Math 401 Exam 1 is Wed. Sept. 18. You are allowed 4 sheets of notes and a calculator. The exam covers HW1-3, part of HW4, and Q1-3. Numbers refer to types of problems on exam.

In this class $\log(t) = \ln(t) = \log_e(t)$ while $\exp(t) = e^t$.

0) Memorize the following distributions:

a) Bernoulli(p) = binomial(n = 1, p): $p(x) = p^x (1-p)^{1-x}$ for x = 0, 1. E(X) = p. VAR(X) = p(1-p).

b) $\operatorname{binomial}(n, \rho)$:

$$p(x) = {n \choose x} \rho^x (1-\rho)^{n-x}$$
 for $x = 0, 1, ..., n$ where $0 < \rho < 1$.

 $E(X) = n\rho.$ $VAR(X) = n\rho(1-\rho).$ c) exponential(β) = gamma($\nu = 1, \beta$):

$$f(x) = \beta \exp(-\beta x) I(x \ge 0)$$
 where $\beta > 0$

 $E(X) = 1/\beta$, $VAR(X) = 1/\beta^2$. $F(x) = 1 - \exp(-\beta x)$, $x \ge 0$. Here $I(x \ge 0) = 1$ if $x \ge 0$ and $I(x \ge 0) = 0$, otherwise. (The parameterization with $\lambda = 1/\beta$ is common. Then $E(X) = \lambda$ and $V(X) = \lambda^2$.)

d) gamma(α, β):

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$$
 where α, β and x are positive.

 $E(X) = \alpha/\beta.$ $VAR(X) = \alpha/\beta^2.$

(The parameterization with $\lambda = 1/\beta$ is common. Then $E(X) = \alpha \lambda$ and $V(X) = \alpha \lambda^2$.) e) $N(\mu, \sigma^2)$:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$$

where $\sigma > 0$ and μ and x are real. $E(X) = \mu$. $VAR(X) = \sigma^2$.

$$F(x) = \Phi\left(\frac{x-\mu}{\sigma}\right).$$

f) Poisson(λ):

$$p(x) = \frac{e^{-\lambda}\lambda^x}{x!}$$
 for $x = 0, 1, \dots$, where $\lambda > 0$.

 $E(X) = \lambda = VAR(X).$

g) uniform (θ_1, θ_2) :

$$f(x) = \frac{1}{\theta_2 - \theta_1} I(\theta_1 \le x \le \theta_2).$$

$$F(x) = (x - \theta_1)/(\theta_2 - \theta_1) \text{ for } \theta_1 \le x \le \theta_2.$$

$$E(X) = (\theta_1 + \theta_2)/2. \quad VAR(X) = (\theta_2 - \theta_1)^2/12.$$

Let $X = T_0 > 0$ be a nonnegative random variable.

Then the **cumulative distribution function** (cdf) $F_0(t) = P(T_0 \le t)$. Since $T_0 > 0$, $F_0(0) = 0$, $F_0(\infty) = 1$, and $F_0(t)$ is nondecreasing.

The probability density function (**pdf**) $f_0(t) = F'_0(t)$.

The survival (distribution) function $S_0(t) = P(T_0 > t)$. $S_0(0) = 1, S_0(\infty) = 0$ and $S_0(t)$ is nonincreasing.

The hazard (rate) function $\lambda_0(t) =$ force of mortality $= \mu_0(t) = \frac{f_0(t)}{1 - F_0(t)} = \frac{f_0(t)}{S_0(t)}$ for t > 0 and $F_0(t) < 1$. Note that $\mu_0(t) \ge 0$ if $F_0(t) < 1$.

The **cumulative hazard function** $\Lambda_0(t) = \int_0^t \mu_0(y) dy$ for t > 0. It is true that $\Lambda_0(0) = 0, \Lambda_0(\infty) = \infty$, and $\Lambda_0(t)$ is nondecreasing.

1) Given one of $F_0(t)$, $f_0(t)$, $S_0(t)$, $\mu_0(t)$ or $\Lambda_0(t)$, be able to find the other 4 quantities for t > 0. See HW2: 1,3.

A) $F_0(t) = \int_0^t f_0(y) dy = 1 - S_0(t) = 1 - \exp[-\Lambda_0(t)] = 1 - \exp[-\int_0^t \mu_0(y) dy].$

B) $f_0(t) = F'_0(t) = -S'_0(t) = \mu_0(t)[1 - F_0(t)] = \mu_0(t)S_0(t) = \mu_0(t)\exp[-\Lambda_0(t)] = \Lambda'_0(t)\exp[-\Lambda_0(t)].$

C)
$$S_0(t) = 1 - F_0(t) = 1 - \int_0^t f_0(y) dy = \int_t^\infty f_0(y) dy = \exp[-\Lambda_0(t)] = \exp[-\int_0^t \mu_0(y) dy].$$

$$D) \quad \mu_0(t) = \frac{f_0(t)}{1 - F_0(t)} = \frac{f_0(t)}{S_0(t)} = \frac{F_0'(t)}{1 - F_0(t)} = \frac{-S_0'(t)}{S_0(t)} = -\frac{d}{dt} \log[S_0(t)] = \Lambda_0'(t).$$

E)
$$\Lambda_0(t) = \int_0^t \mu_0(y) dy = -\log[S_0(t)] = -\log[1 - F_0(t)].$$

Tip: if
$$F(t) = 1 - \exp[G(t)]$$
 for $t > 0$, then $\Lambda(t) = -G(t)$ and $S(t) = \exp[G(t)]$.

