Math 401 Exam 2 is Wed. Oct. 23. You are allowed 10 sheets of notes and a
calculator. The exam covers HW2-6 and Q2-7. Numbers refer to types of problems on
exam. More emphasis is on HW4-6, Q4-7.

29) A life table displays = and [, = [pSo(x). Often d, = I, — l,41 and other quantities
are shown. The [y is the radix of the table and often [y = 100000. The table goes
from x = 0 to x = 2. The integer w is the smallest integer such that Sp(w) = 0. So

x|l | dy
011 | do
So(w—1) > 0. Often z =w or z = w—1. Often w = 110. Note that I, =0. |1 |l | di
z |1, | d,

30) Know that I, = (expected) number living to age = out of a group of /y newborns.
Then ,d, = l; — ly4n is the (expected) number who die between ages = and = + n. So
d, = 1d, = l; — l,11 is the number who die between ages x and x + 1. Given a life table
with columns x and [, be able to fill in the d, column.

31) Know: Given the life table with columns x and [, be able to find d., gz, G,

nPz, Pe and ,d,.

e = %ZP(TOS:E+n|TO>x):P(Tm§n).
Qm:%ZP(T0§£E+1|TO>17):P(T$§1).

e =1— ,qe = lml:n = P(Ty > z+n|Ty > x) = P(T, > n).
pmzl—qmzl”l =P(Ty>z+ 1Ty >x)=P(T, > 1).

l

Use I, = lpSp(x) to see that these quantities are the same as in ch. 5.

[ pydy) = exp(— [ frotwdw)

33) For USA humans, recognize the graph of i) p, which roughly decreases until age
x = 10 then increases, with rapid increase around x = 50, ii) fo(x) or lyp, = lofo(z)
which has a peak at 0 and near x = 80, iii) So(z) or I, = lpSo(x) which is nonincreasing
and decreases rapidly near x = 70, and iv) Fy(zx) or loFy(z) which is nondecreasing.

32) np = exp(—

—4g —Si(2)
4 .= dx'T — 0
) n L, So(x)

35) I = loexp(— [y pydy) = lo «Po

folx +1t) —4<1,
36) piot = po(t) = S(;(@ n t)) — ldt+t+t

37) Know: n|mqm = nPz — n+mPz = n+mz — nqz = nPz mYz+n

P <Tp <
38) @z = Ple+n<Ty<z+n+m|Ty >z) = (@tn<To<ztn+m) _

P(TO > [L')
Fo(x+n+m)—Fe+n)  So(z+n)—So@+n+m)  lown— lopnim _
S(](l’) S(](l’) lm



So(z+mn) So(x +n)— So(x+n+m)

So(x) So(x +n)
E.(n+m)— F.(n).

=Pn < T, <n+m) = S,(n)— Sy(n+m) =

mztn
ly
40) The probability that (z) will die between x + n and = +n +m
= P(l’ +n< TO <x +n+m|TO > [L’) = nmGz = nPzx — n+mPzr = nPzr mYGzin-

de n
41) For m =1, yuqe = nl¢e = l+ = P(K, =n) = Pz quin Where K, = |T,].

42) g =1 — ,p. = 7= liJr = proportion of those alive at = dying in the

interval (x,z 4+ n] = n year mortality rate starting at x.

39) nm4x = nPx mGz+n =

43) multiplication rule: ,4mpr = nPzr mPrin
44) d, = l,q, and I, =1, — d,
45) fo(r) = po(x)So(z) = 2po iz

46) Let W, have the same distribution as Ty|7y > z. Then W, corresponds to Tj
truncated below at x. Such a truncated random variable has pdf and survival function

proportional to those of Ty. Hence for z > z, fi,(2) = éog)) = frmy>2(2), Sw,(2) =
0
2 = Stmenl), Fn() = PO (), and o e) = pale) =
:UTO|T0>I(Z)'
1) F1To > 2) = Fryroal) = 540 = = s
_ f() (ZE + t)

