j] =
∫ ∞

0
[bte

−δt]jµe−µtdt =
∫ ∞

0
eθjte−δjtµe−µtdt =

µ
∫ ∞

0
e−t[µ+δj−θj]dt =

µ

µ + δj − θj
provided µ+δj−θj > 0. Note that θ = 0 corresponds

to unit payment.

27) Often unit benefits are not used for continuous insurance. Let Bx = Z = zTx =

bTxvTx. Then jA = E[(Z)j] =
∫ ∞

0
(btvt)

jfT (t)dt. Note that APV = A = E[Z] = E[Bx] =
∫ ∞

0
btvtfT (t)dt. The bars on A and Z are often omitted. Usually vt = vt = e−δt.

28) KNOW: Let T ∼ EXP (µ). S(t) = e−µt for t > 0. Often use Z instead of Z.
i) If bt = ceθt and Z = bTvT , then E[Zj] = E[(bTvT )j] = cjE[(eθTvT )j]. So multiply

c = 1 formulas by cj. Usually want j = 1, 2.
a) Special whole life insurance: bt = eθt, vt = e−δt, and Z = bT vT = eθT e−δT .

E(Zj)
E
=

µ

µ + δj − θj
if µ + δj − θj > 0. See 26).

b) Whole life insurance: special case of a) with θ = 0. See 28i). Zx = e−δT . Ax =

E(Zx) = E(e−δT )
E
=

µ

µ + δ
, and 2Ax = E[(Zx)

2] = E(e−2δT )
E
=

µ

µ + 2δ
.

V (Zx) = 2Ax − (Ax)
2.

c) Whole life annuity. See 32). Y x =
1 − Zx

δ
.

E[Y x] = ax =
∫ ∞

0
e−δtST (t)dt

E
=

1

µ + δ
. V (Y x) =

V (Zx)

δ2
=

2Ax − (Ax)
2

δ2
.

Chapter 5: 29) an| = v + v2 + v3 + · · · + vn =
n
∑

j=1

vj =
1 − vn

i
,

än| = 1 + v + v2 + v3 + · · · + vn−1 =
n−1
∑

j=0

vj =
1 − vn

d
where d = iv =

i

1 + i
, and

an| =
∫ n

0
vtdt =

1 − vn

δ
.

30) A (discrete annual) immediate whole life annuity pays (x) 1 unit at times t =
1, 2, ..., as long as (x) survives. For integer t, P (Kx ≥ t) = P (Tx > t) = tpx. Let Yx = aKx|

be the present value random variable and let ax = E(Yx) be the APV = EPV = NSP of

the annuity. Then ax = E(Yx) =
∑∞

t=1 vt
tpx. Then Yx =

1 − vKx

i
=

1

i
[1 − (1 + i)Zx].

Note the immediate annuity has an i in the denominator. Also, V (Yx) =
2Ax − (Ax)

2

d2
.

31) A (discrete annual) whole life annuity-due pays (x) 1 unit at times t = 0, 1, 2, ...,
as long as (x) survives. Let Ÿx be the present value random variable and let äx = E(Ÿx)
be the APV = EPV = NSP of the annuity. Then äx = E(Ÿx) = ax + 1 =

∑∞
t=0 vt

tpx.

Ÿx = ä1+Kx|
=

1 − v1+Kx

d
=

1 − Zx

d
= Yx + 1. Note the d in the denominator for an
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annuity–due. Then E(Ÿx) = ax + 1 and V (Ÿx) = V (Yx).

32) A continuous whole life annuity makes a continuous payment at an annual rate

of 1 unit per year as long as (x) survives. The present value RV Y x = aTx|
=

1 − vTx

δ
=

1 − Zx

δ
. The APV is ax = E(Y x) =

∫ ∞

0
vt

tpxdt =
∫ ∞

0
e−δt Sx(t)dt

E
=

1

µ + δ
.

V (Y x) =
V (Zx)

δ2
=

2Ax − (Ax)
2

δ2
. Note the δ in the denominator of the continuous

annuity.

33) The (discrete) immediate n year temporary annuity pays (x) 1 unit at times
t = 1, ..., n if Kx ≥ n and at times t = 1, ..., k− 1 if 1 ≤ Kx = k− 1 ≤ n− 1. No payment

is made if Kx = 0. The present value RV Yx:n| =
n
∑

t=1

Z
x:

1

t|
=

{

aKx|
, Kx < n

an|, Kx ≥ n.
The APV

ax:n| = E(Yx:n|) =
n
∑

t=1

vt
tpx.

