
Math 250 Exam 2 review. Thursday March 5. Bring a TI–30 calculator but NO
NOTES. Emphasis on sections 5.5, 6.1, 6.2, 6.3, 3.7, 6.6, 8.1, 8.2, 8.3, part of 8.4; HW1-
12; Q1-11. Know for trig functions that 0.707 ≈

√
2/2 and 0.866 ≈

√
3/2.

From Math 150, for derivatives know power rule, product rule, quotient rule, chain
rule and rules from reference p. 5. For integration know power rule, u-substitution and
rules 1-20 from reference p. 6.

Know everything from Exam 1 review, including F1)-F12).

The following problems are very important for exam 2 and the final. The
notation F*** means it was on 3 out of 3 of the last 3 finals.

F13*) Occasionally you need to find a limit using Math 150 techniques instead of
L’Hospital’s rule. F08 1b

An improper integral is
∫ b
a f(x)dx where a = −∞, b = ∞ or where f(x) has a

vertical asymptote for some c ∈ [a, b].

Improper integrals are defined as limits. If the limit exists as a real number, then∫ b
a f(x)dx is convergent. If the limit does not exist, is ∞ or is −∞, then

∫ b
a f(x)dx is

divergent.

i)
∫ ∞

a
f(x)dx = lim

t→∞

∫ t

a
f(x)dx, ii)

∫ b

−∞
f(x)dx = lim

t→−∞

∫ b

t
f(x)dx.

Assume the two integrals on the RHS below are convergent. Let a be any constant
(chosen so that you can evaluate the two RHS integrals), then

iii)
∫ ∞

−∞
f(x)dx =

∫ a

−∞
f(x)dx +

∫ ∞

a
f(x)dx = I1 + I2.

For iii), if either I1 or I2 is divergent, then
∫ ∞
−∞ f(x)dx is divergent. So stop as soon

as one of the two integrals is shown to be divergent.
Now let a < b be real and suppose f(x) is continuous on [a, b] except for a vertical

asymptote at a, b or c ∈ (a, b).
(Several vertical asymptotes can be handled in a similar manner.)

iv) If the vertical asymptote is at b, then
∫ b

a
f(x)dx = lim

t→b−

∫ t

a
f(x)dx.

v) If the vertical asymptote is at a, then
∫ b

a
f(x)dx = lim

t→a+

∫ b

t
f(x)dx.

vi) If the vertical asymptote is at c, then
∫ b

a
f(x)dx =

∫ c

a
f(x)dx +

∫ b

c
f(x)dx =

lim
t→c−

∫ t

a
f(x)dx + lim

t→c+

∫ b

t
f(x)dx = I1 + I2. Again, if either I1 or I2 is divergent, then

∫ ∞
−∞ f(x)dx is divergent. So stop as soon as one of the two integrals is shown to

be divergent.

Be able to show that
∫ ∞

1

1

xp
dx =

{
1

p−1
, if p > 1

is divergent, p ≤ 1.

Know that
∫∞
1

1
xp dx converges iff p > 1, that

∫ 1
0

1
xp dx converges iff p < 1, and∫ ∞

0
1
xp dx diverges for all real p. Hence

∫ ∞
−∞

1
xp dx diverges for all real p. But you

need to show convergence or divergence by taking limits for exam, quiz and
homework problems.
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Comparison Theorem: Suppose f and g are continuous functions with
f(x) ≥ g(x) ≥ 0 for x ≥ a.

i) If
∫∞
a f(x)dx is convergent, then

∫ ∞
a g(x)dx is convergent.

ii) If
∫ ∞
a g(x)dx is divergent, then

∫ ∞
a f(x)dx is divergent.

