Math 250 Exam 2 review. Thursday March 5. Bring a TI–30 calculator but NO NOTES. Emphasis on sections 5.5, 6.1, 6.2, 6.3, 3.7, 6.6, 8.1, 8.2, 8.3, part of 8.4; HW1-12; Q1-11. Know for trig functions that $0.707 \approx \sqrt{2}/2$ and $0.866 \approx \sqrt{3}/2$.

From Math 150, for derivatives know power rule, product rule, quotient rule, chain rule and rules from reference p. 5. For integration know power rule, u-substitution and rules 1-20 from reference p. 6.

Know everything from Exam 1 review, including F1)-F12).

The following problems are very important for exam 2 and the final. The notation F^{***} means it was on 3 out of 3 of the last 3 finals.

F13*) Occasionally you need to find a limit using Math 150 techniques instead of L'Hospital's rule. F08 1b

An **improper integral** is $\int_a^b f(x) dx$ where $a = -\infty$, $b = \infty$ or where f(x) has a vertical asymptote for some $c \in [a, b]$.

Improper integrals are defined as limits. If the limit exists as a real number, then $\int_a^b f(x)dx$ is **convergent**. If the limit does not exist, is ∞ or is $-\infty$, then $\int_a^b f(x)dx$ is **divergent**.

i)
$$\int_{a}^{\infty} f(x)dx = \lim_{t \to \infty} \int_{a}^{t} f(x)dx$$
, ii) $\int_{-\infty}^{b} f(x)dx = \lim_{t \to -\infty} \int_{t}^{b} f(x)dx$.

Assume the two integrals on the RHS below are convergent. Let a be any constant (chosen so that you can evaluate the two RHS integrals), then

iii)
$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{a} f(x)dx + \int_{a}^{\infty} f(x)dx = I_1 + I_2.$$

For iii), if either I_1 or I_2 is divergent, then $\int_{-\infty}^{\infty} f(x) dx$ is divergent. So stop as soon as one of the two integrals is shown to be divergent.

Now let a < b be real and suppose f(x) is continuous on [a, b] except for a vertical asymptote at a, b or $c \in (a, b)$.

(Several vertical asymptotes can be handled in a similar manner.)

iv) If the vertical asymptote is at b, then $\int_a^b f(x)dx = \lim_{t \to b-} \int_a^t f(x)dx$.

v) If the vertical asymptote is at a, then $\int_{a}^{b} f(x)dx = \lim_{t \to a+} \int_{t}^{b} f(x)dx$.

vi) If the vertical asymptote is at c, then $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$

 $\lim_{t\to c-} \int_a^t f(x)dx + \lim_{t\to c+} \int_t^b f(x)dx = I_1 + I_2.$ Again, if either I_1 or I_2 is divergent, then $\int_{-\infty}^{\infty} f(x)dx$ is divergent. So stop as soon as one of the two integrals is shown to be divergent.

Be able to show that $\int_{1}^{\infty} \frac{1}{x^{p}} dx = \begin{cases} \frac{1}{p-1}, & \text{if } p > 1 \\ \text{is divergent, } p \leq 1. \end{cases}$

Know that $\int_1^{\infty} \frac{1}{x^p} dx$ converges iff p > 1, that $\int_0^1 \frac{1}{x^p} dx$ converges iff p < 1, and $\int_0^{\infty} \frac{1}{x^p} dx$ diverges for all real p. Hence $\int_{-\infty}^{\infty} \frac{1}{x^p} dx$ diverges for all real p. But you need to show convergence or divergence by taking limits for exam, quiz and homework problems.

Comparison Theorem: Suppose f and g are continuous functions with $f(x) \ge g(x) \ge 0$ for $x \ge a$.

i) If $\int_a^{\infty} f(x) dx$ is convergent, then $\int_a^{\infty} g(x) dx$ is convergent.

ii) If $\int_a^\infty g(x)dx$ is divergent, then $\int_a^\infty f(x)dx$ is divergent.

Know what the graphs of $\tan t$, $\sec t$ (and other trig functions) look like on ref. p. 2. Know what the graph of $\ln t$, e^t and e^{-t} look like (see p. 144, 146, 154 and ref. p. 4). Know what the graph of $\tan^{-1} t$ looks like on ref. p. 3.

