
Chapter 8

Orthogonal Designs

Orthogonal designs for factors with two levels can be fit using least squares.
The orthogonality of the contrasts allows each coefficient to be estimated
independently of the other variables in the model.

This chapter covers 2k factorial designs, 2k−f
R fractional factorial designs

and Plackett Burman PB(n) designs. The entries in the design matrix X
are either −1 or 1. The columns of the design matrix X are orthogonal:
cT

i cj = 0 for i �= j where ci is the ith column of X. Also cT
i ci = n, and the

absolute values of the column entries sum to n.
The first column of X is 1, the vector of ones, but the remaining columns

of X are the coefficients of a contrast. Hence the ith column ci has entries
that are −1 or 1, and the entries of the ith column ci sum to 0 for i > 1.

8.1 Factorial Designs

Factorial designs are a special case of the k way Anova designs of Chapter 6,
and these designs use factorial crossing to compare the effects (main effects,
pairwise interactions, ..., k-fold interaction) of the k factors. If A1, ..., Ak are
the factors with li levels for i = 1, ..., k; then there are l1l2 · · · lk treatments
where each treatment uses exactly one level from each factor. The sample
size n = m

∏k
i=1 li ≥ m 2k. Hence the sample size grows exponentially fast

with k. Often the number of replications m = 1.

Definition 8.1. An experiment has n runs where a run is used to
measure a response. A run is a treatment = a combination of k levels. So
each run uses exactly one level from each of the k factors.
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Often each run is expensive, for example, in industry and medicine. A
goal is to improve the product in terms of higher quality or lower cost. Often
the subject matter experts can think of many factors that might improve the
product. The number of runs n is minimized by taking li = 2 for i = 1, ..., k.

Definition 8.2. A 2k factorial design is a k way Anova design where
each factor has two levels: low = −1 and high = 1. The design uses n = m2k

runs. Often the number of replications m = 1. Then the sample size n = 2k.

A 2k factorial design is used to screen potentially useful factors. Usually
at least k = 3 factors are used, and then 23 = 8 runs are needed. Often
the units are time slots, and each time slot is randomly assigned to a run
= treatment. The subject matter experts should choose the two levels. For
example, a quantitative variable such as temperature might be set at 80oF
coded as −1 and 100oF coded as 1, while a qualitative variable such at type
of catalyst might have catalyst A coded as −1 and catalyst B coded as 1.

Improving a process is a sequential, iterative process. Often high values
of the response are desirable (eg yield), but often low values of the response
are desirable (eg number of defects). Industrial experiments have a budget.
The initial experiment may suggest additional factors that were omitted,
suggest new sets of two levels, and suggest that many initial factors were not
important or that the factor is important, but the level of the factor is not.

Suppose k = 5 and A, B, C, D and E are factors. Assume high response
is desired and high levels of A and C correspond to high response where A
is qualitative (eg 2 brands) and C is quantitative but set at two levels (eg
temperature at 80 and 100oF ). Then the next stage may use an experiment
with factor A at its high level and at a new level (eg a new brand) and
C at the highest level from the previous experiment and at a higher level
determined by subject matter experts (eg at 100 and 120oF ).

Rule of thumb 8.1. Do not spend more than 25% of the budget on the
initial experiment. It may be a good idea to plan for four experiments, each
taking 25% of the budget.

Definition 8.3. Recall that a contrast C =
∑p

i=1 diµi where
∑p

i=1 di =

0, and the estimated contrast is Ĉ =
∑p

i=1 diY i0 where µi and Y i0 are ap-
propriate population and sample means. In a table of contrasts, the co-
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efficients di of the contrast are given where a − corresponds to −1 and a +
corresponds to 1. Sometimes a column I corresponding to the overall mean
is given where each entry is a +. The column corresponding to I is not a
contrast.

To make a table of contrasts there is a rule for main effects and a rule for
interactions.

a) In a table of contrasts, the column for A starts with a − then a + and
the pattern repeats. The column for B starts with 2 −’s and then 2 +’s and
the pattern repeats. The column for C starts with 4 −’s and then 4 +’s and
the pattern repeats. The column for the ith main effects factor starts with
2i−1 −’s and 2i−1 +’s and the pattern repeats where i = 1, ..., k.

b) In a table of contrasts, a column for an interaction containing several
factors is obtained by multiplying the columns for each factor where + = 1
and − = −1. So the column for ABC is obtained by multiplying the column
for A, the column for B and the column for C.

A table of contrasts for a 23 design is shown below. The first column
is for the mean and is not a contrast. The last column corresponds to the
cell means. Note that y1110 = y111 if m = 1. So y might be replaced by
y if m = 1. Each row corresponds to a run. Only the levels of the main
effects A, B and C are needed to specify each run. The first row of the table
corresponds to the low levels of A, B and C . Note that the divisors are 2k−1

except for the divisor of I which is 2k where k = 3.

