
Math 401 Exam 2 is Wed. Oct. 23. You are allowed 10 sheets of notes and a

calculator. The exam covers HW2-6 and Q2-7. Numbers refer to types of problems on
exam. More emphasis is on HW4-6, Q4-7.

29) A life table displays x and lx = l0S0(x). Often dx = lx − lx+1 and other quantities
are shown. The l0 is the radix of the table and often l0 = 100000. The table goes
from x = 0 to x = z. The integer ω is the smallest integer such that S0(ω) = 0. So

S0(ω−1) > 0. Often z = ω or z = ω−1. Often ω = 110. Note that lω = 0.

x lx dx

0 l0 d0

1 l1 d1
...

...
...

z lz dz

30) Know that lx = (expected) number living to age x out of a group of l0 newborns.
Then ndx = lx − lx+n is the (expected) number who die between ages x and x + n. So
dx = 1dx = lx − lx+1 is the number who die between ages x and x + 1. Given a life table
with columns x and lx, be able to fill in the dx column.

31) Know: Given the life table with columns x and lx, be able to find dx, nqx, qx,

npx, px and ndx.

nqx =
ndx

lx
= P (T0 ≤ x + n|T0 > x) = P (Tx ≤ n).

qx =
dx

lx
= P (T0 ≤ x + 1|T0 > x) = P (Tx ≤ 1).

npx = 1 − nqx =
lx+n

lx
= P (T0 > x + n|T0 > x) = P (Tx > n).

px = 1 − qx =
lx+1

lx
= P (T0 > x + 1|T0 > x) = P (Tx > 1).

Use lx = l0S0(x) to see that these quantities are the same as in ch. 5.

32) npx = exp(−
∫ x+n
x µydy) = exp(−

∫ n
0 µx+wdw)

33) For USA humans, recognize the graph of i) µx which roughly decreases until age
x = 10 then increases, with rapid increase around x = 50, ii) f0(x) or lxµx = l0f0(x)
which has a peak at 0 and near x = 80, iii) S0(x) or lx = l0S0(x) which is nonincreasing
and decreases rapidly near x = 70, and iv) F0(x) or l0F0(x) which is nondecreasing.

34) µx =
− d

dx
lx

lx
=

−S ′
0(x)

S0(x)

35) lx = lo exp(−
∫ x
0 µydy) = l0 xp0

36) µx+t = µ0(t) =
f0(x + t)

S0(x + t)
=

− d
dt

lx+t

lx+t

37) Know: n|mqx = npx − n+mpx = n+mqx − nqx = npx mqx+n

38) n|mqx = P (x + n < T0 ≤ x + n + m|T0 > x) =
P (x + n < T0 ≤ x + n + m)

P (T0 > x)
=

F0(x + n + m) − F0(x + n)

S0(x)
=

S0(x + n) − S0(x + n + m)

S0(x)
=

lx+n − lx+n+m

lx
=
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S0(x + n)

S0(x)

S0(x + n) − S0(x + n + m)

S0(x + n)
= P (n < Tx ≤ n + m) = Sx(n) − Sx(n + m) =

Fx(n + m)− Fx(n).

39) n|mqx = npx mqx+n =
mdx+n

lx

40) The probability that (x) will die between x + n and x + n + m
= P (x + n < T0 < x + n + m|T0 > x) = n|mqx = npx − n+mpx = npx mqx+n.

41) For m = 1, n|1qx = n|qx =
dx+n

lx
= P (Kx = n) = npx qx+n where Kx = bTxc.

42) nqx = 1 − npx =
ndx

lx
=

lx − lx+n

lx
= proportion of those alive at x dying in the

interval (x, x + n] = n year mortality rate starting at x.

43) multiplication rule: n+mpx = npx mpx+n

44) dx = lxqx and lx+1 = lx − dx

45) f0(x) = µ0(x)S0(x) = xp0 µx

46) Let Wx have the same distribution as T0|T0 > x. Then Wx corresponds to T0

truncated below at x. Such a truncated random variable has pdf and survival function

proportional to those of T0. Hence for z > x, fWx
(z) =

f0(z)

S0(x)
= fT0|T0>x(z), SWx

(z) =

S0(z)

S0(x)
= ST0|T0>x(z), FWx

(z) =
F0(z) − F0(x)

S0(x)
= FT0|T0>x(z), and µWx

(z) = µ0(z) =

µT0|T0>x(z).