48) fa(t) = folx +t[To > x) So(r) P He

—S(t) g e
49 pg(t) = flgpy = —2 2 = —do
) a ( ) Hast Sm(t) tPx

d
Thus d_ tPx = — tPx Hz+t-
x
50) eo= E(Tp) = /OO xfo(z)dr = /OO:B 2P0 Pz dT = /OO So(z)dx = /OO zDo dr =
0 0 0 0
1 00
=T de
l(] 0

00 00 00 2 00
51) E(Ty) :/0 :Ezfo(:v)d:z:/o 2% 2P0 fa d:E:Q/O T zpo dx = E/O x ly dx

52) e,= E(T,) = /0 tf.(t)dt = /0 t 1Pe flage dt = /0 S.(t)dt = /0 e dr =

1 o 1 oo
l_/o Lo dt = = [ 71, dy.

Hence é,= E(T},) is the expected number of years of life remaining for a (randomly



selected) person surviving to z = [expected total number of remaining years lived by
the [, survivors to age z]/l, = complete expectation of life at age © = expected future
lifetime at age z. Also see points 14) and 17).

53) Note that Ty = T, if x = 0. E(T?) is given by point 18). Plugging in z = 0 into
52) and 18) gives 50) and 51).

54) The median of X is equal to F(X) if F(X) exists and the pdf of X is symmetric.
55) If X ~ U(a,b) where usually a = 0, then E(X) = (b+ a)/2 and V(X) =
(b — a)?/12. The median is equal to F(X) by symmetry.

56) gr:ﬁl = expected number of years lived in (x,z + n| by a (randomly selected)
survivor to age .

(The : 7| in the subscript means take the formula for ¢, but replace the upper limit
oo in the integrand by n.)

o n 1 1 n
57) b= [ adt = [t = = [y,
0 z J0 x v
The right hand side is the expected total number of years lived by all [,, survivors in
the interval (z,x + n| divided by the number of survivors [,.

T+

58) The curtate expectation of life at age x is e, = FE(K,) = expected number
of whole years of future lifetime for a (randomly selected) survivor to age z. Then

1 (o] 1 o o ° . .
€r = — E ly = — E lysk = E kDe.  €x~ e, + 0.5 is of more interest than e,.
lm y=z+1 lm k=1 k=1

59) The temporary curtate expectation of life at age © = expected number of whole
years lived over interval (x,z 4+ n| by a (randomly selected) survivor to age x is

1 n
€rm| = l_ Z lm—l—k = Z kP
T k=1 k=1
60) The quantities for the life table are for integer values x = 0,1,2,...,2. Two

methods of interpolation are used for integer x > 0 and 0 < t < 1. The uniform
distribution of deaths UDD assumption or linear assumption is that the d, deaths occur
uniformly in the interval (z,x + 1]. The ezponential or constant force of mortality
assumption is that the force of mortality is constant in the interval (x,z + 1].

61) For the linear or UDD approximation, if x > 0 is an integer and 0 < ¢ < 1, then
love = (1 =)l + t(los1) = L — t(dy). Also, E(Ty) = &, ~ e, + 0.5.

62) For the exponential or constant force approximation, if z > 0 is an integer and
0<t<1,then Ly = (1) (log1)" = lo(pe)" where p, = exp(—pu) so u = —log(p,).