34) The (discrete) n year temporary annuity-due pays (x) 1 unit at times t =
0, 1, ..., n − 1 if Kx ≥ n and at times t = 0, 1, ..., k − 1 if Kx = k − 1 < n. The present

value RV Ÿx:n| =
n−1
∑

t=0

Z
x:

1

t|
= Yx:n| + 1 − Zx:n| =

1 − Zx:n|

d
. The APV äx:n| = E(Ÿx:n|) =

n−1
∑

t=0

vt
tpx =

1 −Ax:n|

d
= ax:n| + 1 − nEx.

35) A (continuous) temporary n year annuity makes a continuous payment at annual
rate of 1 unit a year for n years if Tx > n and for Tx years if Tx < n. The present value

RV is Y x:n| =
1 − Zx:n|

δ
=

{

aTx|
, Tx ≤ n

an|, Tx > n.
Then ax:n| = E(Y x:n|) =

∫ n

0
e−δtSx(t)dt.

V (Y x:n|) =
2Ax:n| − (Ax:n|)

2

δ2
.

36) A (discrete) immediate n year deferred whole life annuity makes no payment if
Kx ≤ n. If Kx = k−1 ≥ n+1, then unit payment is made at times t = n+1, n+2, ..., k−1.

The present value RV n|Yx = Yx − Yx:n| =
∞
∑

t=n+1

Z
x:

1

t|
. The APV

n|ax = E(n|Yx) = ax − ax:n| =
∞
∑

t=n+1

vt
tpx.

37) A (discrete) n year deferred whole life annuity-due makes no payment if Kx < n.
If Kx = k − 1 ≥ n, then unit payment is made at times t = n, n + 1, n + 2, ..., k − 1. The

present value RV n|Ÿx = Ÿx − Ÿx:n| = Z
x:

1

n|
+ n|Yx =

∞
∑

t=n

Z
x:

1

t|
. The APV

n|äx = E(n|Ÿx) = äx − äx:n| = vn
npx + n|ax =

∞
∑

t=n

vt
tpx.

38) A (continuous) n year deferred annuity makes no payment if Tx ≤ n. If Tx = t > n
then continuous payment at annual unit rate is made from time n to time t. The present

value RV is n|Y x = Y x − Y x:n| =

{

0, Tx ≤ n
vn aTx−n|, Tx > n.

Then n|ax = E(n|Y x) =
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ax − ax:n| =
∫ ∞

n
e−δtSx(t)dt. E[(n|Y x)

2] =
2

δ
v2n

npx [ax+n − 2ax+n] where ax+n =
∫ ∞

0
e−δtSx+n(t)dt and 2ax+n =

∫ ∞

0
e−2δtSx+n(t)dt.

39) Contingent annuities paid mthly are paid m times a year with payment 1/m
where m ≥ 1. So annual payment is 1 unit per year. A discrete immediate mthly whole
life annuity pays 1/m units at the end of each mthly time interval while (x) survives. The
APV is a(m)

x . A discrete mthly whole life annuity-due pays 1/m units at the beginning
of each mthly time interval while (x) survives. The APV is ä(m)

x = a(m)
x + 1

m
. The

Woolhouse approximation is a(m)
x ≈ ax +

m − 1

2m
≈ ax +

m − 1

2m
+

m2 − 1

12m2
(µx + δ).

Then ä(m)
x = a(m)

x +
1

m
≈ äx −

m − 1

2m
where äx is given by the illustrative life table. Also

äx ≈ ax + 1. Also ax ≈ äx − 0.5 ≈ ax + 0.5 ≈ äx − 0.5 − (µx + δ)/12 since a continuous
annuity is the limiting case of an mthly annuity as m → ∞. The approximation is good
for m ≥ 12.

End of Math 401 Material

8



Chapter 10

40) Multiple life functions consider failure or survival of a status of multiple lives.
Insurance is payable when the status fails. Annuities are payable as long as the status
survives. For 2 life functions the x and y are separated by a colon. So think of (xy) as
(x:y), and (xy) as (x : y). Notation x + n : y + n is also used. Let Tx Ty mean that Tx

and Ty are independent. Usually assume Tx1
Tx2

... Txk
.

41) A joint life status for (xy) fails as soon as x or y dies. Let Txy = min(Tx, Ty) =
time until 1st death. Convert q’s to p’s, then convert back to q’s if needed.