47) f(y|T0 > x) = fT0|T0>x(y) =
f0(y)

S0(x)
=

lyµy

lx
= y−xpx µy

48) fx(t) = f0(x + t|T0 > x) =
f0(x + t)

S0(x)
= tpx µx+t

49) µx(t) = µx+t =
−S ′

x(t)

Sx(t)
=

− d
dx tpx

tpx

Thus
d

dx
tpx = − tpx µx+t.

50)
o
e0= E(T0) =

∫ ∞

0
xf0(x)dx =

∫ ∞

0
x xp0 µx dx =

∫ ∞

0
S0(x)dx =

∫ ∞

0
xp0 dx =

1

l0

∫ ∞

0
lx dx

51) E(T 2
0 ) =

∫ ∞

0
x2f0(x)dx =

∫ ∞

0
x2

xp0 µx dx = 2
∫ ∞

0
x xp0 dx =

2

l0

∫ ∞

0
x lx dx

52)
o
ex= E(Tx) =

∫ ∞

0
tfx(t)dt =

∫ ∞

0
t tpx µx+t dt =

∫ ∞

0
Sx(t)dt =

∫ ∞

0
tpx dx =

1

lx

∫ ∞

0
lx+t dt =

1

lx

∫ ∞

x
ly dy.

Hence
o
ex= E(Tx) is the expected number of years of life remaining for a (randomly
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selected) person surviving to x = [expected total number of remaining years lived by
the lx survivors to age x]/lx = complete expectation of life at age x = expected future
lifetime at age x. Also see points 14) and 17).

53) Note that T0 = Tx if x = 0. E(T 2
x ) is given by point 18). Plugging in x = 0 into

52) and 18) gives 50) and 51).

54) The median of X is equal to E(X) if E(X) exists and the pdf of X is symmetric.
55) If X ∼ U(a, b) where usually a = 0, then E(X) = (b + a)/2 and V (X) =

(b − a)2/12. The median is equal to E(X) by symmetry.

56)
o
ex:n| = expected number of years lived in (x, x + n] by a (randomly selected)

survivor to age x.
(The : n| in the subscript means take the formula for

o
ex but replace the upper limit

∞ in the integrand by n.)

57)
o
ex:n|=

∫ n

0
tpx dt =

1

lx

∫ n

0
lx+tdt =

1

lx

∫ x+n

x
lydy.

The right hand side is the expected total number of years lived by all lx survivors in
the interval (x, x + n] divided by the number of survivors lx.

58) The curtate expectation of life at age x is ex = E(Kx) = expected number
of whole years of future lifetime for a (randomly selected) survivor to age x. Then

ex =
1

lx

∞
∑

y=x+1

ly =
1

lx

∞
∑

k=1

lx+k =
∞
∑

k=1

kpx.
o
ex≈ ex + 0.5 is of more interest than ex.

59) The temporary curtate expectation of life at age x = expected number of whole
years lived over interval (x, x + n] by a (randomly selected) survivor to age x is

ex:n| =
1

lx

n
∑

k=1

lx+k =
n
∑

k=1

kpx.

60) The quantities for the life table are for integer values x = 0, 1, 2, ..., z. Two
methods of interpolation are used for integer x ≥ 0 and 0 < t < 1. The uniform

distribution of deaths UDD assumption or linear assumption is that the dx deaths occur
uniformly in the interval (x, x + 1]. The exponential or constant force of mortality
assumption is that the force of mortality is constant in the interval (x, x + 1].

61) For the linear or UDD approximation, if x ≥ 0 is an integer and 0 < t < 1, then

lx+t = (1 − t)lx + t(lx+1) = lx − t(dx). Also, E(Tx) =
o
ex ≈ ex + 0.5.

