Math 250 Exam 4 review. Thursday April 30. Bring a TI–30 calculator but NO NOTES. Emphasis on sections 5.5, 6.1, 6.2, 6.3, 3.7, 6.6, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 9.1, 9.2, 9.3, 9.4, 9.5, 7.4; HW1-24; Q1-23. Know for trig functions that 0.707 $\approx \sqrt{2}/2$ and $0.866 \approx \sqrt{3}/2$.

From Math 150, for derivatives know power rule, product rule, quotient rule, chain rule and rules from reference p. 5. For integration know power rule, u-substitution and rules 1-20 from reference p. 6.

Know everything from Exam 1, 2 and 3 reviews, including F1)-F24).

The following problems are very important for exam 4 and the final. The notation F^{***} means it was on 3 out of 3 of the last 3 finals.

F25***) Given parametric equations x = x(t) and y = y(t), find the equation of the tangent line to the curve at point where (or when) $t = t_0$. Let $(x_0, y_0) = (x(t_0), y(t_0))$. Then find $\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$ as a function of t. Then $m = \frac{dy}{dx}\Big|_{t=t_0}$ and $y - y_0 = m(x - x_0)$ is the point slope equation of the line. Now y = mx + b is the point intercept equation of the line. Note that $y = mx + (y_0 - mx_0)$. Also $y_0 = mx_0 + b$, so $b = y_0 - mx_0$. Note that m is a real number, and is free of t. See F07 11, F08 9, S08 10.

F26*) As a variant to F25) also eliminate t to find a Cartesian (x, y) equation of the curve. Then identify the curve. See F08 9cd.

Tips: i) $(x-h)^2 + (y-k)^2 = r^2$ is a circle centered at (h,k) with radius r, and often r = 1.

ii) $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ is the standard ellipse (with (h,k) = (0,0)) shifted to have center (h, k)

iii) $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$ is the standard hyperbola (with (h,k) = (0,0)) shifted to have "center or point of symmetry" (h, k). This hyperbola intersects the x axis. Note that $x^2 - y^2 = 1$ if $x = \sec t$ and $y = \tan t$. iv) $\frac{(y-h)^2}{a^2} - \frac{(x-k)^2}{b^2} = 1$ is the standard hyperbola (with (h,k) = (0,0)) shifted

to have "center or point of symmetry" (h, k). This hyperbola intersects the y axis.

v) If $x = h + \cos t$ and $y = k + \sin t$, then $(x - h)^2 + (y - k)^2 = 1$ $(= \cos^2 t + \sin^2 t)$ is a circle.

vi) If $x = h + \sin t$ and $y = k + \cos t$, then $(x - h)^2 + (y - k)^2 = 1$ $(= \sin^2 t + \cos^2 t)$ is a circle.

vii) If $x = h + r \sin t$ and $y = k + r \cos t$, or if $x = h + r \cos t$ and $y = k + r \sin t$, then $(x-h)^2 + (y-k)^2 = r^2$ [= $r^2(\sin^2 t + \cos^2 t)$ or $r^2(\cos^2 t + \sin^2 t)$] is a circle.

vii) If x = x(t) and y = g(x(t)) then y = g(x). If x = g(y(t)) and y = y(t) then x = q(y). For example, if $x = \sin t$ and $y = \sin^2 t$, then $y = x^2$ is a parabola.

viii) If x = x(t) can be solved for t = f(x), then y = y(t) = g(t) = g(f(x)). If y = y(t)can be solved for t = q(y), then x = f(t) = f(q(y)).

Eg, if x(t) = x = mt + b then t = (x - b)/m, and y = y(t) = g(t) = g((x - b)/m). If $x(t) = x = \sqrt{t}$, then $x^2 = t$ and $y = g(t) = g(x^2)$ for $t \ge 0$. If $x(t) = x = t^2$, then $\sqrt{x} = t$ and $y = q(\sqrt{x})$ for $x \ge 0$. If $x = e^{2t}$, then $2t = \ln(x)$ so $t = \ln(x)/2$.

In Section 6.3 (partial fractions), **completing the square** is an important technique. Recall that $\int \frac{dx}{x^2 + d^2} = \frac{1}{d} \tan^{-1} \left(\frac{x}{d}\right) + C$. Now $x^2 + bx + c = \left(x + \frac{b}{2}\right)^2 - \frac{b^2}{4} + c = x^2 + bx + \frac{b^2}{4} - \frac{b^2}{4} + c$ is known as "completing the square."