42) If n = 10, x = 40, and y = 20, want T40:20, ST40:20
(t) = S40:20(t) = tp40:20,

F40:20(t) = tq40:20, f40:20(t), µ40:20(t), 10|q40:20,
o
e40:20, K40:20, e40:20 and e40:20:10|.

43) Know: Consider a joint life status (xy) and Txy.

i) survival function: Sxy(t) = tpxy = P (Txy > t). If Tx Ty, then tpxy = ( tpx)( tpy).

ii) cdf: Fxy(t) = tqxy = P (Txy ≤ t). If Tx Ty, then tqxy = tqx + tqy − ( tqx)( tqy).

iii) pdf: fxy(t) =
d

dt
Fxy(t) =

−d

dt
Sxy(t). If Tx Ty, then fxy(t) = tpxy(µx+t + µy+t).

iv) force of mortality: µxy(t) =
fxy(t)

Sxy(t)
. If Tx Ty, then µxy(t) = µx+t + µy+t ≡

µx+t:y+t.

v) a) n|qxy = npxy − n+1pxy = P (n < Txy ≤ n + 1). Let px+n:y+n =
n+1pxy

npxy

and

qx+n:y+n = 1 − px+n:y+n. Then n|qxy = npxy(1 − px+n:y+n) = npxy qx+n:y+n. If Tx Ty,
then n|qxy = (npx)(npy) − (n+1px)(n+1py).

b) n|mqxy = npxy mqx+n:y+n = npxy − n+mpxy = P (n < Txy ≤ n + m). See 14)–15)
for more formulas.

c) n+mpxy = npxy mpx+n:y+n.

vi)
o
exy= E(Txy) =

∫ ∞

0
tfxy(t)dt =

∫ ∞

0
tpxydt.

vii) E[(Txy)
2] =

∫ ∞

0
t2fxy(t)dt = 2

∫ ∞

0
t tpxy dt.

viii) Let Kxy = bTxyc be the curtate duration at failure of the joint status (xy) (the
number of whole years of survival left to the status (xy)). Then P (Kxy = k) = n|qxy.

ix) The curtate expectation of future lifetime for the joint status is exy =
∞
∑

k=1

kpxy =

E[Kxy] is the average number of whole years of survival left to the joint status (xy).

x) The temporary curtate lifetime is exy:n| =
n
∑

k=1

kpxy = average number of whole

years of survival within the next n years (for time t ∈ (0, n]) of the joint status (xy).

xi) Still have tpxy + tqxy = 1.

44) pxy = 1pxy = STxy(1) and qxy = 1qxy = 1 − 1pxy = FTxy(1).

45) If Tx ∼ EXP (µx) Ty ∼ EXP (µy), then Txy = min(Tx, Ty) ∼ EXP (µx + µy).

46) A two life last survivor status for (xy) fails after both x and y die. Let
Txy = max(Tx, Ty) = time until 2nd death. Then Txy + Txy = Tx + Ty. Convert p’s to

9



q’s, then convert back to p’s if needed.

47) If n = 10, x = 40 and y = 20, want T40:20, ST
40:20

(t) = S40:20(t) = tp40:20,

F40:20(t) = tq40:20, f40:20(t), µ40:20(t), 10|q40:20,
o
e40:20, K40:20, e40:20 and e40:20:10|.

48) Know: Consider a last survivor status (xy) and Txy.

i) survival function: STxy
(t) = Sxy(t) = tpxy = P (Txy > t) = tpx + tpy − tpxy. If

Tx Ty, then tpxy = 1 − ( tqx)( tqy) = tpx + tpy − ( tpx)( tpy).

ii) cdf: Fxy(t) = tqxy = P (Txy ≤ t) = 1 − Sxy(t). If Tx Ty, then

tqxy = ( tqx)( tqy) = Fx(t)Fy(t) = FTx(t)FTy(t).

iii) pdf: fxy(t) =
d

dt
Fxy(t) =

−d

dt
Sxy(t) = fx(t) + fy(t)− fxy(t) =

( tpx)(µx+t)+( tpy)(µy+t)−( tpxy)(µx+t+µy+t) = ( tpx)(µx+t)+( tpy)(µy+t)−( tpxy)(µx+t:y+t).

iv) force of mortality: µxy(t) =
fxy(t)

Sxy(t)
=

( tpx)(µx+t) + ( tpy)(µy+t) − ( tpxy)(µx+t:y+t)

tpx + tpy − tpxy

.