Know what the graphs of tan t, sec t (and other trig functions) look like on ref. p. 2.
Know what the graph of ln t, et and e−t look like (see p. 144, 146, 154 and ref. p. 4).
Know what the graph of tan−1 t looks like on ref. p. 3.
Memorize the following limits.
lim
t→∞

et = ∞, lim
t→−∞

et = 0

lim
t→∞

e−t = 0, lim
t→−∞

e−t = ∞
lim
t→∞

ln t = ∞, lim
t→0+

ln t = −∞
lim

t→π
2
−

tan t = ∞, lim
t→π

2
+

tan t = −∞

lim
t→π

2
−

sec t = ∞, lim
t→π

2
+

sec t = −∞

lim
t→∞

tan−1 t = π/2, lim
t→−∞

tan−1 t = −π/2

lim
t→∞

sec−1 t = π/2, lim
t→−∞

sec−1 t = π/2

F14**) Show
∫ b
a f(x)dx or

∫ ∞
a f(x)dx or

∫ b
−∞ f(x)dx is divergent because i) the limit

is ±∞ or does not exist, or ii) by using the Comparison Theorem. F07 5, S08 5,

Integrals
∫ a

−a

dx

xp
and

∫ a

−a

(p − 1)dx

xp
are especially common where p > 1 and often

a = 1.

F15***) Find
∫ b
a f(x)dx for an improper integral where a = −∞ and b = ∞ are

allowed. F07 4, S08 4, F08 3c.
Often the integral needs to be found using trig substitution or

i) lim
t→∞

∫ t

c

dx

a2 + x2
= lim

t→∞

1

a
[tan−1(

t

a
) − tan−1(

c

a
)] =

1

a
[
π

2
− tan−1(

c

a
)] or

ii) lim
t→∞

∫ t

c

dx

x
√

x2 − a2
= lim

t→∞

1

a
[sec−1(

t

a
) − sec−1(

c

a
)] =

1

a
[
π

2
− sec−1(

c

a
)].

(Often a = 1. For i), often c = 0. For ii) need c > 1 and often c = 2a.)

A sequence {an} = {an}∞1 = {a1, a2, a3...} where there is a function a(n) = an with
domain the positive integers {1, 2, 3, ...}.

If lim
n→∞

an = L, a real number, then the sequence {an} converges or is convergent. If

the limit does not exist or is ±∞, then the sequence {an} diverges or is divergent.

Notation for sums is useful.
∞∑

n=1

an = a1 + a2 + a3 + · · · .
3∑

n=1

an = a1 + a2 + a3.

Integrals are limits of sums:
∫ b

a
f(x)dx = lim

n→∞

n∑

i=1

f(xi)
b− a

n
where xi = a+i(b−a)/n.

Algebra of sums:
n∑

i=1

1 = n,
n∑

i=1

c = cn,
n∑

i=1

cai = c
n∑

i=1

ai,
n∑

i=1

(ai ± bi) =
n∑

i=1

ai ±
n∑

i=1

bi.
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————————————-

An infinite series is a sum
∞∑

n=1

an = a1 + a2 + a3 + · · · .

The nth partial sum sn =
n∑

i=1

ai = a1 + a2 + a3 + · · · + an.

If the sequence {sn} is convergent with lim
n→∞

sn = s, a real number, then
∞∑

n=1

an is

convergent or converges with
∞∑

n=1

an = s. If {sn} is divergent, then
∞∑

n=1

an is divergent or

diverges.

Suppose a 6= 0. The geometric series
∞∑

n=1

arn−1 =
a

1 − r
if |r| < 1. If |r| ≥ 1, then

the geometric series
∞∑

n=1

arn−1 diverges.

A convergent infinite series remains convergent if the 1st k terms are discarded or
if k + 1 additional terms a0, a−1, ..., a−k are added. A divergent infinite series remains
divergent if the 1st k terms are discarded or if k + 1 additional terms are added.

Note that the geometric series
∞∑

n=0

arn−1 = a0 +
∞∑

n=1

arn−1.

Note that
∞∑

n=1

d rn =
∞∑

n=1

dr rn−1 is a geometric series with a = dr.

Suppose
∞∑

n=1

an is convergent (divergent). Then c
∞∑

n=1

an =
∞∑

n=1

can remains convergent

(divergent) for any c 6= 0..

The p-series
∞∑

n=1

1

np
=

1

1p
+

1

2p
+

1

3p
+ · · · converges for p > 1 and diverges for p ≤ 1.

