
Exam 2 is Th. March 7. You are allowed 9 sheets of notes and a calculator.

41) An important fact about simple interest is that for simple interest A(t) = K[1+it],
the amount of interest earned each year is constant = Ki. Only the original principal
K earns interest from year to year, and interest accumulated in any given year does not
earn interest in future years. Usually simple interest is only applied for time periods of
less than a year.

42) Suppose the annuity pays X instead of $1 for n years. Then for an annuity-
immediate, AV = Xsn|, PV = Xan|. For the annuity-due, AV = Xs̈n|, PV = Xän|.

Know everything on the Exam 1 review. Below is new material.

43) Continuous annuities have a δ in the denominator. Hence for a continuous annuity

of $1 “paid continuously in 1 year,” the AV = sn| =
(1 + i)n − 1

δ
=

i

δ
sn| and PV = an| =

1 − vn

δ
=

1 − e−nδ

δ
=

i

δ
an|. Multiply the AV and PV by J for a continuous annuity of $J

“paid continuously in 1 year.” Use J = Km to approximate Kms
(m)
n| and Kma

(m)
n| .

44) Formulas for annuities assume that the interest period and time period are the
same. So a monthly time period needs a monthly interest rate j.

45) än| = (1 + i)an| = 1 + an−1|.
46) s̈n| = (1 + i)sn| = sn+1| − 1.
47) Consider n equally spaced payments of K. If the AV is evaluated immediately

after the nth payment or if the PV is evaluated one time period before the first payment,
then the annuity is an annuity-immediate. If the AV is evaluated one period after the
last payment or if the PV is evaluated at the time of the first payment, then the annuity
is an annuity-due. Hence the labels on the time diagram of an annuity can be c, c+1,
..., c+n where c is an arbitrary integer. Look for whether the AV is evaluated on the
date of the last deposit (annuity-immediate) or one time period after the last deposit
(annuity-due).

48) An m-year deferred n-payment annuity-immediate = an (m + 1)-year deferred
n-payment annuity-due is an annuity with n payments K where the PV is valued m + 1
time periods before the first payment. The time period “year” can be replaced by other
time periods. If K = 1, the PV = m|an| = (m+1)|än| = vman| = vm+1än| = am+n|− am|.
Make a time diagram with labels 0, 1, ..., m, m + 1, ..., m + n with a 1 over the times
m + 1, ..., m + n. Then the first payment is deferred until time m + 1, the PV evaluated
at time m is an|, the PV evaluated at time m +1 is än|. Hence the PV evaluated at time
0 is vman| = vm+1än|.

49) m|an|, m|än|, etc., is PV notation. Suppose the PV is valued at time 0. Then go
to time m and pay what the symbol to the right of the vertical line says (for m|an|, pay
an annuity-immediate for n years with 1s at times m + 1, ..., m+ n)). If the PV is worth
J at time m, then the PV is vmJ at time 0.

50) sn| = (1 + i)nan| since AV (n) = PV a(n) = PV (1 + i)n. an| = vnsn| since
vn = (1 + i)−n.

51) An infinite period annuity that results as n → ∞ is a perpetuity. A perpetuity-
immediate values the PV 1 period before the first payment. If the payments are 1, then
PV = a∞| = a∞|i = 1/i = lim

n→∞
an|. A perpetuity-due values the PV at the time of
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the first payment with PV = ä∞| = ä∞|i = 1/d = lim
n→∞

än| = (1 + i)a∞|i = 1 + a∞|i if

payments are 1. The AV of a perpetuity does not exist.
52) Another interpretation of a perpetuity is that a deposit X will generate K = Xi

interest at the end of the year. So if the interest payment is paid to the holder of the
annuity at the end of the year, then X is left in the account and will generate K = Xi
indefinitely. So X = K/i and if X = 1000000 and i = 7%, the annuity will pay K = 70000
and PV = 1000000 = 70000a∞|0.07 = 70000/i.