62) For the exponential or constant force approximation, if x ≥ 0 is an integer and
0 < t < 1, then lx+t = (lx)

1−t (lx+1)
t = lx(px)

t where px = exp(−µ) so µ = − log(px).

63) Know how to use both the UDD and constant force assumptions to find approx-
imate the following quantities for integer x ≥ 0 and 0 < t < 1. For the UDD or linear
approximation, note that lx+t uses linear interpolation and that f0(t) is constant (“uni-
form”) in the interval (x, x + 1). For the exponential or constant force assumption µx+t

is constant and f0(t) is “exponential” in the interval (x, x +1). Sometimes want approx-
imations when the subscript x is replaced by x + v where 0 ≤ v < 1 and 0 ≤ v + t < 1.
The exact, UDD and exponential constant force approximations are usually close. Note
that the exponential constant force approximation does not depend on v.
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function to approximate linear or UDD approx exponential or constant force approx

S0(x + t) (1 − t)S0(x) + tS0(x + 1) [S0(x)]1−t [S0(x + 1)]t

lx+t (1 − t)lx + t(lx+1) (lx)
1−t (lx+1)

t = lx(px)
t

tpx

(

=
lx+t

lx

)

1 − t(qx) (px)
t = exp(−µt)

tqx (= 1 − tpx) t(qx) 1 − (px)
t = 1 − (1 − qx)

t

µx+t

(

=
−d
dt

lx+t

lx+t

)

qx

1 − t(qx)
− log(px) = µ

f0(t) = tpx µx+t qx −(px)
t log(px) = µ exp(−µt)

tqx+v
(t)qx

1 − v(qx)
1 − (px)

t ≈ tqx

tpx+v 1 −
(t)qx

1 − v(qx)
(px)

t ≈ tpx

Poisson Processes

64) A stochastic process {X(t) : t ∈ τ} is a collection of random variables where the
set τ is often [0,∞). Often t is time and the random variable X(t) is the state of the
process at time t.

65) A stochastic process {N(t) : t ≥ 0} is a counting process if N(t) counts the total
number of events that occurred in time interval (0, t]. If 0 < t1 < t2, then the random
variable N(t2) −N(t1) counts the number of events that occurred in interval (t1, t2].

66) N(t) is said to possess independent increments if the number of events that occur
in disjoint time intervals are independent. Hence if 0 < t1 < t2 < t3 < · · · < tk, then the
RVs N(t1) − N(0), N(t2) − N(t1), ..., N(tk) − N(tk−1) are independent.

67) N(t) is said to possess stationary increments if the distribution of events that
occur in any time interval depends only on the length of the time interval.

68) A counting process {N(t) : t ≥ 0} is a Poisson process with rate λ for λ > 0 if i)
N(0) = 0, ii) the process has independent increments, iii) the number of events in any
interval of length t has a Poisson (λt) distribution with mean λt.

69) Hence the Poisson process N(t) has stationary increments, the number of events
in (s, s + t] = the number of events in (s, s + t), and for all t, s ≥ 0, the RV
D(t) = N(t + s) − N(s) ∼ Poisson (λt). In particular, N(t) ∼ Poisson (λt). So

P (D(t) = n) = P (N(t + s) − N(s) = n) = P (N(t) = n) =
e−λt(λt)n

n!
for n = 0, 1, 2, ....

Also E[D(t)] = V [D(t)] = E[N(t)] = V [N(t)] = λt.

70) Let X1 be the waiting time until the 1st event, X2 the waiting time from the
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1st event until the 2nd event, ..., Xj the waiting time from the j − 1th event until the
jth event and so on. The Xi are called the waiting times or interarrival times. Let
Sn =

∑n
i=1 Xi the time of occurrence of the nth event = waiting time until the nth event.

For a Poisson process with rate λ, the Xi are iid EXP(λ) with E(Xi) = 1/λ, and
Sn ∼ Gamma (n, λ) with E(Sn) = n/λ and V (Sn) = n/λ2.