Note that
$$ax^2 + Bx + D = a(x^2 + bx + c)$$
 where $ab = B$ and $ac = D$. Suppose $d^2 = c - b^2/4 > 0$. So $\int \frac{k \, dx}{ax^2 + Bx + D} = \frac{k}{a} \int \frac{dx}{x^2 + bx + c} = \frac{k}{a} \int \frac{dx}{(x + \frac{b}{2})^2 + d^2} = \frac{k}{a} \int \frac{du}{u^2 + d^2} = \frac{k}{ad} \tan^{-1}\left(\frac{x + b/2}{d}\right) + C$ where $u = x + b/2$ and $du = dx$.

F27) Use completing the square to find $\int \frac{k \, dx}{ax^2 + Bx + D} = \frac{k}{a} \int \frac{dx}{x^2 + bx + c}$ where a, b, c and k are constants and $d^2 = c - b^2/4a > 0$.

Cartesian coordinates and equations use (x, y) while **polar coordinates** use (r, θ) where $x = r \cos(\theta)$, $y = r \sin(\theta)$, $r^2 = x^2 + y^2$ and $\tan(\theta) = y/x$. So $\cos(\theta) = x/r$ and $\sin(\theta) = y/r$.

A problem is that for $\theta \in [0, 2\pi)$, each value of $\tan(\theta)$ occurs twice: $\tan(\theta - \pi) = \tan(\theta) = \tan(\theta + \pi)$, so θ must be chosen so that (r, θ) lies in the same quadrant as (x, y).

Another problem is that $(r, \theta) = (r, \theta + 2n\pi)$ for all integers n, and $(-r, \theta) = (r, \theta + \pi)$. So if r > 0 the point (r, θ) is plotted, but if r < 0, then plot $(|r|, \theta + \pi)$.

In graphing polar functions such as $r = f(\theta)$, take r > 0, so that if $r(\theta_0) = f(\theta_0) < 0$, then plot the point $(|r(\theta_0)|, \theta_0 + \pi)$. If $r_0 > 0$, then plot the point $(r(\theta_0), \theta_0)$.

A point in polar coordinates is a ray with angle θ and length |r|. An angle measured counterclockwise has positive sign while an angle measured clockwise has negative sign. So $\theta = \pi/4$ and $\theta = -\pi/4$ make sense.

Sketching $r = f(\theta)$ or the more general polar equation $G(r, \theta) = 0$:

i) Sketch one or more concentric circles of radius r_0 (if you has a ruler, you might take one inch = 1 radian if r went from 0 to 2 or one inch = π if r went from 0 to 2π).

ii) Compute $r = f(\theta)$ for $\theta = 0, \pi/4, \pi/2, 3\pi/4, \pi, 5\pi/4, 3\pi/2, 7\pi/4$, and 2π . (The horizontal axis corresponds to $\theta = 0$ at the right and $\theta = \pi$ on the left. The vertical axis corresponds to $\theta = \pi/2$ on the top and $\theta = 3\pi/2$ on the bottom. Sketch the two diagonal axes corresponding to $\theta = \pi/4$ at the upper right and to $\theta = 3\pi/4$ at the upper left.)

iii) If $r(\theta_0) = f(\theta_0) < 0$, plot the point $(|r(\theta_0)|, \theta_0 + \pi)$.

iv) Sketch $r = f(\theta)$ in Cartesian coordinates so you can read off r from the graph.

Recognize the following polar equations: i) $r = r_0$ is a circle. ii) $\theta = \theta_0$ is a line. Let d > 0. Often d = 1. iii) $r = d\cos(\theta)$ is a circle. iv) $r = d\sin(\theta)$ is a circle. v) $r = d\cos(2\theta)$ is a 4 leaved rose. vi) $r = d\sin(2\theta)$ is 4 leaved rose. vii) $r = d\cos(3\theta)$ is a 3 leaved rose. viii) $r = d\sin(3\theta)$ is 3 leaved rose. ix) $r = d\sin(k\theta)$ is a 2k leaved rose when k is even and a k leaved rose when k > 1 is odd. x) $r = d\cos(k\theta)$ is a 2k leaved rose when k is even and a k leaved rose when k > 1 is odd. xi) $r = d[1 - \cos(\theta)]$, $r = d[1 + \cos(\theta)]$, $r = d[1 - \sin(\theta)]$ and $r = d[1 + \sin(\theta)]$ are cardioids. **F28**)** Let \mathcal{R} be the region bounded by the polar curve $r = f(\theta) > 0$ and rays $\theta = a$ and $\theta = b$ where f is continuous and $0 < b - a < 2\pi$. Then the area of region \mathcal{R} is $A = \int_{a}^{b} \frac{1}{2} [f(\theta)]^{2} d\theta \quad (= \int_{a}^{b} \frac{1}{2} r^{2} d\theta)$. Often you need to find a and b. F07 13, S08 13 Tips: Suppose $r = d \sin(k\theta)$ or $r = d \cos(k\theta)$ and you find the area of a circle (k = 1),

of one loop of a k leaved rose (k > 1 odd) or of one loop of a 2k leaved rose ($k \ge 2$ even).