Memorize the following limits.

$$\begin{split} \lim_{t \to \infty} e^t &= \infty, \quad \lim_{t \to -\infty} e^t = 0 \\ \lim_{t \to \infty} e^{-t} &= 0, \quad \lim_{t \to -\infty} e^{-t} &= \infty \\ \lim_{t \to \infty} \ln t &= \infty, \quad \lim_{t \to 0^+} \ln t &= -\infty \\ \lim_{t \to \frac{\pi}{2}^-} \tan t &= \infty, \quad \lim_{t \to \frac{\pi}{2}^+} \tan t &= -\infty \\ \lim_{t \to \frac{\pi}{2}^-} \sec t &= \infty, \quad \lim_{t \to \frac{\pi}{2}^+} \sec t &= -\infty \\ \lim_{t \to \infty} \sec t &= \pi/2, \quad \lim_{t \to -\infty} \tan^{-1} t &= -\pi/2 \\ \lim_{t \to \infty} \sec^{-1} t &= \pi/2, \quad \lim_{t \to -\infty} \sec^{-1} t &= \pi/2 \end{split}$$

F14)** Show $\int_a^b f(x)dx$ or $\int_a^\infty f(x)dx$ or $\int_{-\infty}^b f(x)dx$ is divergent because i) the limit is $\pm \infty$ or does not exist, or ii) by using the Comparison Theorem. F07 5, S08 5,

Integrals $\int_{-a}^{a} \frac{dx}{x^{p}}$ and $\int_{-a}^{a} \frac{(p-1)dx}{x^{p}}$ are especially common where p > 1 and often a = 1.

F15*)** Find $\int_a^b f(x) dx$ for an improper integral where $a = -\infty$ and $b = \infty$ are allowed. F07 4, S08 4, F08 3c.

Often the integral needs to be found using trig substitution or

i)
$$\lim_{t \to \infty} \int_{c}^{t} \frac{dx}{a^{2} + x^{2}} = \lim_{t \to \infty} \frac{1}{a} [\tan^{-1}(\frac{t}{a}) - \tan^{-1}(\frac{c}{a})] = \frac{1}{a} [\frac{\pi}{2} - \tan^{-1}(\frac{c}{a})] \quad \text{or}$$

ii)
$$\lim_{t \to \infty} \int_{c}^{t} \frac{dx}{x\sqrt{x^{2} - a^{2}}} = \lim_{t \to \infty} \frac{1}{a} [\sec^{-1}(\frac{t}{a}) - \sec^{-1}(\frac{c}{a})] = \frac{1}{a} [\frac{\pi}{2} - \sec^{-1}(\frac{c}{a})].$$

(Often $a = 1$. For i), often $c = 0$. For ii) need $c > 1$ and often $c = 2a$.)

A sequence $\{a_n\} = \{a_n\}_1^\infty = \{a_1, a_2, a_3...\}$ where there is a function $a(n) = a_n$ with domain the positive integers $\{1, 2, 3, ...\}$.

If $\lim_{n\to\infty} a_n = L$, a real number, then the sequence $\{a_n\}$ converges or is convergent. If the limit does not exist or is $\pm \infty$, then the sequence $\{a_n\}$ diverges or is divergent.

Notation for sums is useful. $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots$

$$\sum_{n=1}^{3} a_n = a_1 + a_2 + a_3.$$

Integrals are limits of sums: $\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \frac{b-a}{n}$ where $x_i = a + i(b-a)/n.$
Algebra of sums: $\sum_{i=1}^n 1 = n, \quad \sum_{i=1}^n c = cn, \sum_{i=1}^n ca_i = c \sum_{i=1}^n a_i, \sum_{i=1}^n (a_i \pm b_i) = \sum_{i=1}^n a_i \pm \sum_{i=1}^n b_i.$

An infinite series is a sum $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots$. The *n*th partial sum $s_n = \sum_{i=1}^{n} a_i = a_1 + a_2 + a_3 + \cdots + a_n$.

If the sequence $\{s_n\}$ is convergent with $\lim_{n\to\infty} s_n = s$, a real number, then $\sum_{n=1}^{\infty} a_n$ is convergent or converges with $\sum_{n=1}^{\infty} a_n = s$. If $\{s_n\}$ is divergent, then $\sum_{n=1}^{\infty} a_n$ is divergent or diverges.