71) If the waiting times = interarrival times are iid EXP(λ) or independent with
constant force of mortality λ, then N(t) is a Poisson process with rate λ.

72) Suppose N(t) is a Poisson process with rate λ that counts events of k distinct types
where pi = P ( type i event). If Ni(t) counts type i events, then Ni(t) is a Poisson process
with rate λi = λpi, and the Ni(t) are independent for i = 1, ..., k. Then N(t) =

∑k
i=1 Ni(t)

and λ =
∑k

i=1 λi where
∑k

i=1 pi = 1.

73) A counting process {N(t) : t ≥ 0} is a nonhomogeneous Poisson process with
intensity function or rate function λ(t), also called a nonstationary Poisson process, and
has the following properties. i) N(0) = 0. ii) The process has independent increments.

iii) N(t) is a Poisson m(t) RV where m(t) =
∫ t

0
λ(r)dr, and N(t) counts the number

of events that occurred in (0, t] (or (0, t)).
iv) Let 0 < t1 < t2. The RV N(t2) − N(t1) ∼ Poisson (m(t2) − m(t1)) where

m(t2)−m(t1) =
∫ t2

t1
λ(r)dr and N(t2)−N(t1) counts the number of events that occurred

in (t1, t2] or (t1, t2).

74) If N(t) is a Poisson process with rate λ and there are k distinct events where the
probability pi(s) of the ith event at time s depends s, let Ni(t) count type i events. Then

Ni(t) is a nonhomogeneous Poisson process with λi(t) = λ
∫ t

0
pi(s)ds. Here

∑k
i=1 pi(s) = 1

and the Ni(t) are independent for i = 1, ..., k.

75) A stochastic process {X(t) : t ≥ 0} is a compound Poisson process if X(t) =
N(t)
∑

i=1

Yi

where {N(t) : t ≥ 0} is a Poisson process with rate λ and {Yn : n ≥ 0} is a family of
iid random variables independent of N(t). The parameters of the compound process are
λ and FY (y) where E(Y1) and E(Y 2

1 ) are important. Then E[X(t)] = λtE(Y1) and
V [X(t)] = λtE(Y 2

1 ).

76) The compound Poisson process has independent and stationary increments. Fix
r, t > 0. Then tXr = X(r + t) − X(r) has the same distribution as the RV X(t). Hence
E(tXr) = λtE(Y1) and V (tXr) = λtE(Y 2

1 ).

77) Let MY (t) be the moment generating function (mgf) of Y1. Then the mgf of the
RV X(t) is

MX(t)(r) = exp(λt[MY (r) − 1]).

Mixture Distributions See p. 19.
78) The distribution of a random variable X is a mixture distribution if the cdf of Y

has the form

FX(x) =
k
∑

i=1

αiFWi
(x)
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where 0 < αi < 1,
∑k

i=1 αi = 1, k ≥ 2, and FWi
(x) is the cdf of a continuous or discrete

random variable Wi, i = 1, ..., k.
Then

E[g(X)] =
k
∑

i=1

αiE[g(Wi)].

If the cdf of X is FX(x) = (1− ε)FZ(x)+ εFW (x) where 0 ≤ ε ≤ 1 and FZ and FW are
cdfs, then E[g(X)] = (1− ε)E[g(Z)] + εE[g(W )]. In particular, E(X2) = (1− ε)E[Z2] +
εE[W 2] = (1 − ε)[V (Z) + (E[Z])2] + ε[V (W ) + (E[W ])2].

Often Z is nonsmoker, W is smoker, and ε is the probability that a randomly chosen
person from the population (of X) is a smoker.

ch 7.

79) A life insurance model is a special cases of a contingent payment model where the
payment is made contingent (conditional) on the occurrence of some random event.

80) From interest theory, i) the compound interest factor v =
1

1 + i
and 0 < v < 1.

ii) The effective rate of interest i =
1 − v

v
and i > 0. Often i = 0.05.

iii) The force of interest δ = log(1 + i) and δ > 0. Note that 1 + i = eδ so v = e−δ.
81) First we will consider models where the rate of earnings and inflation is determin-

istic, eg i = 0.05, but the investment period (time from issue of insurance until death) is
random.