53) An mthly payable annuity-immediate makes payments of J = K/m at the end
of every 1/m year for n years. If K = 1, the AV at the time of the last payment is

AV = s
(m)
n|i =

(1 + i)n − 1

i(m)
= sn|i

i

i(m)
. If K = 1, the PV one time period ((1/m)th year)

before the first payment is PV = a
(m)
n|i =

1 − vn
i

i(m)
= an|i

i

i(m)
. Here i is the effective annual

interest rate, and there are a total of nm payments. AV (n) = Jms
(m)
n|i . PV = Jma

(m)
n|i .

54) An mthly payable annuity-due is similar to 53) except the AV is evaluated one
time period ((1/m)th year) after the last payment and the PV is evaluated at the time

of the first payment. If K = 1, AV = s̈
(m)
n|i =

(1 + i)n − 1

d(m)
= s̈n|i

d

d(m)
= sn|i

i

d(m)
, while

PV = ä
(m)
n|i =

1 − vn
i

d(m)
= än|i

d

d(m)
= an|i

i

d(m)
.

55) The AV of n payments of 1 k periods after the nth deposit is AV (n + k) =
sn|i(1 + i)k = sn+k|i − sk|i since AV (n) = sn|i and AV (n + k) = AV (n)(1 + i)k.

56) An n+k annuity immediate has AV immediately after the final payment of sn+k|.

The first n payments are worth sn| at time n and accumulate to sn|(1 + i)k at time n+ k
while the final k payments accumulate to sk| at time n+k. Similarly, the first k payments
are worth sk| at time k and accumulate to sk|(1 + i)n at time n + k while the final n

payments accumulate to sn| at time n+k. Hence sn+k| = sk|(1+i)n+sn| = sn|(1+i)k+sk|.
57) Consider an n + k payment annuity-immediate with equally spaced payments of

1 per period with interest rate i1 per payment period up to the time of the nth payment
followed by a rate of i2 per payment period from the nth period on. The AV immediately
after the last payment is AV (n + k) = sn|i1(1 + i2)

k + sk|i2
since the first n payments

are worth sn|i1 at time n and accumulate to sn|i1(1 + i2)
k at time n + k while the final k

payments are worth sk|i2
at time n + k. The PV one period before the first payment is

PV (0) = an|i1 + vn
i1
ak|i2

since the first n payments have PV (0) = an|i1 while the last k
payments have PV (n) = ak|i2

which has a PV at time 0 of vn
i1
ak|i2

.
58) Suppose there are n+k regularly spaced payment periods with payments of J for

the first n periods and payments of L for the last k periods. The AV right after the final
payment is AV = J sn| (1 + i)k + L sk| since the first n payments have AV (n) = J sn|

which accumulates to J sn| (1+i)k at time n+k and the last k payments have AV = L sk|

at time n+k. If L > J , an equivalent annuity makes n+k payments of J and k payments
of L − J at times n + 1, ..., n + k. Hence AV = Jsn+k| + (L − J) sk|.

59)
aJn|

an|

= 1 + vn + v2n + · · · + v(J−1)n.
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60)
an|

ap|

=
än|

äp|

=
a

(m)
n|

a
(m)
p|

=
ä

(m)
n|

ä
(m)
p|

=
an|

ap|

61) Formulas for an| and sn| tend to hold if bars are added: so tend to hold for an|

and sn|. See 50), 55) and 56).
62) Consider an annuity-immediate with n payments of J . Let AV (n) = M =

J

[

(1 + i)n − 1

i

]

= Jsn|. Then M, J, n, and i are variables. Given 3 of the variables, it is

possible to solve for the fourth. Then n =
ln(1 + Mi

J
)

ln(1 + i)
.

Similarly PV = PV (0) = L = J
[

1 − vn

i

]

= Jan|, and given 3 of the variables, it is

possible to solve for the fourth. Then n =
ln(1 − Li

J
)

ln(v)
.

Typically n will not be an integer, for example n = 14.207. Let m = [n] be the
integer part of n so m = [14.207] = 14. Then make m = [n] payments of J and then
an additional payment of X to complete the annuity. If X is made at time [n], then the
final payment of X + J is known as a balloon payment. Then AV = M = Jsm| + X and
PV = L = Jam| + Xvm. Make a time diagram to see these formulas.