The divergent 1 series is also called the harmonic series.

————————————————————–
Let n and d be integers with d ≥ 1. The telescoping series

∞∑

n=1

kd

(n + c)(n + d + c)
= k

∞∑

n=1

d

(n + c)(n + d + c)
= k lim

n→∞

n∑

i=1

(
1

i + c
− 1

i + d + c
) =

k lim
n→∞

[
1

1 + c
+

1

2 + c
+ · · · + 1

d + c
− 1

n + 1 + c
− · · · − 1

n + d + c
] =

k[
1

1 + c
+ · · · + 1

d + c
].

Similarly, the telescoping series
∞∑

n=j+1

kd

(n + c)(n + d + c)
= k

∞∑

n=j+1

d

(n + c)(n + d + c)
= k lim

n→∞

n∑

i=j+1

(
1

i + c
− 1

i + d + c
) =

k lim
n→∞

[
1

j + 1 + c
+

1

j + 2 + c
+ · · · + 1

j + d + c
− 1

n + 1 + c
− · · · − 1

n + d + c
]

= k[
1

j + 1 + c
+ · · · + 1

j + d + c
].

Typically k = 1 or k = 1/d, j = 1 and 1 ≤ d ≤ 3. To see this claim, note that
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the partial sum sn =
n∑

i=1

kd

(i + c)(i + d + c)
. The term ai has partial fraction expansion

A

i + c
+

B

i + d + c
or kd = A(i+ c + d) + B(i + c). If i = −c, than kd = Ad or A = k. If

i = −(c + d), then kd = B(−d) or B = −k. Thus sn =
n∑

i=1

(
k

i + c
− k

i + d + c
). Thus

∞∑

n=1

kd

(n + c)(n + d + c)
= lim

n→∞
sn = k lim

n→∞

n∑

i=1

(
1

i + c
− 1

i + d + c
). All but the 1st d terms

of
1

i + c
and the last d terms of

−1

i + d + c
cancel when sn is written as a telescoping sum.

Thus
∞∑

n=1

kd

(n + c)(n + d + c)
=

k lim
n→∞

[
1

1 + c
+

1

2 + c
+ · · · + 1

d + c
− 1

n + 1 + c
− · · · − 1

n + d + c
].

When finding
∞∑

n=1

kd

(n + c)(n + d + c)
, write out the partial fraction expansion

to find A and B and find the limit of the partial sum lim
n→∞

k
n∑

i=1

(
1

i + c
− 1

i + d + c
) =

k lim
n→∞

[
1

1 + c
+

1

2 + c
+ · · · + 1

d + c
− 1

n + 1 + c
− · · · − 1

n + d + c
].

You should be able to find the 2d terms of sn =
∑n

i=j+1(
1

i+c
− 1

i+d+c
) quickly since

they are the 1st d terms of
1

i + c
and the last d terms of

−1

i + d + c
.

Ex.
n∑

i=2

(
1

i − 1
− 1

i + 1
) =

1

1
+

1

2
− 1

n
− 1

n + 1
since d = 2 with i+1 = i−1+d = i−1+2.

Ex.
n∑

i=1

(
1

i
− 1

i + 3
) =

1

1
+

1

2
+

1

3
− 1

n + 1
− 1

n + 2
− 1

n + 3
since d = 3.

————————————————-

The nth term test for divergence: If it is not true than lim
n→∞

an = 0, then
∞∑

n=1

an

is divergent.

So
∞∑

n=1

an diverges if lim
n→∞

an = L 6= 0 or if lim
n→∞

an does not exist. Note that lim
n→∞

an = 0

is inconclusive: the series
∞∑

n=1

an could converge or diverge.

The integral test: Suppose f is a continuous, positive, decreasing function on [c,∞).
Let an = f(n).

a) If
∫ ∞

c
f(x)dx is convergent, then

∞∑

n=c

an is convergent.

b) If
∫ ∞

c
f(x)dx is divergent, then

∞∑

n=c

an is divergent.