82) The model has a benefit function bt and a discount function vt where t = the
length of time from issue of insurance until death (or until insurance payment). Often
vt = vt and bt = 1 unit where 1 + i = eδ and v = e−δ.

83) The present value function zt = btvt is the present value, at time t from policy
issue, of the benefit payment.

84) T = Tx = insured’s future lifetime RV and the claim random variable or present

value random variable Z = zTx
= bTx

vTx
. Or Kx = bTxc = the curtate future lifetime RV,

and Z = z1+Kx
= b1+Kx

v1+Kx
.

85) E(Z) is the actuarial present value (APV) = expected present value (EPV) = net

single premium (NSP) of the insurance, the expected value of the present value of the
payment.

86) Suppose bt ≡ 1 or bt = 1 for t in some interval and bt = 0, otherwise. Suppose
vt = vt for t > 0. Let Ax = E(Z) = g(δ). Let jAx = E(Zj). The rule of moments
is jAx = E(Zj) = g(jδ). The rule of moments only holds if bt ∈ {0, 1} for all t ≥ 0.
Typically finding E(Z) and E(Z2) directly is easier than using the rule of moments.

87) Formulas are given for unit payment. For nonunit payment c, multiply the
unit payment formula for A by c and the unit formula payment for 2A by c2.

88) Suppose (x) buys insurance and dies at t ∈ (k − 1, k] years from purchase so
Kx = k − 1 where k ∈ {0, 1, 2, ...}. Given v, i or δ and a small table of k and P (Kx = k),
be able to find the following quantities for the following 4 discrete life insurance models
where a unit payment (eg of $100000, $500000 or $1000000) is made.
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i) (Discrete) whole life insurance makes unit payment at time t = k with vt = vt, t ≥ 0
and bt = 1, t ≥ 0. Then zt = btvt = vt, t ≥ 0. The present value random variable
Zx = z1+Kx

= v1+Kx. Let v′ = v2. Then the actuarial present value APV = EPV = NSP

= Ax = E(Zx) = E(v1+Kx) =
∞
∑

k=0

vk+1P (Kx = k),

and 2Ax = E[(Zx)
2] = E[(v1+Kx)2] =

∞
∑

k=0

v2(k+1)P(Kx = k) =
∞
∑

k=0

(v′)(k+1)P(Kx = k).

ii) (Discrete) n year term insurance = (discrete) n year temporary insurance makes
unit payment at time t = k only if k ≤ n, otherwise no payment is made. Now
vt = vt, t ≥ 0,

bt =

{

1, t ≤ n
0, t > n

and zt = btvt =

{

vt, t ≤ n
0, t > n.

The present value random variable (note 1 + Kx ≤ n if Kx < n)

Z1
x:n| =

{

v1+Kx, Kx < n
0, Kx ≥ n.

Then the actuarial present value APV = EPV = NSP =

A1
x:n| = E(Z1

x:n|) =
n−1
∑

k=0

vk+1P (Kx = k),

and 2A1
x:n| = E[(Z1

x:n|)
2] =

n−1
∑

k=0

v2(k+1)P(Kx = k) =
n−1
∑

k=0

(v′)(k+1)P(Kx = k).

The 1 above the x means unit benefit is payable after (x) dies if death is before time n.

iii) (Discrete) n year deferred insurance makes unit payment at time t = k only if
k > n so k ≥ n + 1, otherwise no payment is made. Now vt = vt, t ≥ 0,

bt =

{

0, t ≤ n
1, t > n

and zt = btvt =

{

0, t ≤ n
vt, t > n.

The present value random variable (note 1 + Kx > n if Kx ≥ n)

n|Zx =

{

0, Kx < n
v1+Kx, Kx ≥ n.