An alternative is to make payment X one time period after the time period of the final
payment of J , so at time m + 1. Then from a time diagram, PV = L = Jam| + Xvm+1.
Often use PV since the PV is a loan made at time 0 that is paid off with the annuity.

63) Referring to 62), solving for an unknown interest rate usually needs a financial
calculator, or tedious trial and error for a multiple choice problem. On a BA II Plus for
an annuity immediate, if the PV = 15400 on 18 equally spaced payments of 1300, enter
18 then press N, enter 15400 then press +/−, then press PV, then enter 1300, then press
PMT, then press CPT then press I/Y . (See E1 review above 7 for why the PV is entered
as a negative number.) Should get 4.8303 which is in percent, so the interest is 0.048303.

64) An mthly perpetuity-immediate uses a
(m)
∞| =

1

i(m)
= lim

n→∞
a

(m)
n| .

An mthly perpetuity-due uses ä
(m)
∞| =

1

d(m)
= lim

n→∞
ä

(m)
n| .

65) s
(m)

1|
= i/i(m) and a

(m)
n|i = an|i

i

i(m)
=

1 − vn
i

i(m)
.

66) Consider an mthly annuity-immediate that pays J = K/m every 1/mth year for

n years. The coefficient on a
(m)
n| is the sum of the payments for each interest period (so

12 J if the period is a year with 12 monthly payments). So the PV is mJa
(m)
n| . Similarly

the PV of an mthly annuity-due that pays J = K/m every 1/mth year for n years is

PV = mJä
(m)
n| . So an annuity that pays 100 at the end of each month for 10 years at an

effective annual interest rate of 5% has PV = 1200a
(12)

10|0.05
with J = 100 and m = 12.

67) Suppose an annuity pays 1 at times 1, ..., n, but the accumulation function is a(t)
where interest varies. Want AV at time t = n. Now 1 at time t = j has AV = a(n)/a(j)
at time n. See E1 review 19). Hence the annuity AV immediately after the final payment

is AV = a(n)

[

1

a(1)
+

1

a(2)
+ · · · +

1

a(n)

]

.
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68) A common problem uses the AV1(n) of one fund at time n to buy a second fund
that makes k future payments and has a PV2(n) at time n. Usually set AV1(n) = PV2(n)
and solve for an unknown. See HW4: 3, 4 and HW5: 4.

69) Consider an n–payment annuity with an arithmetic progression as shown below.

P P+Q P+2Q P+(j-1)Q P+(n-1)Q

_________________________________________________

| | | | ... | ... |

0 1 2 3 j n

So P is the first payment and Q is the common difference. Then the PV one time

period before the first payment is PV = AA = Pan| + Q
[

an| − nvn

i

]

, and the AV

immediately after the last payment of AV = SA = (1 + i)nAA = Psn| + Q
[

sn| − n

i

]

.

70) Consider an n–payment annuity with an arithmetic progression as shown below.

P P+Q P+2Q P+(j-1)Q P+(n-1)Q

_________________________________________________

| | | | ... | ... | |

0 1 2 3 j n-1 n

Then the PV evaluated on the date of the first payment is PV = ÄA = (1 + i)AA =

Pän| + Q
[

an| − nvn

d

]

, and the AV one period after the last payment is AV = S̈A =

(1 + i)nÄA = P s̈n| + Q
[

sn| − n

d

]

.

71) An increasing annuity-immediate has P = Q = 1. Then 69) can be shown to

have PV one payment before the first payment of PV = (Ia)n| =
än| − nvn

i
and an AV

at the time of the final payment of PV = (Is)n| =
s̈n| − n

i
=

sn+1| − (n + 1)

i
.

72) An increasing annuity-due replaces i by d in the denominator of the RHS. So the

PV at the time of the first payment is PV = (Iä)n| =
än| − nvn

d
and an AV one time

period after the final payment of PV = (Is̈)n| =
s̈n| − n

d
.

73) A decreasing annuity-immediate has P = n and Q = −1, so the n payments
are n, n − 1, n − 2, ..., 3, 2, 1. The PV one time period before the first payment is PV =

(Da)n| =
n − an|

i
, and the AV immediately after the final payment is AV = (Ds)n| =

n(1 + i)n − sn|

i
= (1 + i)n(Da)n|.