I A B C AB AC BC ABC y
+ − − − + + + − y1110

+ + − − − − + + y2110

+ − + − − + − + y1210

+ + + − + − − − y2210

+ − − + + − − + y1120

+ + − + − + − − y2120

+ − + + − − + − y1220

+ + + + + + + + y2220

divisor 8 4 4 4 4 4 4 4

The table of contrasts for a 24 design is below. The column of ones
corresponding to I was omitted. Again rows correspond to runs and the
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levels of the main effects A, B, C and D completely specify the run. The
first row of the table corresponds to the low levels of A, B, C and D. In
the second row, the level of A is high while B, C and D are low. Note that
the interactions are obtained by multiplying the component columns where
+ = 1 and − = −1. Hence the first row of the column corresponding to the
ABC entry is (−)(−)(−) = −.

run A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD

1 - - - - + + + + + + - - - - +

2 + - - - - - - + + + + + + - -

3 - + - - - + + - - + + + - + -

4 + + - - + - - - - + - - + + +

5 - - + - + - + - + - + - + + -

6 + - + - - + - - + - - + - + +

7 - + + - - - + + - - - + + - +

8 + + + - + + - + - - + - - - -

9 - - - + + + - + - - - + + + -

10 + - - + - - + + - - + - - + +

11 - + - + - + - - + - + - + - +

12 + + - + + - + - + - - + - - -

13 - - + + + - - - - + + + - - +

14 + - + + - + + - - + - - + - -

15 - + + + - - - + + + - - - + -

16 + + + + + + + + + + + + + + +

Randomization for a 2k design: The runs are determined by the levels
of the k main effects in the table of contrasts. So a 23 design is determined
by the levels of A, B and C. Similarly, a 24 design is determined by the levels
of A, B, C and D. Randomly assign units to the m2k runs. Often the units
are time slots. If possible, perform the m2k runs in random order.

Genuine run replicates need to be used. A common error is to take m
measurements per run, and act as if the m measurements are from m runs.
If as a data analyst you encounter this error, average the m measurements
into a single value of the response.

Definition 8.4. If the response depends on the two levels of the factor,
then the factor is called active. If the response does not depend on the two
levels of the factor, then the factor is called inert.
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Active factors appear to change the mean response as the level of the
factor changes from −1 to 1. Inert factors do not appear to change the
response as the level of the factor changes from −1 to 1. An inert factor
could be needed but the level low or high is not important, or the inert
factor may not be needed and so can be omitted from future studies. Often
subject matter experts can tell whether the inert factor is needed or not.

The 2k designs are used for exploratory data analysis: they provide
answers to the following questions.

i) Which combinations of levels are best?
ii) Which factors are active and which are inert? That is, use the 2k

design to screen for factors where the response depends on whether the level
is high or low.

iii) How should the levels be modified to improve the response?

If all 2k runs give roughly the same response, then choose the levels that
are cheapest to increase profit. Also the system is robust to changes in the
factor space so managers do not need to worry about the exact values of the
levels of the factors.

In an experiment, there will be an interaction between management, sub-
ject matter experts (often engineers) and the data analyst (statistician).

Remark 8.1. If m = 1, then there is one response per run but k main
effects,

(
k
2

)
2 factor interactions,

(
k
j

)
j factor interactions, and 1 k way in-

teraction. Then the MSE df = 0 unless at least one high order interaction
is assumed to be zero. A full model that includes all k main effects and
all

(
k
2

)
two way interactions is a useful starting point for response, residual

and transformation plots. The higher order interactions can be treated as
potential terms and checked for significance. As a rule of thumb, significant
interactions tend to involve significant main effects.

Definition 8.5. An outlier corresponds to a case that is far from the
bulk of the data.

Rule of thumb 8.2. Mentally add 2 lines parallel to the identity line
and 2 lines parallel to the r = 0 line that cover most of the cases. Then a
case is an outlier if it is well beyond these 2 lines. This rule often fails for
large outliers since often the identity line goes through or near a large outlier
so its residual is near zero. A response that is far from the bulk of the data
in the response plot is a “large outlier” (large in magnitude).
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Rule of thumb 8.3. Often an outlier is very good, but more often an
outlier is due to a measurement error and is very bad.

Definition 8.6. A critical mix is a single combination of levels, out of
2k, that gives good results. Hence a critical mix is a good outlier.

Be able to pick out active and inert factors and good (or the best) combi-
nations of factors (cells or runs) from the table of contrasts = table of runs.
Often the table will only contain the contrasts for the main effects. If high
values of the response are desirable, look for high values of y for m > 1. If
m = 1, then y = y. The following two examples help illustrate the process.

O H C y
− − − 5.9
+ − − 4.0
− + − 3.9
+ + − 1.2
− − + 5.3
+ − + 4.8
− + + 6.3
+ + + 0.8

Example 8.1. Box, Hunter and Hunter (2005, p. 209-210) describes a 23

experiment with the goal of reducing the wear rate of deep groove bearings.
Here m = 1 so n = 8 runs were used. The 23 design employed two levels
of osculation (O), two levels of heat treatment (H), and two different cage
designs (C). The response Y is the bearing failure rate and low values of the
observed response y are better than high values.

a) Which two combinations of levels are the best?
b) If two factors are active, which factor is inert?