Then the actuarial present value APV = EPV = NSP =

n|Ax = E(n|Zx) =
∞
∑

k=n

vk+1P (Kx = k),

and 2
n|Ax = E[(n|Zx)

2] =
∞
∑

k=n

v2(k+1)P(Kx = k) =
∞
∑

k=n

(v′)(k+1)P(Kx = k).
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iv) (Discrete = continuous) n year pure endowment insurance makes unit payment at
time n only if t > n , otherwise no payment is made. Now

vt =

{

vt, t ≤ n
vn, t > n,

bt =

{

0, t ≤ n
1, t > n

and zt = btvt =

{

0, t ≤ n
vn, t > n.

The present value random variable

Z
x:

1

n|
=

{

0, Tx ≤ n
vn, Tx > n.

Then the actuarial present value APV = EPV = NSP =

A
x:

1

n|
= E(Z

x:
1

n|
) = nEx = vnP (Tx > n) = vn

∫ ∞

n
fx(t) dt = vn

∫ ∞

n
tpx µx+t dt = vn

npx

(= vnP (Kx ≥ n) = vn∑∞
k=n P (Kx = k) = vnSx(n) = e−δnSx(n) and

2A
x:

1

n|
= E[(Z

x:
1

n|
)2] = v2nP (Tx > n) = v2n

∫ ∞

n
fx(t) dt = v2n

∫ ∞

n
tpx µx+t dt = v2n

npx

= v2nP (Kx ≥ n) = v2n∑∞
k=n P (Kx = k) = v2nSx(n) = e−2δnSx(n). The 1 above the n|

means unit benefit is payable after (x) dies if death is after time n.
Also V (Z

x:
1

n|
) = v2n

npx nqx.

Note the book does not use Z and A for this insurance because payment is made iff
Tx > n iff Kx ≥ n so the discrete insurance and continuous insurance are technically
equivalent.

89) The relationship between whole life insurance and n year temporary and n year
deferred insurance is

Zx = Z1
x:n| + n|Zx,

Ax = A1
x:n| + n|Ax,

[Zx]
2 = [Z1

x:n|]
2 + [n|Zx]

2, and

2Ax = 2A1
x:n| +

2
n|Ax.

90) Suppose (x) buys insurance and dies at t ∈ (k − 1, k] years from purchase so
Kx = k where k ∈ {0, 1, 2, ...}. Given a small table of k and P (Kx = k), be able to find
the following quantities. (Discrete) n year endowment life insurance makes unit payment
at time t = k if t < k < n and at time n if t > n. Then bt = 1, t ≥ 0 and

vt =

{

vt, t ≤ n
vn, t > n,

and zt = btvt =

{

vt, t ≤ n
vn, t > n.

The present value random variable

Zx:n| =

{

vKx+1, Kx < n
vn, Kx ≥ n.
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Note that the n year endowment present value random variable
Zx:n| = Z1

x:n| + Z
x:

1

n|
, the sum of the n year term and n year pure endowment present

value RVs.
Then the actuarial present value APV = EPV = NSP = Ax:n| = E[Zx:n|]

= A1
x:n|+A

x:
1

n|
=

n−1
∑

k=0

vk+1P (Kx = k)+vnP (Kx ≥ n) =
n−1
∑

k=0

vk+1P (Kx = k)+vn
∞
∑

k=n

P (Kx = k).

Similarly, [Zx:n|]
2 = [Z1

x:n|]
2 + [Z

x:
1

n|
]2 and 2Ax:n| = 2A1

x:n| +
2A

x:
1

n|

=
n−1
∑

k=0

v2(k+1)P (Kx = k) + v2nP (Kx ≥ n) =
n−1
∑

k=0

v2(k+1)P (Kx = k) + v2n
∞
∑

k=n

P (Kx = k).

91) Suppose (x) buys insurance and dies at t > 0 years from purchase so T = Tx = t.
Given v, i or δ and the distribution of T = Tx, be able to find the following quantities for
the following 5 continuous life insurance models where a unit payment (eg of $100000,

$500000 or $1000000) is made. Recall v =
1

1 + i
= e−δ and δ = log(1 + i) = − log(v).