Tip: For S(t) > 0, note that $S(t) = \exp[\log(S(t))] = \exp[-\Lambda(t)]$. Finding $\exp[\log(S(t))]$ and setting $\Lambda(t) = -\log[S(t)]$ is easier than integrating $\mu(t)$.

2) Actuarial notation: p corresponds to a probability, possibly conditional, that X is greater than some value. Then q = 1 - p corresponds to the probability that X is less than or equal to that value. Let $X = T_0$,

3) $_{t}p_{0} = S_{0}(t) = P(T_{0} > t)$

4)
$$_tq_0 = F_0(t) = P(T_0 \le t).$$

5) Let $T_0 > 0$. If $\lim_{t\to\infty} tS_0(t) = 0$, then $E(T_0) = \int_0^\infty tf_0(t)dt = \int_0^\infty S_0(t)dt$

 $=\int_0^\infty [1-F_0(t)]dt$. Hence in a graph of $F_0(t)$, the mean $E(T_0)$ equals the area to the right of the vertical axis t = 0 and between the horizontal line at height 1 and $F_0(t)$.

6) Actuarial notation: μ stands for force of mortality and e stands for expectation. 7) $\mu_t = \mu(t) =$ force of mortality = hazard rate function

8) $E(T_0) = \stackrel{o}{e}_0 =$ complete expectation of life at birth.

9) The median y_M of a distribution satisfies $P(T_0 \le y_M) \ge 0.5$ and $P(T_0 \ge y_M) \ge 0.5$. For a continuous RV T_0 , $F_0(y_M) = S_0(y_M) = 0.5$. The median need not be unique.

10) Actuarial notation: (x) denotes a person alive at age x.

11) T_x is the time until failure for a person alive at age x. $T_0 = (x + T_x)|(T_0 > x)$. 12) Let t > 0. Let $f_x(t) = f_{T_x}(t)$, $F_x(t) = F_{T_x}(t)$, $S_x(t) = S_{T_x}(t)$ and $\mu_x(t) = \mu_{T_x}(t)$. i)

$${}_{t}p_{x} = \frac{S_{0}(x+t)}{S_{0}(x)} = 1 - {}_{t}q_{x} = P(T_{x} > t) = P(T_{0} > x+t|T_{0} > x) = S_{x}(t)$$
$$= \exp(-\int_{x}^{x+t} \mu_{r} dr) = \exp(-\int_{0}^{t} \mu_{x+s} ds)$$

Note that $S_0(x+t) = S_0(x)S_x(t)$. ii)

$$_{t}q_{x} = 1 - _{t}p_{x} = 1 - \frac{S_{0}(x+t)}{S_{0}(x)} = P(T_{x} \le t) = P(T_{0} \le x+t|T_{0} > x) = F_{x}(t)$$

iii)

$$f_x(t) = \frac{f_0(x+t)}{S_0(x)} = {}_t p_x \ \mu_{x+t} = \frac{d}{dt} F_x(t) = -\frac{d}{dt} S_x(t)$$

iv)

$$\mu_{x+t} = \frac{f_0(x+t)}{S_0(x+t)} = \mu_0(x+t) = \mu_x(t)$$

13) Actuarial notation: If t = 1 the subscript is suppressed so $p_x = {}_1p_x = P(T_x > 1) = P(T_0 > x + 1 | T_0 > x) = \frac{S_0(x+1)}{S_0(x)}$ and $q_x = {}_1q_x = P(T_x \le x+1) = P(T_0 \le x+1 | T_0 > x) = 1 - p_x.$ 14) The superted value of T_x given $T_x \ge x$ is called the complete

14) The expected value of T_x given $T_0 > x$ is called the complete expectation of life at age x or the expected future lifetime at age x and is denoted by

$${\stackrel{o}{e}}_{x} = E(T_{x}) = E(T_{0}|T_{0} > x) - x.$$

15) $T_x > 0$ is a nonnegative RV. If the support of T_0 is $(0, \infty)$ then the support of T_x is $(0, \infty)$. If the support of T_0 is $(0, \omega)$ then the support of T_x is $(0, \omega - x)$.

