
Math 250 Exam 3 review. Thursday April 9. Bring a TI–30 calculator but NO
NOTES. Emphasis on sections 5.5, 6.1, 6.2, 6.3, 3.7, 6.6, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7,
8.8; HW1-19; Q1-18. Know for trig functions that 0.707 ≈

√
2/2 and 0.866 ≈

√
3/2.

From Math 150, for derivatives know power rule, product rule, quotient rule, chain
rule and rules from reference p. 5. For integration know power rule, u-substitution and
rules 1-20 from reference p. 6.

Know everything from Exam 1 and 2 reviews, including F1)-F17).

The following problems are very important for exam 3 and the final. The
notation F*** means it was on 3 out of 3 of the last 3 finals.

F18*) Use ratio test and lim
n→∞

(
1 +

x

n

)n

= ex for a series
∞∑

n=1

cn nn

n!
or series

∞∑

n=1

cn n!

nn
.

See F08 4c.

Ex.
∞∑

n=1

3n n!

nn
has lim

n→∞

∣∣∣∣∣
3n+1(n + 1)!

(n + 1)n+1

nn

3n n!

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣
3n (3) (n + 1) [n!]

(n + 1) (n + 1)n

nn

3n n!

∣∣∣∣∣ =

3 lim
n→∞

(
n

n + 1

)n

= 3 lim
n→∞

1(
n+1

n

)n = 3 lim
n→∞

1(
1 + 1

n

)n = 3/e > 1. So the series diverges by

the ratio test.

Ex.
∞∑

n=1

nn

3n n!
has lim

n→∞

∣∣∣∣∣
(n + 1)n+1

3n+1(n + 1)!

3n n!

nn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣
(n + 1) (n + 1)n

3n(3)(n + 1)[n!]

3n n!

nn

∣∣∣∣∣ =

1

3
lim

n→∞

(
n + 1

n

)n

=
1

3
lim

n→∞

(
1 +

1

n

)n

=
e

3
< 1. So the series converges by the ratio test.

F19**) Use root test and L’Hospital’s rule for a series
∞∑

n=2

[
ln(n2 + 1)

c ln(n)

]n

. See F07

6b, S08 7b.

Ex.
∞∑

n=2

[
ln(n2 + 1)

3 ln(n)

]n

has L = lim
n→∞

n
√
|an| = lim

n→∞

ln(n2 + 1)

3 ln(n)
= lim

n→∞

1
n2+1

2n

3 1
n

where

LHOP was used on a limit of the form ∞/∞. So L =
2

3
lim

n→∞

n2

n2 + 1
= 2/3 < 1, and the

series converges by the root test.

F20) Use root test and lim
n→∞

n1/n = 1 for a series
∞∑

n=1

cn
n

np
or

∞∑

n=1

np

cn
n

.

Note that lim
n→∞

np/n = lim
n→∞

[n1/n]p = 1p = 1.

——————————

A power series
∞∑

n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + · · ·+ ck(x− a)k + · · · .

Here x is a variable and the constants cn are the coefficients of the series.

The interval of convergence of a power series
∞∑

n=j

cn(x − a)n contains all values of

x for which the series converges. The interval is from a − R to a + R where R is the
radius of convergence.

Power Series Theorem: Given a power series
∞∑

n=j

cn(x−a)n, there are 3 possibilities.
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i) R = 0 and the interval of convergence is {a} (= [a, a]). So the power series converges
iff x = a.

ii) R = ∞ and the interval of convergence is (−∞,∞). So the power series converges
for all real x.

iii) 0 < R < ∞ and the interval of convergence can have one of 4 forms: (a−R, a+R),
[a−R, a +R), (a−R, a + R], or [a−R, a +R]. Note that the power series converges for
x between a−R and a + R, but convergence at the endpoints x = a−R and x = a + R
needs to be checked.

Given a power series
∞∑

n=j

cn(x− a)n, find the radius of convergence R and the interval

of convergence where x is between a − R and a + R.

Tips: i) Get a directly from the power series. So a series with xn has a = 0, a series
with (x− c)n has a = c and a series with (x+ d)n has a = −d since (x+ d) = (x− (−d)).

ii) Use the ratio test or (less likely) root test to find R. Note that lim
n→∞

|an+1

an
| =

lim
n→∞

|cn+1(x− a)n+1

cn(x− a)n
| = |x − a| lim

n→∞
|cn+1

cn
| = |x − a|L. So by the ratio test, the series

converges if |x − a|L < 1 or |x − a| < 1/L = R or if x − a is in between −R and R or if
x is between a − R and a + R.

iii) Check for convergence at the endpoints x = a−R and at x = a+R. You can not
check the endpoints using the ratio or root test: another series test must be used.

iv) Using ii) and iii) gives R and the interval on convergence where x is between a−R
and a + R. Usually 0 < R < ∞ and the interval has one of the 4 forms from the Power
Series Theorem iii).

v) If the power series is an alternating series, then |(−1)n| = 1 so the (−1)n term
drops out when you use the ratio or root test.