74) The due form has AV and PV 1 period after the immediate form, so
AVdue = (1 + i)AVimmediate and PVdue = (1 + i)PVimmediate. Also AVimmediate = vAVdue

and PVimmediate = vPVdue. For both forms, AV = (1 + i)nPV and PV = vnAV .

75) An increasing perpetuity-immediate with payments 1, 2, 3, ... at times 1, 2, 3, ...

has PV at the time before the first payment of PV = (Ia)∞| =
1

id
=

1

i
+

1

i2
.
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76) An increasing perpetuity-due with payments 1, 2, 3, ... at times 0, 1, 2, 3, ... has

PV at the time of the first payment of PV = (Iä)∞| =
1

d2
= lim

n→∞
(Iä)n|.

77) Although the general P and Q forms 69) and 70) can be used to evaluate an
annuity in arithmetic progression, such an annuity can be written as a combination of a
decreasing or increasing annuity and a level payment annuity.

P P+Q P+2Q P+(j-1)Q P+(n-1)Q

_________________________________________________

| | | | ... | ... |

0 1 2 3 j n

78) i) Consider PV and suppose Q > 0. Then write down Q(Ia)n|.
ii) The annuity in i) pays Q, Q+Q, ..., Q+(n−1)Q. So add level payments of P −Q,

so the other term in the combination is (P − Q)an|.
Hence the PV of the annuity is Q(Ia)n| + (P − Q)an|.
79) i) Consider PV and suppose Q < 0. Then write down |Q|(Da)n|.
ii) The annuity in i) pays n|Q|, (n− 1)|Q|, ..., |Q|. So add level payments of P −n|Q|,

so the other term in the combination is (P − n|Q|)an|.
Hence the PV of the annuity is |Q|(Da)n| + (P − n|Q|)an|.
80) For AV, replace a by s for the immediate form. So use sn| and either (Is)n| or

(Ds)n|. So the AV in 78) is Q(Is)n| + (P −Q)sn| while the
AV in 79) is |Q|(Ds)n| + (P − n|Q|)sn|.

Similar formulas work for the PV and AV of the due form but with ä replacing a and
s̈ replacing s.

81) Suppose an increasing perpetuity-immediate has first payment P and increases

by Q thereafter. Then PV =
P

i
+

Q

i2
.

1 2 3 n n n ...

_________________________________________________

| | | | ... | | |

0 1 2 3 n n+1 n+2 ...

82) Consider a perpetuity-immediate with payments of 1, 2, ..., n at the end of
each year and then payments of n for each subsequent year. Then the PV of the first n
payments one time period before the first payment is (Ia)n| while the PV of the remaining
payments evaluated at time n is na∞| which has PV at time 0 of vnna∞|. Hence the PV
of the perpetuity-immediate one time period before the first payment is

PV = (Ia)n| + vnn

i
=

än|

i
.

83) Suppose a lender makes a loan of L at interest rate i and invests the payments
Kt at interest rate i′. If F is the AV for the lender at time n years using interest rate i′,

then L(1 + j)n = F and j =
(

F

L

)1/n

− 1 is the annual yield rate for the lender.
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84) Consider an annuity that makes a cost of living adjustment (COLA) so that
there are n payments, the first payment is 1, and all subsequent payments are (1 + r)
times the previous payment. This annuity is in geometric progression with payments

1, (1 + r), (1 + r)2, ..., (1 + r)n−1 with PV before the first payment of PV =
1 − (1+r

1+i
)n

i − r

and an AV immediately after the last payment of AV = PV (1+i)n =
(1 + i)n − (1 + r)n

i− r
.

85) There are many variants of the problem of finding the AV of investments and
reinvested interest. Use time diagrams of investments and of reinvested interest. Three
examples are a) 83). b) Suppose L is invested and generates interest at rate i per time
period which is reinvested at rate j. Then L generates interest Li per period. Hence the
AV immediately after the last interest payment consists of L and the reinvested interest
with AV = L + Lisn|j.