63) Know how to use both the UDD and constant force assumptions to find approx-
imate the following quantities for integer z > 0 and 0 < ¢t < 1. For the UDD or linear
approximation, note that [,,; uses linear interpolation and that fy(¢) is constant (“uni-
form”) in the interval (z,x + 1). For the exponential or constant force assumption fi, 4+
is constant and fy(t) is “exponential” in the interval (x,z 4+ 1). Sometimes want approx-
imations when the subscript z is replaced by x + v where 0 <v <land 0 <v+1t < 1.
The exact, UDD and exponential constant force approximations are usually close. Note
that the exponential constant force approximation does not depend on v.



function to approximate

linear or UDD approx

exponential or constant force approx

S(](l’ + t)

lm—l—t

tqzx (: 1— tpm)

( ;l_gllm—l—t)

Mo+t = L
x+t

fO(t) = tPx Matt

tdz+v

tPz+v

(1 - t)lm + t(lm—l—l)
1- t(Qm)

t(qe)

Gz
1- t(Qm)

[So(@)'™" [So(x + 1))

(L)' (la1)' = Lalps)'
(pa)" = exp(—pt)
1= (p) =1-(1-q)
—log(p.) = 1

_(pm)t log(pm) :,uexp(—,ut)

Poisson Processes

64) A stochastic process {X () : t € 7} is a collection of random variables where the
set 7 is often [0,00). Often ¢ is time and the random variable X () is the state of the

process at time ¢.

65) A stochastic process {N(t) : t > 0} is a counting process if N(¢) counts the total
number of events that occurred in time interval (0,¢]. If 0 < t; < to, then the random
variable N(t2) — N(t1) counts the number of events that occurred in interval (t1, ta].

66) N(t) is said to possess independent increments if the number of events that occur
in disjoint time intervals are independent. Hence if 0 < t; <ty < t3 < --- < t, then the
RVs N(t1) — N(0), N(t2) — N(t1),..., N(tx) — N(tx—1) are independent.

67) N(t) is said to possess stationary increments if the distribution of events that
occur in any time interval depends only on the length of the time interval.

68) A counting process {N(t) : t > 0} is a Poisson process with rate A for X\ > 0 if i)
N(0) = 0, ii) the process has independent increments, iii) the number of events in any
interval of length ¢ has a Poisson (At) distribution with mean At.

69) Hence the Poisson process N(t) has stationary increments, the number of events
in (s, s + t] = the number of events in (s,s +t), and for all ¢, s > 0, the RV
D(t) = N(t+ s) — N(s) ~ Poisson (At). In particular, N(t) ~ Poisson (At). So

P(D(t) =n) = P(N(t+s) — N(s) =n) = P(N(t) =
Also E[D(t)] = V[D(t)] =

E[N(t)] = VIN(t)] = M.

n) = n!

-t )\t n
N =012,

70) Let X; be the waiting time until the 1st event, X5 the waiting time from the
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1st event until the 2nd event, ..., X the waiting time from the j — 1th event until the
jth event and so on. The X; are called the waiting times or interarrival times. Let
Sy = >, X; the time of occurrence of the nth event = waiting time until the nth event.
For a Poisson process with rate A, the X; are iid EXP(\) with E(X;) = 1/A, and
S, ~ Gamma (n, \) with E(S,) = n/A and V(S,) = n/\2.

71) If the waiting times = interarrival times are iid EXP(\) or independent with
constant force of mortality A, then N(¢) is a Poisson process with rate A.

72) Suppose N(t) is a Poisson process with rate A that counts events of k£ distinct types
where p; = P( type i event). If N;(t) counts type i events, then N;(t) is a Poisson process
with rate \; = Ap;, and the N;(t) are independent for i = 1, ..., k. Then N(t) = XF_ | N;(t)
and A = Y% \; where YXF_ p; = 1.