Tips: i) Usually c = 1 and the sum need not start at c since convergence or divergence
of an infinite series

∑∞
i=d an does not depend on the 1st k terms.
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ii) Be able to show that
∫ ∞

1

1

xp
dx =

1

p − 1
if p > 1 to show that the p series

∞∑

n=1

1

np

converges for p > 1.

iii) Be able to show that
∫ ∞

1

1

xp
dx = ∞ if p ≤ 1 to show that the p series

∞∑

n=1

1

np

diverges for p ≤ 1.

iv) If
∫ ∞

1
f(x) dx = L, the series

∑∞
n=1 an converges, but

∑∞
n=1 an 6= L in general.

v) The integral test is often used where f(x) = 1/g(x) or f(x) = 1
g(x)h(x)

where g(x)

and h(x) are increasing.
vi) Recall that continuous f(x) is decreasing on [c,∞) if f ′(x) < 0 on (c,∞).
vii) Function g(x) = xp is positive and increasing for x > 0 and p > 0, h(x) = [ln(x)]p

is positive and increasing increasing for x > 1 and p > 0, g(x) = ex is positive and
increasing on (−∞,∞).

viii) The function g(x) = ln(x)/x is positive and decreasing for x > e so for x > 3.
————————————–

Know that i)
xp

ex
→ 0 as x → ∞ for all p.

So ii)
ex

xp
→ ∞ as x → ∞ for all p.

iii)
lnx

x
→ 0 as x → ∞.

So iv)
x

lnx
→ ∞ as x → ∞.

—————————————
Let tan−1(θ) = w. Then tan[tan−1(θ)] = θ = tanw and w is the angle (in radians)

whose tan is θ. So find w ∈ (−π/2, π/2) such that tan(w) = θ. Then tan−1(θ) = w.
Know that tan(0) = 0 and tan(π/4) = 1. Thus tan−1(0) = 0 and tan−1(1) = π/4.

Let sin−1(θ) = w. Then sin[sin−1(θ)] = θ = sin w and w is the angle (in radians)
whose sine is θ. So find w ∈ [−π/2, π/2] such that sin(w) = θ. Then sin−1(θ) = w. Know
that sin(0) = 0, sin(π/2) = 1 and sin(−π/2) = −1. Thus sin−1(0) = 0, sin−1(1) = π/2,
and sin−1(−1) = −π/2.

Let sec−1(θ) = w. Then sec[sec−1(θ)] = θ = secw = 1/ cos(w). So find
w ∈ (0, π/2) ∪ (π/2, π) such that sec(w) = θ or cos(w) = 1/θ. Then sec−1(θ) = w. Know
that cos(π

3
) = 1/2 so 2 = sec(π/3). Thus sec−1(2) = π/3.

——————————-
The Comparison Test: Suppose

∑
an and

∑
bn are series with positive terms.

a) If
∑

bn is convergent and 0 < an ≤ bn for all n, then
∑

an is convergent.
b) If

∑
bn is divergent and 0 < bn ≤ an for all n, then

∑
an is divergent.

Tips: For the comparison test, usually
∑

bn =
∑ 1

np
is a p series which converges for

p > 1 and diverges for p ≤ 1, or
∑

bn =
∑

a rn−1 is a geometric series which converges
for |r| < 1 and diverges for |r| ≥ 1.

—————————–
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The Limit Comparison Test: Suppose
∑

an and
∑

bn are series with positive

terms. If lim
n→∞

an

bn
= c > 0 where c is real, then either both series diverge or both series

converge.

————————————————-

Note: “n!” is read “n factorial” and n! = n(n − 1)(n − 2)(n − 3) · · · 3 · 2 · 1. So
n! = n[(n − 1)!] = n(n − 1)[(n− 2)!] = n(n− 1)(n − 2)[(n − 3)!] et cetera. Here n ≥ 1 is
an integer and 0! = 1.