Often use vt = e−δt and v2t = e−2δt.
The rule of moments for bt ∈ {0, 1} (unit payment insurance) is if E[ Z ] = A = g(δ),

then E[(Z)j] = jA = g(jδ). This rule is usually used for j = 2.

i) (Continuous) whole life insurance makes unit payment at time t = k with vt =
vt, t ≥ 0 and bt = 1, t ≥ 0. Then zt = btvt = vt, t ≥ 0. The present value random variable
Zx = zT = vT . Then the actuarial present value APV = EPV = NSP =

Ax = E(Zx) = E(vT) = E(e−δT ) =
∫ ∞

0
vtfT (t) dt =

∫ ∞

0
e−δtfT (t) dt =

∫ ∞

0
vt

tpx µx+t dt, and

2Ax = E[(Zx)
2] = E[(vT )2] = E(e−2δT ) =

∫ ∞

0
v2tfT (t) dt =

∫ ∞

0
e−2δtfT (t) dt =

∫ ∞

0
v2t

tpx µx+t dt.

ii) (Continuous) n year term insurance makes unit payment at time t > 0 only if
t ≤ n, otherwise no payment is made. Now vt = vt, t ≥ 0,

bt =

{

1, t ≤ n
0, t > n,

zt = btvt =

{

vt, t ≤ n
0, t > n,

and Z
1

x:n| =

{

vTx, T ≤ n
0, T > n.

Then the actuarial present value APV = EPV = NSP =

A
1

x:n| = E(Z
1

x:n|) =
∫ n

0
e−δtfT (t) dt =

∫ n

0
vtfT (t) dt =

∫ n

0
vt

tpx µx+t dt, and

2A
1

x:n| = E[(Z
1

x:n|)
2] =

∫ n

0
e−2δtfT (t) dt =

∫ n

0
v2tfT (t) dt =

∫ n

0
v2t

tpx µx+t dt.

The 1 above the x means unit benefit is payable after (x) dies if death is not after
time n.
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iii) (Continuous) n year deferred insurance makes unit payment at time t > 0 only if
t > n, otherwise no payment is made. Now vt = vt, t ≥ 0,

bt =

{

0, t ≤ n
1, t > n

and zt = btvt =

{

0, t ≤ n
vt, t > n.

The present value random variable

n|Zx =

{

0, T ≤ n
vT , T > n.

Then the actuarial present value APV = EPV = NSP =

n|Ax = E(n|Zx) =
∫ ∞

n
e−δtfT (t) dt =

∫ ∞

n
vtfT (t) dt =

∫ ∞

n
vt

tpx µx+t dt, and

2
n|Ax = E[(n|Zx)

2] =
∫ ∞

n
e−2δtfT (t) dt =

∫ ∞

n
v2tfT (t) dt =

∫ ∞

n
v2t

tpx µx+t dt.

iv) See 88 iv) for the n year pure endowment life insurance which is both continuous
and discrete.

v) (Continuous) n year endowment life insurance makes unit payment at time t > 0
if t < n and at time n if t > n. Then bt = 1, t ≥ 0 and

vt =

{

vt, t ≤ n
vn, t > n

and zt = btvt =

{

vt, t ≤ n
vn, t > n.

The present value random variable

Zx:n| =

{

vT , T ≤ n
vn, T > n.

Note that the n year endowment present value random variable

Zx:n| = Z
1
x:n| + Z

x:
1

n|
, the sum of the n year term and n year pure endowment present

value RVs.
Then the actuarial present value APV = EPV = NSP =

Ax:n| = E[Zx:n|] = A
1
x:n|+A

x:
1

n|
=
∫ n

0
vtfT (t) dt + vnP (T > n) =

∫ n

0
vt

tpx µx+t dt + vn
npx.

Similarly, [Zx:n|]
2 = [Z

1

x:n|]
2 + [Z

x:
1

n|
]2 and 2Ax:n| = 2A

1

x:n| +
2A

x:
1

n|

=
∫ n

0
v2tfT (t) dt + v2nP (Tx > n) =

∫ n

0
v2t

tpx µx+t dt + v2n
npx.