Suppose $a \neq 0$. The **geometric series** $\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$ if |r| < 1. If $|r| \ge 1$, then the geometric series $\sum_{n=1}^{\infty} ar^{n-1}$ diverges.

A convergent infinite series remains convergent if the 1st k terms are discarded or if k + 1 additional terms $a_0, a_{-1}, ..., a_{-k}$ are added. A divergent infinite series remains divergent if the 1st k terms are discarded or if k + 1 additional terms are added.

Note that the geometric series $\sum_{n=0}^{\infty} ar^{n-1} = a_0 + \sum_{n=1}^{\infty} ar^{n-1}$. Note that $\sum_{n=1}^{\infty} dr^n = \sum_{n=1}^{\infty} dr r^{n-1}$ is a geometric series with a = dr. Suppose $\sum_{n=1}^{\infty} a_n$ is convergent (divergent). Then $c \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} ca_n$ remains convergent (divergent) for any $c \neq 0$.

The **p-series** $\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \cdots$ converges for p > 1 and diverges for $p \le 1$. The divergent 1 series is also called the harmonic series.

Let *n* and *d* be integers with
$$d \ge 1$$
. The **telescoping series**

$$\sum_{n=1}^{\infty} \frac{kd}{(n+c)(n+d+c)} = k \sum_{n=1}^{\infty} \frac{d}{(n+c)(n+d+c)} = k \lim_{n \to \infty} \sum_{i=1}^{n} (\frac{1}{i+c} - \frac{1}{i+d+c}) = k \lim_{n \to \infty} [\frac{1}{1+c} + \frac{1}{2+c} + \dots + \frac{1}{d+c} - \frac{1}{n+1+c} - \dots - \frac{1}{n+d+c}] = k [\frac{1}{1+c} + \dots + \frac{1}{d+c}].$$
Similarly, the telescoping series

$$\sum_{n=j+1}^{\infty} \frac{kd}{(n+c)(n+d+c)} = k \sum_{n=j+1}^{\infty} \frac{d}{(n+c)(n+d+c)} = k \lim_{n \to \infty} \sum_{i=j+1}^{n} (\frac{1}{i+c} - \frac{1}{i+d+c}) = k \lim_{n \to \infty} [\frac{1}{j+1+c} + \frac{1}{j+2+c} + \dots + \frac{1}{j+d+c} - \frac{1}{n+1+c} - \dots - \frac{1}{n+d+c}]$$

$$= k [\frac{1}{j+1+c} + \frac{1}{j+d+c}].$$
Typically $k = 1$ or $k = 1/d$, $j = 1$ and $1 \le d \le 3$. To see this claim, note that

the partial sum $s_n = \sum_{i=1}^n \frac{kd}{(i+c)(i+d+c)}$. The term a_i has partial fraction expansion $\frac{A}{i+c} + \frac{B}{i+d+c} \quad \text{or } kd = A(i+c+d) + B(i+c). \text{ If } i = -c, \text{ than } kd = Ad \text{ or } A = k. \text{ If } i = -c, \text{ the } i = -c, \text{ the$ i = -(c+d), then kd = B(-d) or B = -k. Thus $s_n = \sum_{i=1}^n (\frac{k}{i+c} - \frac{k}{i+d+c})$. Thus $\sum_{n=1}^{\infty} \frac{kd}{(n+c)(n+d+c)} = \lim_{n \to \infty} s_n = k \lim_{n \to \infty} \sum_{i=1}^{n} (\frac{1}{i+c} - \frac{1}{i+d+c}).$ All but the 1st *d* terms of $\frac{1}{i+c}$ and the last d terms of $\frac{-1}{i+d+c}$ cancel when s_n is written as a telescoping sum. Thus $\sum_{n=1}^{\infty} \frac{kd}{(n+c)(n+d+c)} =$ $k \lim_{n \to \infty} \left[\frac{1}{1+c} + \frac{1}{2+c} + \dots + \frac{1}{d+c} - \frac{1}{n+1+c} - \dots - \frac{1}{n+d+c} \right].$ When finding $\sum_{i=1}^{\infty} \frac{kd}{(n+c)(n+d+c)}$, write out the partial fraction expansion to find A and B and find the limit of the partial sum $\lim_{n\to\infty} k \sum_{i=1}^{n} \left(\frac{1}{i+c} - \frac{1}{i+d+c}\right) =$ $k \lim_{n \to \infty} \left[\frac{1}{1+c} + \frac{1}{2+c} + \dots + \frac{1}{d+c} - \frac{1}{n+1+c} - \dots - \frac{1}{n+d+c} \right].$ You should be able to find the 2*d* terms of $s_n = \sum_{i=j+1}^n \left(\frac{1}{i+c} - \frac{1}{i+d+c}\right)$ quickly since they are the 1st *d* terms of $\frac{1}{i+c}$ and the last *d* terms of $\frac{-1}{i+d+c}$. Ex. $\sum_{i=1}^{n} \left(\frac{1}{i-1} - \frac{1}{i+1}\right) = \frac{1}{1} + \frac{1}{2} - \frac{1}{n} - \frac{1}{n+1}$ since d = 2 with i+1 = i-1+d = i-1+2. Ex. $\sum_{i=1}^{n} (\frac{1}{i} - \frac{1}{i+3}) = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} - \frac{1}{n+1} - \frac{1}{n+2} - \frac{1}{n+3}$ since d = 3.