If Tx Ty, then µxy(t) =
( tqx)( tpy)(µy+t) + ( tqy)( tpx)(µx+t)

tpxy

.

v) a) n|qxy = npxy − n+1pxy = P (n < Txy ≤ n + 1) = n|qx + n|qy − n|qxy =
P (Kxy = n). See 14)–15) for more formulas.

b) n|mqxy = npxy − n+mpxy = P (n < Txy ≤ n + m). See 14) for more formulas.

vi)
o
exy = E(Txy) =

∫ ∞

0
tfxy(t)dt =

∫ ∞

0
tpxy dt =

o
ex +

o
ey −

o
exy.

vii) E[(Txy)
2] =

∫ ∞

0
t2fTxy

(t)dt = 2
∫ ∞

0
t tpxy dt.

viii) Let Kxy = bTxyc be the curtate duration at failure of the status (xy)
(the number of whole years of survival left to the last survivor status (xy)).

ix) exy =
∞
∑

k=1

kpxy = ex + ey − exy = E[Kxy] is the average number of whole years of

survival left to the last survivor status (xy).

x) exy:n| =
n
∑

k=1

kpxy = ex:n| + ey:n|− exy:n| = average number of whole years of survival

within the next n years (for time t ∈ (0, n]) of the last survivor status (xy).

49) pxy = 1pxy = Sxy(1) and qxy = 1qxy = 1 − 1pxy = Fxy(1).

50) Txy is one of Tx or Ty, and Txy is the other. Hence Txy + Txy = Tx + Ty, and
Txy = Tx + Ty − Txy. Similarly, P (Txy > t) + P (Txy > t) = P (Tx > t) + P (Ty > t), and
P (Txy > t) = P (Tx > t) + P (Ty > t) − P (Txy > t). See point 48) i) and vi).

51) E[min(X, j)] =
∫ j

0
xfX(x)dx +

∫ ∞

j
jfX(x)dx =

∫ j

0
xfX(x)dx + jSX(j).

52) E[max(X, j)] =
∫ j

0
jfX(x)dx +

∫ ∞

j
xfX(x)dx = jFX(j) +

∫ ∞

j
xfX(x)dx.

53) P[(x) fails before (y)] = P (Tx < Ty) = ∞q1
xy =

∫ ∞

0

∫ ∞

t
fTx,Ty(t, s)dsdt =

∫ ∞

0

∫ ∞

t
fTy |Tx

(s|t)dsfTx(t)dt =
∫ ∞

0
P (Ty > t|Tx = t)fTx(t)dt. If Tx Ty, then
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P (Tx < Ty) = ∞q1
xy = E[STy(Tx)] =

∫ ∞

0
Sy(t)fx(t)dt =

∫ ∞

0
tpy tpx µx+t dt =

∫ ∞

0
tpxy µx+t dt.

54) If Tx Ty, then P[(x) fails after (y)] = P (Tx > Ty) = ∞q2
xy = 1 − ∞q1

xy.

55) If Tx Ty, then P[(x) fails before (y) and within n years] = nq1
xy =

∫ n

0
tpxy µx+t dt.

56) If Tx Ty, then P[(x) fails after (y) and within n years] = nq
2
xy =

∫ n

0
Fy(t)fx(t)dt =

nqx − nq1
xy. (The 2 means (x) is the 2nd failure.)

57) If Tx Ty, then P[(y) fails before (x) and within n years] = nq
x

1

y
=
∫ n

0
tpxy µy+t dt =

∫ n

0
Sx(t)fy(t)dt. (The 1 means (y) is the 1st failure.)

58) If Tx Ty, then P[(y) fails after (x) and within n years] = nq
x

2

y
=
∫ n

0
Fx(t)fy(t)dt =

nqy − nq
x

1

y
. Note that the superscript 2 is for the 2nd failure and the 1 for the 1st.

59) nq1
xy + nq

x
1

y
= nqxy

60) nq2
xy + nq

x
2

y
= nqxy

61)
o
exy:n|=

∫ n

0
tpxy dt.

62) E[(Txy)
2] = 2

∫ ∞

0
t tpxy dt, and E[(Txy)

2] = 2
∫ ∞

0
t tpxy dt. See 43 vii) and 48 vii).

63) A generalized DeMoivre GD(α, θ) distribution has survival function

S0(t) =

(

θ − t

θ

)α

for 0 < t < θ where α > 0. Often θ = ω−x. If Tx ∼ DeMoivre(ω−x),

then α = 1. If Tx ∼ GD(α, ω −x), then for 0 < t < ω−x, Sx(t) = tpx =
(

ω − x− t

ω − x

)α

,

Fx(t) = tqx = 1 −
(

ω − x − t

ω − x

)α

, fx(t) = tpx µx+t =
α(ω − x− t)α−1

(ω − x)α
,

µx(t) = µx+t =
α

ω − x− t
, E(Tx) =

o
ex =

ω − x

α + 1
, and V (Tx) =

α(ω − x)2

(1 + α)2(2 + α)
.