73) A counting process {N(t) : t > 0} is a nonhomogeneous Poisson process with
intensity function or rate function A(t), also called a nonstationary Poisson process, and
has the following properties. i) N(0) = 0. ii) The process has independent increments.

iii) N(t) is a Poisson m(t) RV where m(t) = / A(r)dr, and N(t) counts the number
0

of events that occurred in (0,¢] (or (0,%)).
iv) Let 0 < t; < t3. The RV N(ty) — N(t;) ~ Poisson (m(t2) — m(t;)) where
t
m(ty) —m(ty) = / i A(r)dr and N (t3) — N(t1) counts the number of events that occurred
t
in (tl,tg] or (tl,tg)l.
74) If N(t) is a Poisson process with rate A and there are k distinct events where the
probability p;(s) of the ith event at time s depends s, let N;(¢) count type i events. Then
t

N;(t) is a nonhomogeneous Poisson process with \;(t) = )\/ pi(s)ds. Here X8 pi(s) =1
0
and the N;(t) are independent for i = 1, ..., k.
N(t)
75) A stochastic process { X (t) : t > 0} is a compound Poisson processif X (t Z Y;

where {N(t) : t > 0} is a Poisson process with rate A and {Y,, : n > 0} is a famlly of
iid random variables independent of N(¢). The parameters of the compound process are
A and Fy(y) where E(Y;) and E(Y}) are important. Then E[X(t)] = MFE(Y:) and
VIX(8)] = ME(YY).

76) The compound Poisson process has independent and stationary increments. Fix
r,t > 0. Then (X, = X(r +t) — X(r) has the same distribution as the RV X(¢). Hence
E(X,) = ME(Y)) and V(,X,) = M E(Y?).

77) Let My (t) be the moment generating function (mgf) of Y;. Then the mgf of the
RV X(t) is

Mx (1) = exp(M[My(r) — 1]).

Mixture Distributions See p. 19.

78) The distribution of a random variable X is a mizture distribution if the cdf of Y
has the form

k
= Z a; Fy,(z)
i=1



where 0 < o; < 1, ¥F [ a; = 1, k > 2, and Fyy, () is the cdf of a continuous or discrete
random variable W;, i =1, ..., k.
Then

k
= Z OéiE
=1

If the cdf of X is Fix(z) = (1 —¢€)Fz(z)+eFw(x) where 0 < e < 1 and F and Fy are
cdfs, then E[g(X)] = (1 —€)E[g(Z)] + eE[g(W)]. In particular, E(X?) = (1 —€)E[Z?] +
eEW?] = (1— O[V(Z) + (E[Z))] + e[V (W) + (E[W])?).

Often Z is nonsmoker, W is smoker, and ¢ is the probability that a randomly chosen
person from the population (of X) is a smoker.

ch 7.

79) A life insurance model is a special cases of a contingent payment model where the
payment is made contingent (conditional) on the occurrence of some random event.

1
80) From interest theory, i) the compound interest factor v = i and 0 < v < 1.
1

— Y and i > 0. Often i = 0.05.

ii) The effective rate of interest i =

iii) The force of interest § = log(1 4 4) and § > 0. Note that 1 +i =€’ so v = e~°.
81) First we will consider models where the rate of earnings and inflation is determin-

istic, eg ¢ = 0.05, but the investment period (time from issue of insurance until death) is

random.

82) The model has a benefit function b, and a discount function vy where t = the
length of time from issue of insurance until death (or until insurance payment). Often
v = vt and by = 1 unit where 1 +i = ¢ and v = e~°.

83) The present value function z; = byvy is the present value, at time ¢ from policy
issue, of the benefit payment.

84) T' =T, = insured’s future lifetime RV and the claim random variable or present
value random variable Z = zg, = br,vp,. Or K, = |T,] = the curtate future lifetime RV,
and Z = 211k, = biyk, V14K, -

85) E(Z) is the actuarial present value (APV) = expected present value (EPV) = net
single premium (NSP) of the insurance, the expected value of the present value of the
payment.

86) Suppose by = 1 or by = 1 for ¢ in some interval and b; = 0, otherwise. Suppose
v = vl for t > 0. Let A, = E(Z) = ¢(0). Let A, = E(Z’). The rule of moments
is 7A, = E(Z7) = g(jd). The rule of moments only holds if b, € {0,1} for all ¢ > 0.
Typically finding E(Z) and E(Z?) directly is easier than using the rule of moments.