Sketch $r = d\sin(k\theta)$ in Cartesian coordinates to see that r increases from 0 to $d \approx \theta$ increases from 0 to $\pi/(2k)$, and r decreases from d to 0 as θ increases from $\pi/(2k)$ to π/k . Hence a = 0 and $b = \pi/k$ and the area of one loop (the entire circle for k = 1) is $A = \int_{a}^{b} \frac{1}{2} [f(\theta)]^{2} d\theta = \int_{0}^{\pi/k} \frac{1}{2} [d\sin(k\theta)]^{2} d\theta = \frac{d^{2}}{2} \int_{0}^{\pi/k} \sin^{2}(k\theta) d\theta = \frac{d^{2}}{2} \int_{0}^{\pi/k} [\frac{1}{2} - \frac{1}{2}\cos(2k\theta)] d\theta$ $= \frac{d^{2}}{4} \theta \Big|_{0}^{\pi/k} - \frac{d^{2}}{8k} \sin(2k\theta) \Big|_{0}^{\pi/k} = \frac{d^{2}\pi}{4k}.$

Sketch $r = d\cos(k\theta)$ in Cartesian coordinates to see that r increases from 0 to das θ increases from $-\pi/(2k)$ to 0, and r decreases from d to 0 as θ increases from 0 to $\pi/(2k)$. Hence $a = -\pi/(2k)$ and $b = \pi/(2k)$ and the area of one loop (the entire circle for k = 1) is $A = \int_{a}^{b} \frac{1}{2} [f(\theta)]^{2} d\theta = \int_{-\pi/(2k)}^{\pi/(2k)} \frac{1}{2} [f(\theta)]^{2} d\theta = 2\frac{1}{2} \int_{0}^{\pi/(2k)} [f(\theta)]^{2} d\theta =$ $\int_{0}^{\pi/(2k)} d^{2} \cos^{2}(k\theta) d\theta = d^{2} \int_{0}^{\pi/(2k)} [\frac{1}{2} + \frac{1}{2} \cos(2k\theta)] d\theta = \frac{d^{2}}{2} \theta \Big|_{0}^{\pi/(2k)} + \frac{d^{2}}{4k} \sin(2k\theta) \Big|_{0}^{\pi/(2k)} =$ $d^{2}\pi$

$$\frac{d}{4k}$$
. Know the technique, not just the final answer

F29)** Find the area A between $r = f_1(\theta)$ and $r = f_2(\theta)$ where the curves intersect at $\theta = a$ and $\theta = b$ and $f_1(\theta) \leq f_2(\theta)$. Then $A = \int_a^b \frac{1}{2}([f_2(\theta)]^2 - [f_1(\theta)]^2)d\theta$. Variant: Set up the integral by finding a, b, f_1 and f_2 , but do not compute the integral. F08 12

Tips: Find a and b by solving $f_1(\theta) = f_2(\theta)$ for θ . Typically one curve is a circle and the other is a cardioid and a sketch is given. From the sketch determine which curve is f_2 and which is f_1 . The area will not be negative, so if you get a negative area then swap f_1 and f_2 .

Arc length is like the perimeter or circumference.

F30***) Find the arc length of curves. F07 12, S08 14, F08 11.

i) The arc length of $r = f(\theta)$ for $a < \theta < b$ is $L = \int_a^b \sqrt{[f(\theta)]^2 + [f'(\theta)]^2} d\theta$ $(= \int_a^b \sqrt{[r^2 + (\frac{dr}{d\theta})^2} d\theta).$

ii) The arc length of the curve C given by parametric equations x(t) = f(t) and y(t) = g(t) for a < t < b is $L = \int_{a}^{b} \sqrt{[f'(t)]^{2} + [g'(t)]^{2}} dt$ $(= \int_{a}^{b} \sqrt{(\frac{dx}{dt})^{2} + (\frac{dy}{dt})^{2}} dt$). iii) The arc length of a surve f(x) on [a, b] is $L = \int_{a}^{b} \sqrt{1 + [f'(x)]^{2}} dx$ where f'(x) is

iii) The arc length of a curve f(x) on [a, b] is $L = \int_a^b \sqrt{1 + [f'(x)]^2} \, dx$ where f'(x) is the derivative of f.

iv) The arc length of a curve g(y) on [c,d] is $L = \int_c^d \sqrt{1 + [g'(y)]^2} \, dy$ where g'(y) is the derivative of g.