Solution: a) The two lowest values of y are 0.8 and 1.2 which correspond
to +++ and ++−. (Note that if the 1.2 was 4.2, then +++ corresponding
to 0.8 would be a critical mix.)

b) C would be inert since O and H should be at their high + levels.
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run R T C D y
1 − − − − 14
2 + − − − 16
3 − + − − 8
4 + + − − 22
5 − − + − 19
6 + − + − 37
7 − + + − 20
8 + + + − 38
9 − − − + 1
10 + − − + 8
11 − + − + 4
12 + + − + 10
13 − − + + 12
14 + − + + 30
15 − + + + 13
16 + + + + 30

Example 8.2. Ledolter and Swersey (2007, p. 80) describes a 24 exper-
iment for a company that manufactures clay plots to hold plants. For one of
the company’s newest products, there had been an unacceptably high num-
ber of cracked pots. The production engineers believed that the following
factors are important: R = rate of cooling (slow or fast), T = kiln temper-
ature (2000oF or 2060oF), C = coefficient of expansion of the clay (low or
high), and D = type of conveyor belt (metal or rubberized) used to allow
employees to handle the pots. The response y is the percentage of cracked
pots per run (so small y is good).

a) For fixed levels of R, T and C, is the D+ level or D− level of D better
(compare run 1 with run 9, 2 with 10, ..., 8 with 16).

b) Fix D at the better level. Is the C− or C+ level better?
c) Fix C and D at the levels found in a) and b). Is the R− or R+ level

better?
d) Which factor seems to be inert?
Solution: a) D+ since for fixed levels of R, T and C , the number of cracks

is lower if D = + than if D = −.
b) C−
c) R− d) T .
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A 2k design can be fit with least squares. In the table of contrasts let
a “+ = 1” and a “− = −1.” Need a row for each response: can’t use the
mean response for each fixed combination of levels. Let x0 correspond to I ,
the column of 1s. Let xi correspond to the ith main effect for i = 1, ..., k.
Let xij correspond to 2 factor interactions, and let xi1,...,iG correspond to
G way interactions for G = 2, ..., k. Let the design matrix X have columns
corresponding to the x. Then X will have n = m2k rows. Let y be the
vector of responses.

The table below relates the quantities in the 23 table of contrasts with
the quantities used in least squares. The design matrix

X = [x0, x1, x2, x3, x12, x13, x23, x123].

Software often does not need the column of ones x0.

x0 x1 x2 x3 x12 x13 x23 x123 y
I A B C AB AC BC ABC y

The table below relates quantities in the 24 table of contrasts with the
quantities used in least squares. Again x0 corresponds to I , the column of
ones, while y is the vector of responses.
x1 x2 x3 x4 x12 x13 x14 x23 x24 x34 x123 x124 x134 x234 x1234

A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD

Definition 8.7. The least squares model for a 2k design contains a
least squares population coefficient β for each x in the model. The model
can be written as Y = xT β + e with least squares fitted values Ŷ = xT β̂.
In matrix form the model is Y = Xβ + e and the vector of fitted values is
Ŷ = Xβ̂. The biggest possible model contains all of the terms. The second
order model contains β0, all main effects and all second order interactions,
and is recommended as the initial full model for k ≥ 4. The main effects
model removes all interactions. If a model contains an interaction, then the
model should also contain all of the corresponding main effects. Hence if a
model contains x123, the model should contain x1, x2 and x3.

Definition 8.8. The coefficient β0 corresponding to I is equal to the
population “I effect” of x0, and the (sample) I effect = β̂0. For an x other
than x0, the population effect for x is 2β, the change in Y as x changes two
units from −1 to 1, and the (sample) effect is 2β̂. The (sample) coefficient
β̂ estimates the population coefficient β.
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Suppose the model using all of the columns of X is used. If some columns
are removed (eg those corresponding to the insignificant effects), then for 2k

designs the following quantities remain unchanged for the terms that were
not deleted: the effects, the coefficients, SS(effect) = MS(effect). The MSE,
SE(effect), F and t statistics, pvalues, fitted values and residuals do change.

The regression equation corresponding to the significant effects (eg found
with a QQ plot of Definition 8.9) can be used to form a reduced model. For
example, suppose the full (least squares) fitted model is Ŷi = β̂0 + β̂1xi1 +
β̂2xi2 + β̂3xi3 + β̂12xi12 + β̂13xi13 + β̂23xi23 + β̂123xi123. Suppose the A, B and
AB effects are significant. Then the reduced (least squares) fitted model is
Ŷi = β̂0 + β̂1xi1 + β̂2xi2 + β̂12xi12 where the coefficients (β̂’s) for the reduced
model can be taken from the full model since the 2k design is orthogonal.