16) $E(T_x)$, $E(T_x^2) V(T_x)$ is better notation than the text notation like $V(T_x|T_0 > x)$.

17)
$$\stackrel{e}{e}_{x} = E(T_{x}) = \int_{0}^{\infty} tf_{x}(t)dt = \frac{1}{S_{0}(x)} \int_{0}^{\infty} tf_{0}(x+t)dt = \frac{1}{S_{0}(x)} \int_{0}^{\infty} S_{0}(x+t)dt = \int_{0}^{\infty} tp_{x} dt.$$

18) $V(T_x) = E(T_x^2) - [E(T_x)]^2$ where $E(T_x) = \overset{o}{e}_x = \int_0^\infty t p_x dt$ and $E(T_x^2) = 2 \int_0^\infty t t p_x dt$. Also, $V(T_x) = E(T_0^2 | T_0 > x) - [E(T_0 | T_0 > x)]^2$.

19) Memorize: Know that if $X \sim EXP(\beta)$ where $\beta > 0$, then $\mu(x) = \beta$ for x > 0, $f(x) = \beta e^{-\beta x}$ for x > 0, $F(x) = 1 - e^{-\beta x}$ for x > 0, $S(x) = e^{-\beta x}$ for x > 0, $\Lambda(x) = \beta x$ for x > 0, $E(X) = 1/\beta$ and $V(X) = 1/\beta^2$. The exponential distribution is the only

distribution with a constant force of mortality $\mu(x) \equiv \beta$. Constant force of mortality (hazard) means that a used product is as good as a new product.

The pdf can also be written as $f(x) = \frac{1}{\lambda}e^{-x/\lambda}$ for x > 0 and $\lambda > 0$. Then $\lambda = 1/\beta$ and $E(X) = \lambda = 1/\beta$. Usually E(X) > 1 and the force of mortality is $\beta < 1$ for human lifetime. Use E(X) > 1 to determine if you are given β or λ . For example, $X \sim EXP(0.1)$ means E(X) = 1/0.1 = 10 so $\beta = 0.1$ and $\lambda = 10$, while $X \sim EXP(10)$ means E(X) = 10 so $\beta = 0.1$ and $\lambda = 10$.

20) **Memorize:** For t > 0, if $T_x \sim EXP(\mu)$, then $S_x(t) = {}_tp_x = e^{-\mu t}$, $\mu_x(t) = \mu_{x+t} = \mu$ and $E(T_x) = \stackrel{o}{e}_x = 1/\mu$. If $T_0 EXP(\mu)$, then $T_x \sim EXP(\mu)$.

21) **Memorize**: If the age at failure RV T_0 has a uniform $(0, \omega)$ distribution, then this distribution is known as **de Moivre's law** or De Moivre's law. Then $T_x \sim U(0, \omega - x)$ with support $0 < t < \omega - x$. For such t, $S_x(t) = {}_t p_x = \frac{\omega - x - t}{\omega - x}$, $\mu_x(t) = \mu_{x+t} = \frac{1}{\omega - x - t}$ and $E(T_x) = {}^o_{e_x} = \frac{\omega - x}{2}$.

22) The curtate duration at failure RV $K_x = \lfloor T_x \rfloor$. Here $\lfloor 7.7 \rfloor = 7$. Suppose the person died in the kth time interval (k - 1, k] which means T_0 is in the time interval (x + k - 1, x + k], given $T_0 > x$. Then $K_x = k - 1$.

23) K_x is a discrete random variable where $k = 0, 1, 2, \dots$ The probability (mass) function of K_x is

$${}_{k}|q_{x} = p_{K_{x}}(k) = P(K_{x} = k) = P(k < T_{x} \le k+1) = P(x+k < T_{0} \le x+k+1|T_{0} > x) =$$
$${}_{k}p_{x} - {}_{k+1}p_{x} = F_{x}(k+1) - F_{x}(k) = S_{x}(k) - S_{x}(k+1).$$

24) Hence

$$_{k}|q_{x} = P(K_{x} = k) = _{k}p_{x} - _{k+1}p_{x}.$$

25) Since K_x is only defined for $T_0 > x$, $E(K_x)$ is better notation than $E(K_x|T_0 > x)$.

26) The curtate expectation of life at age x is

$$e_x = E(K_x) = \sum_{k=0}^{\infty} k_k |q_x.$$

27)
$$E(K_x^2) = \sum_{k=0}^{\infty} k^2 {}_k | q_x$$
, and $V(K_x) = E(K_x^2) - [E(K_x)]^2$.

28) Suppose the interval of failure for T_x is (k, k+1] (so T_0 fails in interval (x + k, x + k + 1]). Then $K_x = k$. Let R_x be the continuous RV that represents the fractional part the time lived during the interval of failure of T_x . If failure occurs at time $R_x = r$, then $T_x = k + r$ where $0 < r \le 1$, the support of R_x . In general, $T_x = K_x + R_x$.