The nth term test for divergence: If it is not true than $\lim_{n\to\infty} a_n = 0$, then $\sum_{n=1}^{\infty} a_n$ is divergent.

So $\sum_{n=1}^{\infty} a_n$ diverges if $\lim_{n \to \infty} a_n = L \neq 0$ or if $\lim_{n \to \infty} a_n$ does not exist. Note that $\lim_{n \to \infty} a_n = 0$ is inconclusive: the series $\sum_{n=1}^{\infty} a_n$ could converge or diverge.

The integral test: Suppose f is a continuous, positive, decreasing function on $[c, \infty)$. Let $a_n = f(n)$.

a) If $\int_{c}^{\infty} f(x)dx$ is convergent, then $\sum_{n=c}^{\infty} a_{n}$ is convergent. b) If $\int_{c}^{\infty} f(x)dx$ is divergent, then $\sum_{n=c}^{\infty} a_{n}$ is divergent.

Tips: i) Usually c = 1 and the sum need not start at c since convergence or divergence of an infinite series $\sum_{i=d}^{\infty} a_n$ does not depend on the 1st k terms.

ii) Be able to show that $\int_{1}^{\infty} \frac{1}{x^{p}} dx = \frac{1}{p-1}$ if p > 1 to show that the p series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges for p > 1.

iii) Be able to show that $\int_{1}^{\infty} \frac{1}{x^{p}} dx = \infty$ if $p \leq 1$ to show that the *p* series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ diverges for $p \leq 1$.

iv) If $\int_{1}^{\infty} f(x) dx = L$, the series $\sum_{n=1}^{\infty} a_n$ converges, but $\sum_{n=1}^{\infty} a_n \neq L$ in general.

v) The integral test is often used where f(x) = 1/g(x) or $f(x) = \frac{1}{g(x)h(x)}$ where g(x) and h(x) are increasing.

vi) Recall that continuous f(x) is decreasing on $[c, \infty)$ if f'(x) < 0 on (c, ∞) .

vii) Function $g(x) = x^p$ is positive and increasing for x > 0 and p > 0, $h(x) = [\ln(x)]^p$ is positive and increasing increasing for x > 1 and p > 0, $g(x) = e^x$ is positive and increasing on $(-\infty, \infty)$.

viii) The function $g(x) = \ln(x)/x$ is positive and decreasing for x > e so for x > 3.

Know that i)
$$\frac{x^p}{e^x} \to 0$$
 as $x \to \infty$ for all p .
So ii) $\frac{e^x}{x^p} \to \infty$ as $x \to \infty$ for all p .
iii) $\frac{\ln x}{x} \to 0$ as $x \to \infty$.
So iv) $\frac{x}{\ln x} \to \infty$ as $x \to \infty$.