87) Formulas are given for unit payment. For nonunit payment ¢, multiply the
unit payment formula for A by ¢ and the unit formula payment for 24 by c2.

88) Suppose (x) buys insurance and dies at ¢t € (k — 1, k] years from purchase so
K, =k—1where k € {0,1,2,...}. Given v,i or § and a small table of k and P(K, = k),
be able to find the following quantities for the following 4 discrete life insurance models
where a unit payment (eg of $100000, $500000 or $1000000) is made.



i) (Discrete) whole life insurance makes unit payment at time t = k with v; = v*;t > 0
and b, = 1,t > 0. Then z = b, = v',t > 0. The present value random variable
Zy = 214K, = 0= Let v/ = 02 Then the actuarial present value APV = EPV = NSP

= A, = E(Z,) = E(v'F%) Z v P(K, = k),
and 2AX — E[(Zx)z] _ E 1+KX Z v2(k+D)p _ k) _ Z(V/)(kH)P(KX _ k).
k=0

ii) (Discrete) n year term insurance = (dlscrete) n year temporary insurance makes
unit payment at time ¢t = k only if £ < n, otherwise no payment is made. Now

v =0t >0,
1, t<n ot t<n
bt_{O, t>n and Zt_btvt_{o, t>n.

The present value random variable (note 1 + K, < n if K, < n)

g1 _ vt K <n
ml 0, K, > n.

Then the actuarial present value APV = EPV = NSP =
n—1 k )

n—1

Zi ) Zv“k“ (K = k) = Y- (v) < IP(K, = K).
k=0

and 2AX a =

The 1 above the  means unit benefit is payable after (x) dies if death is before time n.

iii) (Discrete) n year deferred insurance makes unit payment at time ¢ = k only if
k> mnso k> n+ 1, otherwise no payment is made. Now v; = v', ¢ > 0,

0, t<n _ )0, t<n
bt_{l, t>n and Zt_btvt_{vt, t>n.

The present value random variable (note 1 + K, > n if K, > n)

17, = 0, K, <n
neE vt K, >n.

Then the actuarial present value APV = EPV = NSP =

nl Ay = Z V" P(K, = k),

and 2 n|Ax = E[(n|ZX)2] - Z V2(k+1)p(Kx k) = Z(V/)(k+1)P(KX = k).

k=n



iv) (Discrete = continuous) n year pure endowment insurance makes unit payment at
time n only if ¢ > n , otherwise no payment is made. Now

b — vt t<n pod 0 t<n o]0 t<n
Pl o t>n, P11, t>n TR T o > .

The present value random variable

Then the actuarial present value APV = EPV = NSP =

e e}

A1 =FEZ )= ,E, =v"P(T, >n) :v"/ fz(t) dt:v"/ Pz Most At = V" Dy

7| M| n

(= v"P(K, >n) =v"Y2 P(K, =k) =v"S,(n) = e "S,(n) and

2A _1| = F[(Z _1|)2] = v*"P(T, >n) = vzn/ fu(t) dt = vzn/ Da Past At = V" Py
= v"P(K, > n) = v Y2 P(K, = k) = v*™S,(n) = e72"S,(n). The 1 above the 7|
means unit benefit is payable after (x) dies if death is after time n.

Also V(Z 1) = v* .Pe ne-

M|
Note the book does not use Z and A for this insurance because payment is made iff
T, > n iff K, > n so the discrete insurance and continuous insurance are technically
equivalent.
89) The relationship between whole life insurance and n year temporary and n year
deferred insurance is

[Zm]z = [Z;:m]z + [n|ZZ]2> and
A, = 2A91c:ﬁ| + 2 n| Az

90) Suppose (x) buys insurance and dies at ¢t € (k — 1, k] years from purchase so
K, =k where k € {0,1,2,...}. Given a small table of k and P(K, = k), be able to find
the following quantities. (Discrete) n year endowment life insurance makes unit payment
at timet =k if t < k <n and at time n if t > n. Then b; = 1,t > 0 and

vy = v, t<n and z; = byvy = v, t<n
T o, t >, TR T o, > .