F21***) Given a power series
∞∑

n=j

cn(bx− d)n, find the interval of convergence. See

F07 10, S08 12, F08 6.

Tips: i) Could rewrite the series using (bx − d)n = [b(x − d/b)]n = bn(x − d/b)n. So
a = d/b.

ii) Use the ratio test or root test directly. Note that lim
n→∞

|an+1

an
| = lim

n→∞
|cn+1(bx − d)n+1

cn(bx − d)n
| =

|bx− d| lim
n→∞

|cn+1

cn
| = |bx− d|L. So by the ratio test, the series converges if |bx− d|L < 1

or |b||x − d/b| < 1/L or if |x − d/b| <
1

|b| L
or if x − d/b is in between

−1

|b| L
and

1

|b| L

or if x is between
d

b
− 1

|b| L
and

d

b
+

1

|b| L
. Also check convergence at the endpoints

x =
d

b
− 1

|b| L
and x =

d

b
+

1

|b| L
.

Note: If the interval of convergence I = (a−R, a+R) = (L,U), then R is half of the
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interval width: R = (U − L)/2.

Evaluation Theorem (term by term differentiation and term by term integration):

Suppose the power series f(x) =
∞∑

n=0

cn(x − a)n = c0 + c1(x − a) + c2(x− a)2 + · · ·

+ ck(x − a)k + · · · has radius of convergence R. For x in (a −R, a + R),

i) f ′(x) =
∞∑

n=1

ncn(x− a)n−1.

ii)
∫

f(x)dx = C +
∞∑

n=0

cn
(x − a)n+1

n + 1
where both series i) and ii) have radius of convergence R.

Notes: i) The original series and series i) and ii) all converge for x in (a − R, a + R)
but convergence may differ at the endpoints x = a − R and x = a + R.

ii) An indefinite integral
∫

f(x)dx = F (x) + C where C is an arbitrary constant. So

the antiderivative F (x) =
∞∑

n=0

cn
(x − a)n+1

n + 1
.

iii) f ′(x) =
d

dx
f(x) =

d

dx

∞∑

n=0

cn(x− a)n =
∞∑

n=0

cn
d

dx
(x − a)n =

∞∑

n=1

ncn(x − a)n−1 = c1 + 2c2(x− a) + 3c3(x − a)2 + · · · + kck(x − a)k−1 + · · · .

iv)
∫

f(x)dx =
∫

[
∞∑

n=0

cn(x − a)n]dx =
∞∑

n=0

cn[
∫

(x − a)ndx] = C +
∞∑

n=0

cn
(x− a)n+1

n + 1
=

C +

[
c0(x − a) + c1

(x − a)2

2
+ c2

(x − a)3

3
+ · · · + ck

(x − a)k+1

k + 1
+ · · ·

]
.

v) For b, d ∈ (a − R, a + R), the definite integral
∫ d

b
f(x)dx =

∞∑

n=0

cn
(x− a)n+1

n + 1

∣∣∣∣∣

d

b

=

∞∑

n=0

cn
(d − a)n+1

n + 1
−

∞∑

n=0

cn
(b − a)n+1

n + 1
. Often b = a and often a = 0. If b = a, then

∫ d

a
f(x)dx =

∞∑

n=0

cn
(x − a)n+1

n + 1

∣∣∣∣∣

d

a

=
∞∑

n=0

cn
(d − a)n+1

n + 1
.

——————————-

A function f(x) has a power series representation f(x) =
∞∑

n=j

cn(x−a)n for |x−a| < R

if the left hand side equals the right hand side for x ∈ (a − R, a + R). Thus the power
series converges and is equal to f(x).

The lower limit n = j is crucial. For example
1

1 − x
=

∞∑

n=0

xn while
x

1 − x
=

∞∑

n=1

xn.

So j = 1 and j = 0 give different functions.
Let f (n)(x) be the nth derivative of f(x) and let f (n)(a) be the nth derivative evaluated

at a. Let f (0)(x) = f(x) and f (0)(a) = f(a). Recall that f (n)(x) =
d

dx
f (n−1)(x). Also

f ′(x) = f (1)(x) and f ′′(x) = f (2)(x).