Let $\tan^{-1}(\theta) = w$. Then $\tan[\tan^{-1}(\theta)] = \theta = \tan w$ and w is the angle (in radians) whose $\tan is \theta$. So find $w \in (-\pi/2, \pi/2)$ such that $\tan(w) = \theta$. Then $\tan^{-1}(\theta) = w$. Know that $\tan(0) = 0$ and $\tan(\pi/4) = 1$. Thus $\tan^{-1}(0) = 0$ and $\tan^{-1}(1) = \pi/4$.

Let $\sin^{-1}(\theta) = w$. Then $\sin[\sin^{-1}(\theta)] = \theta = \sin w$ and w is the angle (in radians) whose sine is θ . So find $w \in [-\pi/2, \pi/2]$ such that $\sin(w) = \theta$. Then $\sin^{-1}(\theta) = w$. Know that $\sin(0) = 0$, $\sin(\pi/2) = 1$ and $\sin(-\pi/2) = -1$. Thus $\sin^{-1}(0) = 0$, $\sin^{-1}(1) = \pi/2$, and $\sin^{-1}(-1) = -\pi/2$.

Let $\sec^{-1}(\theta) = w$. Then $\sec[\sec^{-1}(\theta)] = \theta = \sec w = 1/\cos(w)$. So find $w \in (0, \pi/2) \cup (\pi/2, \pi)$ such that $\sec(w) = \theta$ or $\cos(w) = 1/\theta$. Then $\sec^{-1}(\theta) = w$. Know that $\cos(\frac{\pi}{3}) = 1/2$ so $2 = \sec(\pi/3)$. Thus $\sec^{-1}(2) = \pi/3$.

The Comparison Test: Suppose $\sum a_n$ and $\sum b_n$ are series with positive terms.

- a) If $\sum b_n$ is convergent and $0 < a_n \leq b_n$ for all n, then $\sum a_n$ is convergent.
- b) If $\sum b_n$ is divergent and $0 < b_n \le a_n$ for all n, then $\sum a_n$ is divergent.

Tips: For the comparison test, usually $\sum b_n = \sum \frac{1}{n^p}$ is a *p* series which converges for p > 1 and diverges for $p \le 1$, or $\sum b_n = \sum a r^{n-1}$ is a geometric series which converges for |r| < 1 and diverges for $|r| \ge 1$.

The Limit Comparison Test: Suppose $\sum a_n$ and $\sum b_n$ are series with positive terms. If $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$ where c is real, then either both series diverge or both series converge.

Note: "n!" is read "n factorial" and $n! = n(n-1)(n-2)(n-3)\cdots 3 \cdot 2 \cdot 1$. So n! = n[(n-1)!] = n(n-1)[(n-2)!] = n(n-1)(n-2)[(n-3)!] et cetera. Here $n \ge 1$ is an integer and 0! = 1.

Know that n^n dominates n! which dominates the exponential c^n for any constant c. Also the exponential c^n dominates n^p for any c > 1, p > 0. Thus $\lim_{n \to \infty} \frac{n!}{n^n} = 0 = \lim_{n \to \infty} \frac{n}{n} \frac{n-1}{n} \frac{n-2}{n} \cdots \frac{3}{n} \frac{2}{n} \frac{1}{n}$. Similarly, $\lim_{n \to \infty} \frac{c^n}{n^n} = 0 = \lim_{n \to \infty} \frac{c}{n} \frac{c}{n} \frac{c}{n} \cdots \frac{c}{n} \frac{c}{n} \frac{c}{n}$ and $\lim_{n \to \infty} \frac{n^p}{n^n} = 0 = \lim_{n \to \infty} \frac{1}{n^{n-p}}$. Now $\lim_{n \to \infty} \frac{c^n}{n!} = 0 = \lim_{n \to \infty} \frac{c}{n} \frac{1}{n-1} \frac{c}{n-2} \cdots \frac{c}{2} \frac{c}{1}$. By L'Hospital's rule, $\lim_{n \to \infty} \frac{n^p}{c^n} = \lim_{n \to \infty} \frac{p n^{p-1}}{\ln(c) c^n} = \lim_{n \to \infty} \frac{p(p-1) n^{p-2}}{[\ln(c)]^2 c^n} = \lim_{n \to \infty} \frac{p(p-1)(p-2) n^{p-3}}{[\ln(c)]^3 c^n}$ $= \cdots = \lim_{n \to \infty} \frac{p!}{[\ln(c)]^p c^n} = 0$ if c > 1 and $p \ge 1$ is an integer. Thus $\lim_{n \to \infty} \frac{n^p}{c^n} = 0$ if c > 1for any real p by the comparison theorem.