The present value random variable

7 et K <n
vl = v, K, >n.



Note that the n year endowment present value random variable
Zym| = Z 7+ Z 1, the sum of the n year term and n year pure endowment present

7|
value RVs.
Then the actuarial present value APV = EPV = NSP = A,z = E[Z,.5]

7|

ka“P » = k)+v"P(K, >n) = z_j VP(K, = k)+o" ZP = k).
k=0

Similarly, [me|] [Z;m] ‘|‘[Z ] and Arn| = 2Aﬂlﬂnl_l_ 2A L

o Z ,U2(k+1 k‘) + ,U2nP K > n Z ,U2(k+1 k‘) + ,U2n Z P(K _

91) Suppose (x) buys insurance and dies at ¢ > 0 years from purchase so T' =T, = t.
Given v, ¢ or 0 and the distribution of 7" = T}, be able to find the following quantities for
the following 5 continuous life insurance models where a unit payment (eg of $100000,

1
$500000 or $1000000) is made. Recall v = 5 e and 6 = log(1 + i) = —log(v).

Often use v* = e~ and v* = 2%,

The rule of moments for b; € {0, 1} (unit payment insurance) is if E[ Z | = A = g(9),
then E[(Z)] = 7A = ¢(j6). This rule is usually used for j = 2.

i) (Continuous) whole life insurance makes unit payment at time t = k with v, =
v_ t >0 and bt =1,t > 0. Then 2z = byv; = v',t > 0. The present value random variable
Zy=2p =0T Then the actuarial present value APV = EPV = NSP =

N

Tz = E(im) = E('UT) = E(e_éT) = A 'Ut.fT(t) dt = A 6_5t.fT(t) dt = A 'Ut tPx Ma4t dt> and

A, = E[(Z,)? = E[(07)2] = E(e~2T) = /0 T2 (t) dit = /0 T et () dt = /0 T 0% e sy dt.

ii) (Continuous) n year term insurance makes unit payment at time ¢ > 0 only if
t < n, otherwise no payment is made. Now v, = v', ¢t > 0,

b 1, t<n b — v, tgnandz vl: T <n
710, t>n, ETUTET) 0, t >, <al =\ 0, T>n.

Then the actuarial present value APV = EPV = NSP =

Zglg;m = E(iglc n|) / _étf (t) dt /0 Uth(t) dt :/0 v Dy Pt dt, and

1

Ay = B Do) = [ () de = [0 fr(t) dt = [0 o o d.
0 0 0

The 1 above the z means unit benefit is payable after (z) dies if death is not after
time n.



iii) (Continuous) n year deferred insurance makes unit payment at time ¢ > 0 only if
t > n, otherwise no payment is made. Now v; = vt ¢t > 0,

0, t<n _ _ 0, t<n
bt_{l, t>n and Zt_btvt_{vt, t>n.

The present value random variable
— 0, T<n
nlZa = { v, T >n.
Then the actuarial present value APV = EPV = NSP =

wlAe = E(u|Z,) = /OO e fr(t) dt = /OO vl fr(t) dt = /OO V' Py fose dt, and

n n n

P A= ElGIZ0Y = [

n

e PUfn(t) dt :/ v fr(t) dt = / Dy ey dt.

iv) See 88 iv) for the n year pure endowment life insurance which is both continuous
and discrete.

v) (Continuous) n year endowment life insurance makes unit payment at time ¢ > 0
if t <n and at time n if £ > n. Then b, = 1,¢t > 0 and

vy = v, t<n and z; = byvy = v, t<n
! vt t>n ’ L vt >n.