The coefficient β̂0 corresponding to I is equal to the I effect, but the
coefficient of a factor x corresponding to an effect is β̂ = 0.5 effect. Consider
significant effects and assume interactions can be ignored.

i) If a large response Y is desired and β̂ > 0, use x = 1. If β̂ < 0, use
x = −1.

ii) If a small response Y is desired and β̂ > 0, use x = −1. If β̂ < 0, use
x = 1.

Rule of thumb 8.4. To predict Y with Ŷ , the number of coefficients =
the number of β̂’s in the model should be ≤ n/2, where the sample size n =
number of runs. Otherwise the model is overfitting.

From the regression equation Ŷ = xT β̂, be able to predict Y given x. Be
able to tell whether x = 1 or x = −1 should be used. Given the x values
of the main effects, get the x values of the interactions by multiplying the
columns corresponding to the main effects.

Least squares output in symbols is shown on the following page. Often
“Estimate” is replaced by “Coef” or “Coefficient”. Often “Intercept” is re-
placed by “Constant”. The t statistic and pvalue are for whether the term
or effect is significant. So t12 and p12 are for testing whether the x12 term or
AB effect is significant.

The least squares coefficient = 0.5 (effect). The sum of squares for an x
corresponding to an effect is equal to SS(effect). SE(coef) = SE(β̂) = 0.5
SE(effect) =

√
MSE/n. Also SE(β̂0) =

√
MSE/n.
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Coef or Est. Std.Err t pvalue

Intercept or constant β̂0 SE(coef) t0 p0

x1 β̂1 SE(coef) t1 p1

x2 β̂2 SE(coef) t2 p2

x3 β̂3 SE(coef) t3 p3

x12 β̂12 SE(coef) t12 p12

x13 β̂13 SE(coef) t13 p13

x23 β̂23 SE(coef) t23 p23

x123 β̂123 SE(coef) t123 p123

Example 8.3. a) The biggest possible model for the 23 design is Y =
β0 + β1x1 + β2x2 + β3x3 + β12x12 + β13x13 + β23x23 + β123x123 + e with least
squares fitted or predicted values given by Ŷi = β̂0 + β̂1xi1 + β̂2xi2 + β̂3xi3 +
β̂12xi12 + β̂13xi13 + β̂23xi23 + β̂123xi123.

The second order model is Y = β0+β1x1 +β2x2 +β3x3+β12x12 +β13x13+
β23x23 + e. The main effects model is Y = β0 + β1x1 + β2x2 + β3x3 + e.

b) A typical least squares output for the 23 design is shown below. Often
“Estimate” is replaced by “Coef”.

Residual Standard Error=2.8284 = sqrt(MSE)

R-Square=0.9763 F-statistic (df=7, 8)=47.0536 p-value=0

Estimate Std.Err t-value Pr(>|t|)

Intercept 64.25 0.7071 90.8632 0.0000

x1 11.50 0.7071 16.2635 0.0000

x2 -2.50 0.7071 -3.5355 0.0077

x3 0.75 0.7071 1.0607 0.3198

x12 0.75 0.7071 1.0607 0.3198

x13 5.00 0.7071 7.0711 0.0001

x23 0.00 0.7071 0.0000 1.0000

x123 0.25 0.7071 0.3536 0.7328

c) i) The least squares coefficient or “estimate” = effect/2. So in the
above table, the A effect = 2(11.5) = 23. If x corresponds to the least
squares coefficient, then the coefficient = (xTy)/(xTx).

ii) The sum of squares = means square corresponding to an x is equal to
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the sum of squares = mean square of the corresponding effect. If x corre-
sponds to the least squares coefficient, then the SS = MS = (xT y)2/(xT x).

iii) Suppose m ≥ 2. Then SE(coef) = SE(effect)/2 = 0.5
√

MSE/(m2k−2).
Hence in the above table, SE(effect) = 2(.7071) = 1.412.

iv) The t statistic t0 = coef/SE(coef), and t20 = F0 where t0 ≈ tdfe and
F0 ≈ F1,dfe where dfe = (m − 1)2k is the MSE df. Hence the pvalues for
least squares and the 2k software are the same. For example, the pvalue for
testing the significance of x1 = pvalue for testing significance of A effect =
0.000 in the above table. Also tA = 16.2635 and t2A = FA = 264.501.

v) The MSE, fitted values and residuals are the same for the least squares
output and the 2k software.

Suppose the two levels of the quantitative variable are a < b and x is

the actual value used. Then code x as c ≡ cx =
2x − (a + b)

b − a
. Note that

the code gives c = −1 for x = a and c = 1 for x = b. Thus if the 2
levels are a = 100 and b = 200 but x = 187 is observed, then code x as
c = [2(187) − (100 + 200)]/[200 − 100] = 0.74.

There are several advantages to least squares over 2k software. The dis-
advantage of the following four points is that the design will no longer be
orthogonal: the estimated coefficients β̂ and hence the estimated effects will
depend on the terms in the model. i) If there are several missing values or
outliers, delete the corresponding rows from the design matrix X and the
vector of responses y as long as the number of rows of the design matrix ≥
the number of columns. ii) If the exact quantitative levels are not observed,
replace them by the observed levels cx in the design matrix. iii) If the wrong
levels are used in a run, replace the corresponding row in the design ma-
trix by a row corresponding to the levels actually used. iv) The number of
replications per run i can be mi, that is, do not need mi ≡ m.