92) Know: Often T0 ∼ EXP (µ) so T = Tx ∼ EXP (µ). This distribution occurs
if the force of mortality µ, µx or µx+t is constant. Also Sx(t) = tpx = e−µt. Hence
fx(t) = tpxµx+t = µe−µt.

93) Know: Often T0 ∼ U(0, ω) so Tx ∼ U(0, ω − x). The uniform distribution has
cdf that is linear and increases from 0 to 1 on its support. Its survival function is linear
and decreases from 1 to 0 on its support. Hence lx is linear and decreases from l0 to 0 on

its support. So S(t) = 1 − t/ω for 0 ≤ t ≤ ω, and tpx = 1 − t/(ω − x) =
ω − x− t

ω − x
for

0 ≤ t ≤ ω − x. Also µx+t =
1

ω − x − t
and fx(t) = tpxµx+t =

1

ω − x
for 0 ≤ t < ω − x.
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94) On SOA and CAS exams, often the notation A and Z is used even though the
correct notation is A and Z.

95) Whole life insurance with the exponential(µ) distribution often has Z = bT vT

where bt = eθt. Now
∫ ∞

0
µe−µtdt = 1 so

∫ ∞

0
e−µtdt = 1/µ if µ > 0. Hence

E[Z ] =
∫ ∞

0
bte

−δtµe−µtdt =
∫ ∞

0
eθte−δtµe−µtdt = µ

∫ ∞

0
e−t[µ+δ−θ]dt =

µ

µ + δ − θ
pro-

vided µ + δ − θ > 0. Also E[(Z)j] =
∫ ∞

0
[bte

−δt]jµe−µtdt =
∫ ∞

0
eθjte−δjtµe−µtdt =

µ
∫ ∞

0
e−t[µ+δj−θj]dt =

µ

µ + δj − θj
provided µ+δj−θj > 0. Note that θ = 0 corresponds

to unit payment.

96) For whole life insurance let ξα be the α percentile of Z so P (Z ≤ ξα) = α where
0 < α < 1. Assume unit payment so Z = vT = e−δT . To find the α percentile ξα of

Z, solve α = P (Z ≤ ξα) = P (e−δT ≤ ξα) = P [−δT ≤ log(ξα)] = P

(

T ≥
log(ξα)

−δ

)

=

ST

(

− log(ξα)

δ

)

. So solve α = ST

(

− log(ξα)

δ

)

for ξα. Often T ∼ EXP (µ) so

ST (t) = e−µt. Then solve α = exp
[

µ

δ
log(ξα)

]

= ξµ/δ
α for ξα

E
= αδ/µ.

97) KNOW: Let T ∼ EXP (µ). Then E(T ) =
∫∞
0 tµe−µtdt =

∫∞
0 e−µtdt = 1/µ. So

∫∞
0 tDe−t(D)dt =

∫∞
0 e−t(D)dt = 1/D for D > 0. Use

E
= when exponential RV is used.

98) KNOW: Let T ∼ EXP (µ). S(t) = e−µt for t > 0. Often use Z instead of Z.
i) If bt = ceθt and Z = bTvT , then E[Zj] = E[(bTvT )j] = cjE[(eθTvT )j]. So multiply

c = 1 formulas by cj. Usually want j = 1, 2.
a) Special whole life insurance: bt = eθt, vt = e−δt, and Z = bT vT = eθT e−δT .

E(Zj)
E
=

µ

µ + δj − θj
if µ + δj − θj > 0. See 95).

b) Whole life insurance: special case of a) with θ = 0. See 100i). Zx = e−δT .

Ax = E(Zx) = E(e−δT )
E
=

µ

µ + δ
, and 2Ax = E[(Zx)

2] = E(e−2δT )
E
=

µ

µ + 2δ
.

V (Zx) = 2Ax − (Ax)
2.

99) In 95), often
∫∞
0 is replaced by

∫ b
a . If D > 0,

∫ n

0
De−tDdt = 1−e−nD,

∫ ∞

n
De−tDdt =

e−nD,
∫ n

0
e−tDdt =

1

D
[1 − e−nD], and

∫ ∞

n
e−tDdt =

1

D
e−nD.
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