Li Li Li Li

_______________________________ ________________________________

| | | | ... | | | | | | ... |

0 1 2 3 n 0 1 2 3 4 n

payments 1 1 1 1 1

interest i 2i 3i (n-1)i

c) Suppose n deposits of 1 generate interest at rate i per time period which are reinvested
at rate j. Then at time 2 interest i is invested, at time 3 interest on the first two payments
of 1 is 2i et cetera as shown in the above right time diagram. Then the AV immediately
after the nth payment is AV = n + i(Is)n−1|j where n is the value of the n payments of
1 and the 2nd term is the AV of the reinvested interest.

86) Amortizing a loan reduces the outstanding balance of a loan by making payments
that pay interest and reduce the principal. Let OBt = Bt be the outstanding balance
immediately after the tth payment Kt = Rt. Let It be the interest paid at the end of
period t. Let PRt = Pt be the principal repayment at the end of period t.

K1 K2...Kt K(t+1) ... Kn K K ...K K ... K

________________________________ ________________________________

| | | ...| | ... | | | | ...| | ... |

0 1 2 t t+1 n 0 1 2 t t+1 n

L OBt L OBt

The retrospective method says OBt = L(1 + i)t − K1(1 + i)t−1 − K2(1 + i)t−2 − · · · −
Kt−1(1+ i)−Kt = AV of loan L at time t − AV of the 1st t payments immediately after
tth payment. If Kt ≡ K, then OBt = L(1 + i)t − Kst|.

The prospective method says OBt = Kt+1v + Kt+2v
2 + · · · + Knvn−t = PV(t) of the

remaining payments immediately after the tth payment. If Kt ≡ K, then OBt = Kan−t|.
87) L = K1v + K2v

2 + · · · + Knvn. If Kt ≡ K, then L = Kan|.
88) It = i OBt−1, PRt = Kt − It, OBt = OBt−1 − PRt, OB0 = L. If Kt ≡ K, then

K = L/an|, It = K(1 − vn−t+1), PRt = Kvn−t+1 = PRt−1(1 + i) = PR1(1 + i)t−1.
89) The retrospective method can be better if L is given but you need to figure out

n and the last payment Kn. The prospective method can be better if L is not known.
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duration payment interest paid principal repaid outstanding balance
t Kt It = (i)OBt−1 PRt = Kt − It OBt = OBt−1 − PRt

0 − − − OB0 = L
1 K1 I1 = (i)OB0 PR1 = K1 − I1 OB1 = OB0 − PR1
...

...
...

...
...

t Kt It = (i)OBt−1 PRt = Kt − It OBt = OBt−1 − PRt
...

...
...

...
...

n Kn In = (i)OBn−1 PRn = Kn − In OBn = OBn−1 − PRn = 0
total

∑n
j=1 Kj

∑n
j=1 Ij

∑n
j=1 PRj = L

90) the above table shows an amortization schedule. Note that the sum of the principal
repayments is equal to the loan amount L. So

∑n
j=1 PRj = L. Also the outstanding

balance at time n is 0, and L +
∑n

j=1 Ij =
∑n

j=1(Ij + PRj) =
∑n

j=1 Kj . Also OBt =
OBt−1(1 + i) − Kt = OBt−1 + It − Kt = OBt−1 − PRt.

91) If payments Kt ≡ K, then the sum of payments is nK, and the sum of principal
repayments is

∑n
j=1 PRj = Kan| = L. Also

∑n
j=1 Ij = nK − L.

92) A fund designed to accumulate a specified amount of money in a specified amount
of time by making regular deposits is a sinking fund (SF). There is
a) interest rate on the loan i
b) interest rate on the sinking fund j
c) a periodic interest payment It = Li
d) a periodic sinking fund deposit (SFD) such that L = SFDsn|j so SFD = L/sn|j.
Hence the SF accumulates to L at time t = n.
e) Note that the total periodic payment is J = Li + SFD, the sum of the quantities
found in c) and d).

93) You may need to find the quantities in 92) as well as the payment K for an
amortized loan that would pay off the loan L in 92). Then K = L/an|i. See HW7 4.