Definition 8.9. A normal QQ plot is a plot of the effects versus standard
normal percentiles. There are L = 2k − 1 effects for a 2k design.

Rule of thumb 8.5. The nonsignificant effects tend to follow a line
closely in the middle of the plot while the significant effects do not follow the
line closely. Significant effects will be the most negative or the most positive
effects.

Know how to find the effect, the standard error of the effect, the sum
of squares for an effect and a confidence interval for the effect from a table
of contrasts using the following rules.
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Let c be a column from the table of contrasts where + = 1 and − = −1.
Let y be the column of cell means. Then the effect corresponding to c is

effect =
cT y

2k−1
. (8.1)

If the number of replications m ≥ 2, then the standard error for the effect
is

SE(effect) =

√
MSE

m2k−2
. (8.2)

Sometimes MSE is replaced by σ̂2.

SE(mean) =

√
MSE

m2k
(8.3)

where m2k = n, m ≥ 2 and sometimes MSE is replaced by σ̂2.

The sum of squares for an effect is also the mean square for the effect
since df = 1.

MS(effect) = SS(effect) = m2k−2(effect)2 (8.4)

for m ≥ 1.

A 95% confidence interval (CI) for an effect is

effect ± tdfe,0.975 SE(effect) (8.5)

where dfe is the MSE degrees of freedom. Use tdfe,0.975 ≈ z0.975 = 1.96 if
dfe > 30. The effect is significant if the CI does not contain 0, while the
effect is not significant if the CI contains 0.

Rule of thumb 8.6. Suppose there is no replication so m = 1. Find J
interaction mean squares that are small compared to the bulk of the mean
squares. Add them up to make MSE with dfe = J . So

MSE =
sum of small MS′s

J
.

This method uses data snooping and MSE tends to underestimate σ2. So
the F test statistics are too large and the pvalues too small. Use this method
for exploratory data analysis, not for inference based on the F distribution.
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Rule of thumb 8.7. MS(effect) = SS(effect) ≈ σ2χ2
1 ≈ MSEχ2

1 if the
effect is not significant. MSE ≈ σ2χ2

dfe
/dfe if the model holds. A rule of

thumb is that an effect is significant if MS > 5MSE. The rule comes from
the fact that χ2

1,0.975 ≈ 5.

Below is the Anova table for a 23 design. Suppose m = 1. For A, use
H0 : µ100 = µ200. For B, use H0 : µ010 = µ020. For C, use H0 : µ001 = µ002.
For interaction, use H0 : no interaction. If m > 1, the subscripts need an
additional 0, eg H0 : µ1000 = µ2000.

Source df SS MS F p-value
A 1 SSA MSA FA pA

B 1 SSB MSB FB pB

C 1 SSC MSC FC pC

AB 1 SSAB MSAB FAB pAB

AC 1 SSAC MSAC FAC pAC

BC 1 SSBC MSBC FBC pBC

ABC 1 SSABC MSA FABC pABC

Error (m− 1)2k SSE MSE

Following Rule of thumb 8.6, if m = 1, pool J interaction mean squares
that are small compared to the bulk of the data into an MSE with dfe = J .
Such tests are for exploratory purposes only: the MSE underestimates σ2,
so the F test statistics are too large and the pvalues = P (F1,J > F0) are too
small. For example F0 = FA = MSA/MSE. As a convention for using an
F table, use the denominator df closest to dfe = J , but if dfe = J > 30 use
denominator df = ∞.

Below is the Anova table for a 2k design. For A, use H0 : µ10···0 = µ20···0.
The other main effect have similar null hypotheses. For interaction, use H0 :
no interaction. If m = 1 use a procedure similar to Rule of Thumb 8.6 for
exploratory purposes.

One can use t statistics for effects with t0 =
effect

SE(effect)
≈ tdfe where dfe

is the MSE df. Then t20 = MS(effect)/MSE = F0 ≈ F1,dfe.
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Source df SS MS F p-value
k main effects 1 eg SSA = MSA FA pA(

k
2

)
2 factor interactions 1 eg SSAB = MSAB FAB pAB(

k
3

)
3 factor interactions 1 eg SSABC = MSABC FABC pABC

...
...

...
...