Know that nn dominates n! which dominates the exponential cn for any constant

c. Also the exponential cn dominates np for any c > 1, p > 0. Thus lim
n→∞

n!

nn
=

0 = lim
n→∞

n

n

n − 1

n

n − 2

n
· · · 3

n

2

n

1

n
. Similarly, lim

n→∞

cn

nn
= 0 = lim

n→∞

c

n

c

n

c

n
· · · c

n

c

n

and lim
n→∞

np

nn
= 0 = lim

n→∞

1

nn−p
. Now lim

n→∞

cn

n!
= 0 = lim

n→∞

c

n

c

n − 1

c

n − 2
· · · c

2

c

1
. By

L’Hospital’s rule, lim
n→∞

np

cn
= lim

n→∞

p np−1

ln(c) cn
= lim

n→∞

p(p − 1) np−2

[ln(c)]2 cn
= lim

n→∞

p(p − 1)(p − 2) np−3

[ln(c)]3 cn

= · · · = lim
n→∞

p!

[ln(c)]p cn
= 0 if c > 1 and p ≥ 1 is an integer. Thus lim

n→∞

np

cn
= 0 if c > 1

for any real p by the comparison theorem.

To summarize, lim
n→∞

n!

nn
= 0, lim

n→∞

cn

nn
= 0 for any constant c, lim

n→∞

np

nn
= 0 and

lim
n→∞

np

n!
= 0 for any constant p, lim

n→∞

cn

n!
= 0 for any constant c, and

lim
n→∞

np

cn
= 0 for any c > 1 and any real p.

—————————————-

Also, know that lim
n→∞

(
1 +

1

n

)n

= e.

—————————————–

An alternating series has terms that are alternately positive and negative. If bn > 0,

then
∞∑

n=1

(−1)n−1bn = b1 − b2 + b3 − b4 + · · · is an alternating series where the first term

a1 = b1 is positive, while
∞∑

n=1

(−1)nbn = −b1 + b2 − b3 + b4 − · · · is an alternating series

where the first term a1 = −b1 is negative.

Alternating Series Test: Suppose bn > 0 and
∞∑

n=1

(−1)n−1bn (or
∞∑

n=1

(−1)nbn) is an

alternating series.
i) If bn+1 ≤ bn for all n (or if bn is decreasing), and ii) lim

n→∞
bn = 0,

then the series is convergent.

Tip: For an alternating series, try the nth term test for divergence and the Alternating
Series Test for convergence. Note that if lim

n→∞
bn 6= 0 then lim

n→∞
an = lim

n→∞
(−1)n−1bn 6= 0

(does not exist), and
∑

an diverges by the nth term test.

—————————————-
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A series
∞∑

n

an is absolutely convergent if
∞∑

n

|an| is convergent.

A series
∞∑

n

an is conditionally convergent if
∞∑

n

|an| = ∞ is divergent but
∞∑

n

an is

convergent.

Absolute Convergence Theorem: If
∞∑

n

an is absolutely convergent, then
∞∑

n

an is

convergent.

Thus if
∞∑

n

an is divergent then
∞∑

n

an is not absolutely convergent and
∞∑

n

|an| = ∞

is divergent. If
∞∑

n

|an| is convergent, then
∞∑

n

an is convergent.

Comparison Test for Absolute Convergence: If |an| ≤ bn for all n and
∑

bn

converges, then
∑

an is absolutely convergent and so convergent.

Tip: This test is useful for showing absolute convergence, and is often useful if the
numerator equals (or contains) sin(n), cos(n) or (−1)n since then the | sin(n)| ≤ 1,
| cos(n)| ≤ 1 and |(−1)n| = 1 ≤ 1.

—————————————–

The Ratio Test: i) If lim
n→∞

|an+1

an
| = L < 1, then

∑
an is absolutely convergent and

so convergent.

ii) If lim
n→∞

|an+1

an

| = L > 1 where L = ∞ is allowed, then
∑

an divergent and so not

absolutely convergent.

iii) If lim
n→∞

|an+1

an
| = 1, then the test is inconclusive (so it is possible that

∑
an is

divergent, conditionally convergent or absolutely convergent).

Tips: i) If the index n of an is invoved as an exponential or factorial (cn or (n − c)!
where c is real), then the ratio test is often useful for showing convergence or divergence
of

∑
an.

ii) If n is only involved algebraically or logarithmically (eg
∑ 1

np ,
∑ n

(4n−3)(4n−1)
or

∑ √
2n−1 ln(4n+1)

n(n+1)
), then often the ratio test will fail (be inconclusive).