So f ′′(x) =
d

dx
f ′(x), f (3)(x) =

d

dx
f ′′(x), f (4)(x) =

d

dx
f (3)(x), et cetera.
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If f(x) =
∞∑

n=0

cn(x − a)n for |x − a| < R, then f(x) =
∞∑

n=0

f (n)(a)

n!
(x − a)n =

f(a) +
f ′(a)

1!
(x − a) +

f ′′(a)

2!
(x − a)2 +

f (3)(a)

3!
(x− a)3 + · · · + f (k)(a)

k!
(x − a)k + · · ·

is the Taylor series for f at a for |x − a| < R

The special case a = 0 has f(x) =
∞∑

n=0

cnxn for |x| < R. Then f(x) =
∞∑

n=0

f (n)(0)

n!
xn =

f(0) +
f ′(0)

1!
x +

f ′′(0)

2!
x2 +

f (3)(0)

3!
x3 + · · · + f (k)(0)

k!
xk + · · ·

is the Maclaurin series for f for |x| < R

f(x) =
∞∑

n=j

f (n)(a)

n!
(x − a)n for |x − a| < R is also a Taylor series for f at a and

f(x) =
∞∑

n=j

f (n)(0)

n!
xn for |x| < R is also a Maclaurin series for f .

Memorize the following Maclaurin series:

i) f(x) =
1

1 − x
=

∞∑

n=0

xn = 1 + x + x2 + x3 + · · · for R = 1.

ii) f(x) = ex =
∞∑

n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ · · · for R = ∞.

iii) f(x) = sinx =
∞∑

n=0

(−1)n x2n+1

(2n + 1)!
= x − x3

3!
+

x5

5!
− x7

7!
+ · · · for R = ∞.

iv) f(x) = cos x =
∞∑

n=0

(−1)n x2n

(2n)!
= 1 − x2

2!
+

x4

4!
− x6

6!
+ · · · for R = ∞.

v) f(x) = tan−1 x =
∞∑

n=0

(−1)n x2n+1

2n + 1
= x− x3

3
+

x5

5
− x7

7
+ · · · for R = 1.

Let the power series S =
∞∑

n=j

cn(x− a)n. Let the nth partial sum Sn =
n∑

i=j

ci(x − a)i.

A) If the Taylor series of f at a is S =
∞∑

n=j

f (n)(a)

n!
(x− a)n, then |S −Sn| = |Rn(x)| =

|f
(n+1)(z)
(n+1)!

(x − a)n+1| where z is between x and a (either x < z < a or a < z < x).

B) If the series is an alternating series S =
∑∞

n=j(−1)nbn where 0 < bn+1 ≤ bn and
limn→∞ bn = 0, then |S−Sn| ≤ bn+1 by the Alternating Series Estimation Theorem.

F22***) Let f(x) = kxpg(h(x)) where usually g(x) = ex or g(x) = 1
1−x

. a) Evaluate

f(x) or
∫

f(x)dx as an infinite series giving the 1st few terms. b) Evaluate S =
∫ b
0 f(x)dx

correct to within an error 0.001 by using A) or B) above. F07 9, S08 11, F08 8.
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Tips: i) Usually g(x) is a Maclaurin series g(x) =
∞∑

n=0

cnx
n and then

f(x) = xpg(x) =
∞∑

n=0

cnxn+p.

ii) If g(x) =
∞∑

n=0

cnx
n for |x| < R, then f(x) = g(h(x)) =

∞∑

n=0

cn[h(x)]n for |h(x)| < R.

iii) Often g(x) =
1

1 − x
=

∞∑

n=0

xn for |x| < 1. Then
kxp

1 − h(x)
= kxpg(h(x)) =

kxp
∞∑

n=0

[h(x)]n for |h(x)| < 1. Note that
1

1 + G(x)
=

1

1 − [−G(x)]
has h(x) = −G(x).

iv) To write
∫

f(x)dx as a series, use Evaluation Theorem b).

F23***) Find the Maclaurin series or Taylor series of f at a (of f centered at a) if
f(x) = kxpg(h(x)). See F07 8, S08 9, F08 8.

F24*) From 1st principles, find the Taylor series of f at a to find the degree d
Taylor polynomial Td(x) of f(x) about a. Recall that the Taylor series of f at a is

f(x) =
∞∑

n=0

f (n)(a)

n!
(x−a)n and the degree d Taylor polynomial Td(x) =

d∑

n=0

f (n)(a)

n!
(x−a)n.

See F08 7.

Tip. Make a table with headers n f (n)(x) f (n)(a) where a = 0 for a Maclaurin
series. Recall that f (0)(x) = f(x). Fill in the table for n = 0, 1, 2, 3, and 4. Try to find a
pattern and plug into the formula in F23).
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