...(
k

k−1

)
k − 1 factor interactions

the k factor interaction 1 SSA· · ·L = MSA· · ·L FA···L pA···L
Error (m − 1)2k SSE MSE

I A B C AB AC BC ABC y
+ − − − + + + − 6.333
+ + − − − − + + 4.667
+ − + − − + − + 9.0
+ + + − + − − − 6.667
+ − − + + − − + 4.333
+ + − + − + − − 2.333
+ − + + − − + − 7.333
+ + + + + + + + 4.667

divisor 8 4 4 4 4 4 4 4

Example 8.4. Box, Hunter and Hunter (2005, p. 189) describes a 23

experiment designed to investigate the effects of planting depth (0.5 or 1.4
in.), watering (once or twice daily) and type of lima bean (baby or large)
on yield. The table of contrasts is shown above. The number of replications
m = 3.

a) Find the A effect.
b) Find the AB effect.
c) Find SSA = MSA.
d) Find SSAB = MSAB.
e) If MSE = 0.54, find SE(effect).
Solution: a) The A effect =

−6.333 + 4.667 − 9 + 6.667 − 4.333 + 2.333 − 7.333 + 4.667

4
= −8.665/4

= −2.16625. Note that the appropriate + and − signs are obtained from the
A column.
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Figure 8.1: QQ plot for Example 8.4

b) The AB effect =

6.333 − 4.667 − 9 + 6.667 + 4.333 − 2.333 − 7.333 + 4.667

4
= −1.333/4

= −0.33325.
c) SSA = m2k−2(effect)2 = 3(2)(−2.16625)2 = 28.1558.
d) SSAB = 6(effect)2 = 6(−0.33325)2 = 0.6663.
e)

SE(effect) =

√
MSE

m2k−2
=

√
0.54

3(2)
=

√
0.09 = 0.3.

The regpack functions twocub and twofourth can be used to find the
effects, SE(effect), and QQ plots for 23 and 24 designs. The twofourth

function also makes the response and residual plots based on the second
order model for 24 designs.

For the data in Example 8.4, the output on the following page shows that
the A and C effects have values −2.166 and −2.000 while the B effect is
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2.500. These are the three significant effects shown in the QQ plot in Figure
8.1. The two commands below produced the output.

z<-c(6.333,4.667,9,6.667,4.333,2.333,7.333,4.667)

twocub(z,m=3,MSE=0.54)

$Aeff

[1] -2.16625

$Beff

[1] 2.50025

$Ceff

[1] -2.00025

$ABeff

[1] -0.33325

$ACeff

[1] -0.16675

$BCeff

[1] 0.16675

$ABCeff

[1] 0.00025

$MSA

[1] 28.15583

$MSB

[1] 37.5075

$MSC

[1] 24.006

$MSAB

[1] 0.6663334

$MSAC

[1] 0.1668334

$MSABC

[1] 3.75e-07

$MSE

[1] 0.54

$SEeff

[1] 0.3

282



8.2 Fractional Factorial Designs

Definition 8.10. A 2k−f
R fractional factorial design has k factors and

takes m2k−f runs where the number of replications m is usually 1. The
design is an orthogonal design and each factor has two levels low = −1 and
high = 1. R is the resolution of the design.

Definition 8.11. A main effect or q factor interaction is confounded
or aliased with another effect if it is not possible to distinguish between the
two effects.

Remark 8.2. A 2k−f
R design has no q factor interaction (or main effect for

q = 1) confounded with any other effect consisting of less than R− q factors.
So a 2k−f

III design has R = 3 and main effects are confounded with 2 factor
interactions. In a 2k−f

IV design, R = 4 and main effects are not confounded
with 2 factor interactions but 2 factor interactions are confounded with other
2 factor interactions. In a 2k−f

V design, R = 5 and main effects and 2 factor
interactions are only confounded with 4 and 3 way or higher interactions
respectively. The R = 4 and R = 5 designs are good because the 3 way
and higher interactions are rarely significant, but these designs are more
expensive than the R = 3 designs.

In a 2k−f
R design, each effect is confounded or aliased with 2f−1 other

effects. Thus the Mth main effect is really an estimate of the Mth main effect
plus 2f−1 other effects. If R ≥ 3 and none of the two factor interactions are
significant, then the Mth main effect is typically a useful estimator of the
population Mth main effect.

Rule of thumb 8.8. Main effects tend to be larger than q factor inter-
action effects, and the lower order interaction effects tend to be larger than
the higher order interaction effects. So two way interaction effects tend to
be larger than three way interaction effects.

Rule of thumb 8.9. Significant interactions tend to have significant
component main effects. Hence if A, B, C and D are factors, B and D are
inert and A and C are active, then the AC effect is the two factor interaction
most likely to be active. If only A was active, then the two factor interactions
containing A (AB, AC, and AD) are the ones most likely to be active.

Suppose each run costs $1000 and m = 1. The 2k factorial designs need 2k

runs while fractional factorial designs need 2k−f runs. These designs use the
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fact that three way and higher interactions tend to be inert for experiments.

Remark 8.3. Let ko = k − f . Some good fractional factorial designs for
ko = 3 are shown below. The designs shown use the same table of contrasts
as the 23 design and can be fit with 23 software.

23 A B C AB AC BC ABC
24−1

IV A B C AB+ AC+ BC+ D
25−2

III A B C D E BC+ BE+
26−3

III A B C D E F AF+
27−4

III A B C D E F G

Consider the 24−1
IV design. It has 4 factors A, B, C and D. The D main

effect is confounded with the ABC three way interaction, which is likely to
be inert. The “D effect” is the D effect plus the ABC effect. But if the
ABC effect is not significant, then the “D effect” is a good estimator of the
population D effect. Confounding = aliasing is the price to pay for using
fractional factorial desings instead of the more expensive factorial designs.