If Txi
are independent GD(αi, ω − x), then Tx1x2...xk

= min(Tx1
, ...Txk

) ∼

GD(
k
∑

i=1

αi, ω − x). So if Tx ∼ GD(αx, ω − x) Ty ∼ GD(αy , ω − x), then

Txy ∼ GD(αx + αy, ω − x). Note: only need ωx − x = ωy − y ≡ ω − x.
Hence if Tx ∼ U(0, ω − x) Ty ∼ U(0, ω − x), then Txy ∼ GD(2, ω − x) since

DeMoivre(ω − x) ∼ U(0, ω − x) ∼ GD(1, ωx) has αx = αy = 1. T0 ∼ GD(α, ω) ⇒ Tx ∼
GD(α, ω − x).

Insurance and pensions for (xy) and (xy) are like those for (x), but replace the
subscript x by (xy) or (xy). Points 64) through 70) are illustrative.

64) Tx Ty, discrete whole life insurance for (xy) has Zxy = v1+Kxy , Axy = E[Zxy] =
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∞
∑

k=0

vk+1( k|qxy) and 2Axy = E[(Zxy)
2] =

∞
∑

k=0

v2(k+1)( k|qxy).

65) Tx Ty, discrete whole life insurance for (xy) has Axy = E[Zxy] =
∞
∑

k=0

vk+1( k|qxy) =

Ax + Ay − Axy and 2Axy = E[(Zxy)
2] =

∞
∑

k=0

v2(k+1)( k|qxy) = 2Ax + 2Ay −
2Axy.

66) Tx Ty, continuous whole life insurance for (xy) has Zxy = vTxy , Axy = E[Zxy] =
∫ ∞

0
e−δtfxy(t)dt =

∫ ∞

0
e−δt

tpxyµx+t:y+tdt and 2Axy = E[(Zxy)
2] =

∫ ∞

0
e−2δtfxy(t)dt =

∫ ∞

0
e−2δt

tpxyµx+t:y+tdt.

67) Tx Ty, continuous whole life insurance for (xy) has Zxy = vTxy , Axy = E[Zxy] =
∫ ∞

0
e−δtfxy(t)dt = Ax + Ay −Axy and 2Axy = E[(Zxy)

2] =
∫ ∞

0
e−2δtfxy(t)dt =

2Ax +2 Ay −
2 Axy.

68) Tx Ty, discrete annual immediate life annuity for (xy) has axy = E[Yxy] =
∞
∑

k=1

vk( kpxy).

69) Tx Ty, discrete annual life annuity-due for (xy) has äxy = E[Ÿxy] =
∞
∑

k=0

vk( kpxy).

70) Tx Ty, a continuous temporary n year annuity for (xy) has axy:n| = E(Y xy:n|) =
∫ n

0
vt

tpxy dt =
∫ n

0
e−δtSTxy(t)dt.

71) Given a joint distribution for (Tx, Ty), a) STx,Ty(n, n) = P (Txy > n) = npxy and
b) FTx,Ty(n, n) = P (Txy ≤ n) = nqxy.

72) Know: Let Tx1
, ..., Txm be independent EXP(µi) RVs. Let u = (x1 · · · xm) or

u = x1 · · · xm. Then T = Tu = Tx1···xm = min(Tx1
, ..., Txm) ∼ EXP (

m
∑

i=1

µi). Then µT (t) =

∑m
i=1 µi, ST (t) = exp(−t

∑m
i=1 µi),

o
eu= E(T ) = 1/(

m
∑

i=1

µi) and V (T ) = 1/(
∑m

i=1 µi)
2. a)

For whole life insurance, Au = E[Zu] =

∑m
i=1 µi

δ +
∑m

i=1 µi

, and 2Au = E[(Zu)
2] =

∑m
i=1 µi

2δ +
∑m

i=1 µi

.

b) For a whole life annuity, au = E[Y u] =
1

δ +
∑m

i=1 µi

, and V [Y u] =
2Au − (Au)

2

δ2
.

Usually m = 2, x1 = x, and x2 = y.

73) For an annuity, axy = ax + ay − axy, and if Tx ∼ EXP (µx), then ax =
1

δ + µx

.
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