To summarize, $\lim_{n \to \infty} \frac{n!}{n^n} = 0$, $\lim_{n \to \infty} \frac{c^n}{n^n} = 0$ for any constant c, $\lim_{n \to \infty} \frac{n^p}{n^n} = 0$ and $\lim_{n \to \infty} \frac{n^p}{n!} = 0$ for any constant p, $\lim_{n \to \infty} \frac{c^n}{n!} = 0$ for any constant c, and $\lim_{n \to \infty} \frac{n^p}{c^n} = 0$ for any c > 1 and any real p.

Also, know that $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e.$

An **alternating series** has terms that are alternately positive and negative. If $b_n > 0$, then $\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + \cdots$ is an alternating series where the first term $a_1 = b_1$ is positive, while $\sum_{n=1}^{\infty} (-1)^n b_n = -b_1 + b_2 - b_3 + b_4 - \cdots$ is an alternating series where the first term $a_1 = -b_1$ is negative.

Alternating Series Test: Suppose $b_n > 0$ and $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ (or $\sum_{n=1}^{\infty} (-1)^n b_n$) is an alternating series.

i) If $b_{n+1} \leq b_n$ for all n (or if b_n is decreasing), and ii) $\lim_{n \to \infty} b_n = 0$, then the series is convergent.

Tip: For an alternating series, try the *n*th term test for divergence and the Alternating Series Test for convergence. Note that if $\lim_{n\to\infty} b_n \neq 0$ then $\lim_{n\to\infty} a_n = \lim_{n\to\infty} (-1)^{n-1} b_n \neq 0$ (does not exist), and $\sum a_n$ diverges by the *n*th term test.

A series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent if $\sum_{n=1}^{\infty} |a_n|$ is convergent.

A series $\sum_{n=1}^{\infty} a_n$ is conditionally convergent if $\sum_{n=1}^{\infty} |a_n| = \infty$ is divergent but $\sum_{n=1}^{\infty} a_n$ is convergent.

Absolute Convergence Theorem: If $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.

Thus if $\sum_{n=1}^{\infty} a_n$ is divergent then $\sum_{n=1}^{\infty} a_n$ is not absolutely convergent and $\sum_{n=1}^{\infty} |a_n| = \infty$ is divergent. If $\sum_{n=1}^{\infty} |a_n|$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.

Comparison Test for Absolute Convergence: If $|a_n| \leq b_n$ for all n and $\sum b_n$ converges, then $\sum a_n$ is absolutely convergent and so convergent.

Tip: This test is useful for showing absolute convergence, and is often useful if the numerator equals (or contains) $\sin(n)$, $\cos(n)$ or $(-1)^n$ since then the $|\sin(n)| \leq 1$, $|\cos(n)| \leq 1$ and $|(-1)^n| = 1 \leq 1$.

The Ratio Test: i) If $\lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| = L < 1$, then $\sum a_n$ is absolutely convergent and so convergent.

so convergent. ii) If $\lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| = L > 1$ where $L = \infty$ is allowed, then $\sum a_n$ divergent and so not absolutely convergent.

iii) If $\lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| = 1$, then the test is inconclusive (so it is possible that $\sum a_n$ is divergent, conditionally convergent or absolutely convergent).

Tips: i) If the index n of a_n is invoved as an exponential or factorial $(c^n \text{ or } (n-c)!$ where c is real), then the ratio test is often useful for showing convergence or divergence of $\sum a_n$.

ii) If n is **only** involved algebraically or logarithmically (eg $\sum \frac{1}{n^p}$, $\sum \frac{n}{(4n-3)(4n-1)}$ or $\sum \frac{\sqrt{2n-1}\ln(4n+1)}{n(n+1)}$), then often the ratio test will fail (be inconclusive).