The present value random variable

7m:ﬁ| = { ,U:’ ! =
v T > n.
Note that the n year endowment present value random variable
Zym) = 791m| + Z 1, the sum of the n year term and n year pure endowment present

7|
value RVs.
Then the actuarial present value APV = EPV = NSP =

Apm = EZy7) = Ai:m—l—Amﬁl' = /0 vl fr(t) dt +v"P(T > n) = /0 V' Dy flage At + V™ D

Similarly, [Z,7]* = [791m|]2 +[Z 1]? and ?A,q = QZ;m + 2A

z:n| z:n|

= /0 v fr(t) dt + P P(T, > n) = /0 V¥ Dy fase At + VP D

92) Know: Often Ty ~ EXP(u) so T =T, ~ EXP(u). This distribution occurs
if the force of mortality p, g, or pgys is constant. Also S,(t) = p, = e *. Hence
fo(t) = tpuptose = ,Ue_“t-

93) Know: Often Ty ~ U(0,w) so T, ~ U(0,w — z). The uniform distribution has
cdf that is linear and increases from 0 to 1 on its support. Its survival function is linear
and decreases from 1 to 0 on its support. Hence [, is linear and decreases from [y to 0 on

—x—t
its support. So S(t) =1 —t/wfor 0 <t <w,and p, =1—t/(w—12)= YT for
w—2x
1
0<t<w-—ux AlSo fizy = and fo(t) = Puflost = for0<t<w-—uzx.
w—z—1 w—

10



94) On SOA and CAS exams, often the notation A and Z is used even though the
correct notation is A and Z.

95) Whole life insurance with the exponential(;) distribution often has Z = by vT

where b, = ¢%. Now / pe Htdt =1 so / e Mdt = 1/p if p > 0. Hence
0 0

EZ] = /0 beepe M dt = /0 ePe 0t e Mdt = 'u/o et to=0l gy — i

vided 4+ 6 — 0 > 0. Also E[(Z)’] = /oo[bte_ét]j,ue_“tdt = /OO Mt ™00t et =
0 0

pro-

,u/ e trdi—oi gy — K provided p+9j — 65 > 0. Note that § = 0 corresponds
0 w—+05—0j
to unit payment.

96) For whole life insurance let &, be the a percentile of Z so P(Z < &,) = a where
0 < o < 1. Assume unit payment so Z = v7 = ¢ 7. To find the « percentile &, of

Z,solve a = P(Z < &) = P(e™" < &) = P[0T < log(&)] = P (T = 1og(§a>> -

—1 . —1 o
ST (%) X SO Solve o = ST (%) fOI' ga. Often T ~ EXP(/J) SO

Sr(t) = e #. Then solve a = exp %log({a)] = ¢ for &, £ a¥/k

97) KNOW: Let T ~ EXP(u). Then E(T) = [ tue dt = [ e Ptdt = 1/p. So
[ tDe P dt = [ et P)dt =1/D for D > 0. Use £ when exponential RV is used.

98) KNOW: Let T' ~ EXP(u). S(t) = e # for t > 0. Often use Z instead of Z.

i) If b, = ce’ and Z = bror, then E[Z7] = E|(brvr)’] = JE[(’Tvr)]. So multiply
¢ = 1 formulas by ¢/. Usually want j = 1, 2.

a) Special whole life insurance: b; = €%, v, = ™%, and Z = brvy = eTe™7.
B(77) £ ;wé?i—ej if 11+ 05 — 6 > 0. See 95).

b) Whole life insurance: special case of a) with § = 0. See 100i). Z, = e T,
A, = B(Z,) = B(e") £ . P and 24, = E((Z,)"] = B(e > £ £

+0 w20
V(Z.) = " - (AP

99) In 95), often [;° is replaced by [°. If D > 0, / De Pdt = 1—e™P, / De Pt =
0 n

1 o0 1
e P /0 e Pdt = 5[1 — e "P], and /n e Pdt = 5 e P,
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