If m = 1, the 24−1
IV design uses 8 runs while a 24 factorial design uses 16

runs. The runs for the 24−1
IV are defined by the 4 main effects: use the first

3 columns and the last column of the table of contrasts for the 23 design to
define the runs. Randomly assign the units (often time slots) to the runs.

Remark 8.4. Some good fractional factorial designs for ko = k − f = 4
are shown below. The designs shown use the same table of contrasts as the
24 design and can be fit with 24 software. Here the designs are i) 24, and the
fractional factorial designs ii) 25−1

V , iii) 26−2
IV , iv) 27−3

IV , v) 28−4
IV , vi) 29−5

III and
vii) 215−11

III .

design

i) A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD

ii) A B C D AB AC AD BC BD CD DE CE BE AE E

iii) A B C D AB+ AC+ AD+ BC+ BD+ CD+ E 3int 3int F AF+

iv) A B C D AB+ AC+ AD+ BC+ BD+ CD+ E 3int F G AG+

v) A B C D AB+ AC+ AD+ BC+ BD+ CD+ E F G H AH+

vi) A B C D AB+ AC+ AD+ BC+ BD+ CD+ E F G H J

vii) A B C D E F G H J K L M N O P
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Remark 8.5. Let ko = k − f for a 2k−f
R design. The QQ plot for 2k−f

R

designs is used in a manner similar to that of 2k designs where k = ko. The
formulas for effects and mean squares are like the formulas for a 2ko design.
Let c be a column from the table of contrasts where + = 1 and − = −1. Let
y be the column of cell means. Need MSE = σ̂2 to be given or estimated by
setting high order interactions to 0 for m = 1. Typically m = 1 for fractional
factorial designs. The following formulas ignore the “I effect.”

a) The effect corresponding to c is effect =
cTy

2ko−1
.

b) The standard error for the effect is SE(effect) =

√
MSE

m2ko−2
.

c) SE(mean) =

√
MSE

m2ko
where m2ko = n.

d) The sum of squares and mean square for an effect are
MS(effect) = SS(effect) = m2ko−2(effect)2.

Consider the designs given in Remarks 8.3 and 8.4. Least squares esti-
mates for the 2k−f

R designs with ko = 3 use the design matrix corresponding to
a 23 design while the designs with ko = 4 use the design matrix corresponding
to the 24 design given in Section 8.1.

Randomly assign units to runs. Do runs in random order if possible.
In industry, units are often time slots (periods of time), so randomization
consists of randomly assigning time slots to units, which is equivalent to
doing the runs in random order. For the above 2k−f

R designs, fix the main
effects using the corresponding columns in the two tables of contrasts given
in Section 8.1 to determine the levels needed in the m2k−f runs.

The fractional factorial designs can be fit with least squares, and the
model can be written as Y = xTβ + e with least squares fitted values Ŷ =
xT β̂. In matrix form the model is Y = Xβ + e and the vector of fitted
values is Ŷ = Xβ̂.

The biggest possible model for a 2k−f
R design where k − f = 3 is

Yi = β0 +β1xi1 +β2xi2 +β3xi3 +β12xi12 +β13xi13 +β23xi23 +β123xi123+ei with
least squares fitted or predicted values given by Ŷi = β̂0 + β̂1xi1 + β̂2xi2 +
β̂3xi3 + β̂12xi12 + β̂13xi13 + β̂23xi23 + β̂123xi123.

The regression equation corresponding to the significant effects (eg found
with a QQ plot) can be used to form a reduced model. For example, suppose
the full (least squares) fitted model is Ŷi = β̂0+β̂1xi1+β̂2xi2+β̂3xi3+β̂12xi12+
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β̂13xi13 + β̂23xi23 + β̂123xi123. Suppose the A, B and AB effects are significant.
Then the reduced (least squares) fitted model is Ŷi = β̂0 + β̂1xi1 + β̂2xi2 +
β̂12xi12 where the coefficients (β̂’s) for the reduced model can be taken from
the full model since fractional factorial designs are orthogonal.

For the fractional factorial designs, the coefficient β̂0 corresponding to I
is equal to the I effect, but the coefficient of a factor x corresponding to an
effect is β̂ = 0.5 effect. Consider significant effects and assume interactions
can be ignored.

i) If a large response Y is desired and β̂ > 0, use x = 1. If β̂ < 0, use
x = −1.

ii) If a small response Y is desired and β̂ > 0, use x = −1. If β̂ < 0, use
x = 1.

From the regression equation Ŷ = xT β̂, be able to predict Y given x. Be
able to tell whether x = 1 or x = −1 should be used. Given the x values of the
main effects, get the x values of the interactions by multiplying the columns
corresponding to the main effects in the interaction. Least squares output
is similar to that in Section 8.1. The least squares coefficient = 0.5 (effect).
The sum of squares for an x corresponding to an effect is equal to SS(effect).
SE(coef) = SE(β̂) = 0.5 SE(effect) =

√
MSE/n. Also SE(β̂0) =

√
MSE/n.