The Root Test: i) If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$, then $\sum a_n$ is absolutely convergent and so convergent.

ii) If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$ where $L = \infty$ is allowed, then $\sum a_n$ divergent and so not absolutely convergent.

iii) If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$, then the test is inconclusive (so it is possible that $\sum a_n$ is divergent, conditionally convergent or absolutely convergent).

Tips: i) The root test is useful when nth powers occur.

ii)
$$\lim_{n \to \infty} n^{1/n} = 1$$
 and $\lim_{n \to \infty} \frac{1}{n^{1/n}} = 1$
iii) $\sqrt[n]{|a_n|} = |a_n|^{1/n}$.

F16***) Show that a series $\sum a_n$ converges or diverges using series tests. F08 4, S08 7, F07 6.

F17***) Show that a series $\sum a_n$ is absolutely convergent, conditionally convergent or divergent. (Usually the series is a conditionally convergent alternating series, so you have to show that $\sum |a_n|$ is divergent, but $\sum a_n$ is convergent.) F08 5, S08 8, F07 7.

Tips: i) The geometric series $\sum_{n=j+1}^{\infty} ar^{n-1}$ and the scaled geometric series $\sum_{n=j+1}^{\infty} ar^{n+k}$ converge if |r| < 1 and diverge if $|r| \ge 1$.

ii) The **p-series** $\sum_{n=j+1}^{\infty} \frac{1}{n^p}$ and the scaled **p-series** $\sum_{n=j+1}^{\infty} \frac{c}{n^p}$ converge for p > 1 and diverge for $p \le 1$.

iii) The nth term (divergence) test: If $\lim_{n\to\infty} a_n \neq 0$, then $\sum_{n=1}^{\infty} a_n$ diverges.

This test is often useful for alternating series and for series where a_n is a ratio of polynomials and roots.

iv) The integral test: Suppose f is a continuous, positive, decreasing function on $[c, \infty)$. Let $a_n = f(n)$. Then $\sum_{n=c}^{\infty} a_n$ converges iff $\int_c^{\infty} f(x) dx$ is convergent.

The integral test is useful for p-series $\sum \frac{1}{n^p}$ and $\sum \frac{1}{n[\ln(n)]^p}$ and sometimes for functions f(x) = 1/g(x) or f(x) = 1/[g(x)h(x)] where g and h are increasing functions.

v) Absolute Convergence Theorem: If $\sum_{n=j+1}^{\infty} |a_n|$ converges, then $\sum_{n=j+1}^{\infty} a_n$ converges.

vi) The Comparison Test: a) If $\sum b_n$ converges and $0 \le a_n \le b_n$ for all n, then $\sum a_n$ converges. b) If $\sum b_n$ is diverges and $0 \le b_n \le a_n$ for all n, then $\sum a_n$ is diverges.

vii) Comparison Test for Absolute Convergence: If $|a_n| \leq b_n$ for all n and $\sum b_n$ converges, then $\sum a_n$ is absolutely convergent and so convergent.

viii) The Limit Comparison Test: Let $\sum a_n$ and $\sum b_n$ be series with positive terms. If $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$ where c is real, then either both series diverge or both series converge.

Tests vi)-viii) are useful if a_n is a ratio of polynomials and roots. For the limit comparison test, let $b_n = 1/n^p = \text{largest power in numerator/largest power in denominator}$ of a_n where p > 0 (so that the series converges).

ix) Alternating Series Test: Suppose $b_n > 0$ and $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ (or $\sum_{n=1}^{\infty} (-1)^n b_n$) is an alternating series. If a) $b_{n+1} \leq b_n$ for all n (or if b_n is decreasing), and b) $\lim_{n \to \infty} b_n = 0$, then the series is convergent.

x) The Ratio Test: Let $\lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| = L$. a) If L < 1, then $\sum a_n$ is absolutely convergent. b) If L > 1, then $\sum a_n$ diverges. c) If L = 1, then the test fails.

This test is useful if a_n contains terms like (n+j)! and c^n .

xi) The Root Test: Let $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L$. a) If L < 1, then $\sum a_n$ is absolutely convergent. b) If L > 1, then $\sum a_n$ diverges. c) If L = 1, then the test fails.

This test is useful if $a_n = (c_n)^n$, $a_n = \frac{(c_n)^n}{n^p}$ or $a_n = \frac{n^p}{(c_n)^n}$.