—————————————–

The Root Test: i) If lim
n→∞

n
√
|an| = L < 1, then

∑
an is absolutely convergent and

so convergent.

ii) If lim
n→∞

n
√
|an| = L > 1 where L = ∞ is allowed, then

∑
an divergent and so not

absolutely convergent.

iii) If lim
n→∞

n
√
|an| = 1, then the test is inconclusive (so it is possible that

∑
an is

divergent, conditionally convergent or absolutely convergent).

Tips: i) The root test is useful when nth powers occur.

ii) lim
n→∞

n1/n = 1 and lim
n→∞

1

n1/n
= 1.

iii) n

√
|an| = |an|1/n.
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F16***) Show that a series
∑

an converges or diverges using series tests. F08 4, S08
7, F07 6.

F17***) Show that a series
∑

an is absolutely convergent, conditionally convergent
or divergent. (Usually the series is a conditionally convergent alternating series, so you
have to show that

∑ |an| is divergent, but
∑

an is convergent.) F08 5, S08 8, F07 7.

Tips: i) The geometric series
∞∑

n=j+1

arn−1 and the scaled geometric series
∞∑

n=j+1

arn+k

converge if |r| < 1 and diverge if |r| ≥ 1.

ii) The p-series
∞∑

n=j+1

1

np
and the scaled p-series

∞∑

n=j+1

c

np
converge for p > 1 and

diverge for p ≤ 1.

iii) The nth term (divergence) test: If lim
n→∞

an 6= 0, then
∞∑

n=1

an diverges.

This test is often useful for alternating series and for series where an is a ratio of
polynomials and roots.

iv) The integral test: Suppose f is a continuous, positive, decreasing function on

[c,∞). Let an = f(n). Then
∞∑

n=c

an converges iff
∫ ∞

c
f(x)dx is convergent.

The integral test is useful for p-series
∑ 1

np and
∑ 1

n[ln(n)]p
and sometimes for functions

f(x) = 1/g(x) or f(x) = 1/[g(x)h(x)] where g and h are increasing functions.

v) Absolute Convergence Theorem: If
∞∑

n=j+1

|an| converges, then
∞∑

n=j+1

an converges.

vi) The Comparison Test: a) If
∑

bn converges and 0 ≤ an ≤ bn for all n, then∑
an converges. b) If

∑
bn is diverges and 0 ≤ bn ≤ an for all n, then

∑
an is diverges.

vii) Comparison Test for Absolute Convergence: If |an| ≤ bn for all n and
∑

bn

converges, then
∑

an is absolutely convergent and so convergent.

viii) The Limit Comparison Test: Let
∑

an and
∑

bn be series with positive terms.

If lim
n→∞

an

bn
= c > 0 where c is real, then either both series diverge or both series converge.

Tests vi)–viii) are useful if an is a ratio of polynomials and roots. For the limit com-
parison test, let bn = 1/np = largest power in numerator/largest power in denominator
of an where p > 0 (so that the series converges).

ix) Alternating Series Test: Suppose bn > 0 and
∞∑

n=1

(−1)n−1bn (or
∞∑

n=1

(−1)nbn) is

an alternating series. If a) bn+1 ≤ bn for all n (or if bn is decreasing), and b) lim
n→∞

bn = 0,

then the series is convergent.

x) The Ratio Test: Let lim
n→∞

|an+1

an
| = L. a) If L < 1, then

∑
an is absolutely

convergent. b) If L > 1, then
∑

an diverges. c) If L = 1, then the test fails.
This test is useful if an contains terms like (n + j)! and cn.

xi) The Root Test: Let lim
n→∞

n

√
|an| = L. a) If L < 1, then

∑
an is absolutely

convergent. b) If L > 1, then
∑

an diverges. c) If L = 1, then the test fails.

This test is useful if an = (cn)
n, an = (cn)n

np or an = np

(cn)n .
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