94) If i = j then the sinking fund approach and the amortization approach are
equivalent in that the periodic payments J and K in 92) and 93) satisfy J = K, but often
i > j and the lender makes more money under the sinking fund approach. Technically
the borrower owns the sinking fund until time n, but often the sinking fund is held by a
financial institute like a bank. Typically the interest the borrower can make on the SF
satisfies j < i.

95) The result in 94) implies that
1

an|i

= i +
1

sn|i

.

96) The general approach to SF problems is to answer two questions:
i) what interest is paid to the lender (find Li), and
ii) what is the SFD (= L/sn|j)?
Then the total periodic payment made by the the borrower to repay the loan is J =

Li +
L

sn|j

= L

[

i +
1

sn|j

]

.

97) SF with nonlevel SFDs: suppose the sinking fund has interest rates i and j, the
total annual payment is J the 1st n years and K the next m years. The SF accumulates
to L at time n + m, so (J − Li)sn+m|j + (K − J − Li)sm|j = L. Note that the interest
payment is Li and the SFD is J−Li for years 1, ..., n and K−Li for years n+1, ..., n+m.
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K-J-Li... K-J-Li

J-Li J-Li K-Li ... K- Li J-Li ... J-Li... J-Li

________________________________ ________________________________

| | ... | | | | | ... | | |

0 1 n n+1 ... n+m 0 1 n n+1 ... n+m

Ch. 4. 98) A bond makes periodic interest payments Fr for periods 1, ..., n as well
as a payment C at time n where C is the redemption value of the bond and r is the
coupon rate of interest per time period. F is the face value of the bond, and i = j is the
yield rate of interest per time period. Note that n is the number of payments.

Fr Fr ... Fr Fr+C

_____________________________

| | | ... | |

0 1 2 n-1 n

99) The bond price P is the PV of future cash flows. The coupon rate r is fixed for
the life of the bond. Bonds are sold in a bond market and the yield rate j is determined
by market forces. Typically interest payments are made twice a year so n = 2Y where
Y is the number of years of the bond, but other payment periods are possible. When
the payment period is 6 months, often two bond interest rates r(m) and j(m)are given as
nominal annual interest rates compounded semiannually where m = 2. Then r = r(2)/2
and j = j(2)/2. In general you may need to convert a given interest rate to the interest

rate for the time period. Note that

(

1 +
i(m1)

m1

)m1

=

(

1 +
i(m2)

m2

)m2

= 1 + i where i

is the annual interest rate. Hence if m1 < m2 and m2/m1 is a positive integer, then
(

1 +
i(m1)

m1

)

=

(

1 +
i(m2)

m2

)m2/m1

.

100) Let g be the coupon rate applied to C to determine the amount of the coupon
= periodic interest payment. Then Cg = Fr and g = Fr/C. The basic formula for the
bond price is P = Fran|j + Cvn

j = Cgan|j + Cvn
j . The premium discount formula is

P = C + (Fr −Cj)an|j = C + (Cg −Cj)an|j. Let K = Cvn
j , then Makeham’s formula is

P =
g

j
(C − Cvn

j ) + Cvn
j =

g

j
(C − K) + K = K +

g

j
(C −K). See HW7 5.

101) If F = C then r = g, and the bond is redeemable at par. If F = C and r = j,
then P = F. If g = j, then P = C . If g > j then P > C , and the bond is redeemable at a
premium with the premium = P −C = (Cg−Cj)an|j. If g < j then P < C and the bond
is redeemable at a discount with the discount = C−P = −(Cg−Cj)an|j = (Cj−Cg)an|j.
See the premium discount formula in 100). Note that both the premium and the discount
are positive. To determine whether the bond is redeemable at a premium or discount,
compute g and see whether g > j or g < j. If the discount is D = C − P then the price
is P = C − D. If the premium is E = P − C , then the price is P = E + C .

102) If the bond is redeemable at par then F = C . If no information is given, then
assume F = C and that the interest payment period is 6 months. Sometimes you are
told that the bond is redeemable at 950 or redeemable at 95% of the face value (so
C = 0.95F ).
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