Assume none of the interactions are significant. Then the 27−4
III fractional

factorial design allows estimation of 7 main effects in 23 = 8 runs. The 215−11
III

fractional factorial design allows estimation of 15 main effects in 24 = 16 runs.
The 231−26

III fractional factorial design allows estimation of 31 main effects in
25 = 32 runs.

Fractional factorial designs with k − f = ko can be fit with software
meant for 2ko designs. Hence the regpack functions twocub and twofourth

can be used for the ko = 3 and ko = 4 designs that use the standard table
of contrasts. The response and residual plots given by twofourth are not
appropriate, but the QQ plot and the remaining output is relevant. Some
of the interactions will correspond to main effects for the fractional factorial
design.

For example, if the Example 8.4 data was from a 24−1
IV design, then the

A, B and C effects would be the same, but the D effect is the effect labelled
ABC . So the D effect ≈ 0.
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Figure 8.2: QQ plot for Example 8.5

Aeff Beff Ceff ABeff ACeff BCeff ABCeff

20.625 38.375 -0.275 28.875 -0.275 -0.625 -2.425

Example 8.5. Montgomery (1984, p 344-346) gives data from a 27−4
III

design with the QQ plot shown in Figure 8.2. The goal was to study eye
focus time with factors A = sharpness of vision, B = distance of target from
eye, C = target shape, D = illumination level, E = target size, F = target
density and G = subject. The R function twocub gave the effects above.

a) What is the D effect?
b) What effects are significant?
Solution: By the last line in the table given in Remark 8.3, note that for

this design, A, B, C, AB, AC, BC, ABC correspond to A, B, C, D, E, F, G. So
the AB effect from the output is the D effect.

a) 28.875, since the D effect is the AB effect.
b) A, B and D since these are the effects that do not follow the line in

the QQ plot shown in Figure 8.2.
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I A B C AB AC BC ABC y
+ − − − + + + − 86.8
+ + − − − − + + 85.9
+ − + − − + − + 79.4
+ + + − + − − − 60.0
+ − − + + − − + 94.6
+ + − + − + − − 85.4
+ − + + − − + − 84.5
+ + + + + + + + 80.3

Example 8.6. The above table of 23 contrasts is for 25−2
III data.

a) Estimate the B effect.
b) Estimate the D effect.
Solution: a)

−86.8 − 85.9 + 79.4 + 60 − 94.6 − 85.4 + 84.5 + 80.3

4

= −48.5/4 = −12.125.
b) Use Remark 8.3 to see that the D effect corresponds to the ABC

column. So the D effect =

86.8 − 85.9 − 79.4 + 60 + 94.6 − 85.4 − 84.5 + 80.3

4

= −13.5/4 = −3.375.

8.3 Plackett Burman Designs

Definition 8.12. The Plackett Burman PB(n) designs have k factors where
2 ≤ k ≤ n − 1. The factors have 2 levels and orthogonal contrasts like
the 2k and 2k−f

R designs. The PB(n) designs are resolution 3 designs, but the
confounding of main effects with 2 factor interactions is complex. The PB(n)
designs use n runs where n is a multiple of 4. The values n = 12, 20, 24, 28
and 36 are especially common.

Fractional factorial designs need at least 2ko runs. Hence if there are 17
main effects, 32 runs are needed for a 217−12

III design while a PB(20) design only
needs 20 runs. The price to pay is that the confounding pattern of the main
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effects with the two way interactions is complex. Thus the PB(n) designs
are usually used with main effects, and it is assumed that all interactions
are insignificant. So the Plackett Burman designs are main effects designs
used to screen k main effects when the number of runs n is small. Often
k = n − 4, n − 3, n − 2 or n − 1 is used. We will assume that the number of
replications m = 1.

A contrast matrix for the PB(12) design is shown below. Again the
column of plusses corresponding to I is omitted. If k = 8 then effects A to
H are used but effects J, K and L are “empty.” As a convention the mean
square and sum of squares for factor E will be denoted as MSe and SSe while
MSE = σ̂2.

run A B C D E F G H J K L

1 + - + - - - + + + - +

2 + + - + - - - + + + -

3 - + + - + - - - + + +

4 + - + + - + - - - + +

5 + + - + + - + - - - +

6 + + + - + + - + - - -

7 - + + + - + + - + - -

8 - - + + + - + + - + -

9 - - - + + + - + + - +

10 + - - - + + + - + + -

11 - + - - - + + + - + +

12 - - - - - - - - - - -

The PB(n) designs are k factor 2 level orthogonal designs. So finding ef-
fects, MS, SS, least squares estimates et cetera for PB(n) designs is similar to
finding the corresponding quantities for the 2k and 2k−f

R designs. Randomize
units (often time slots) to runs and least squares can be used.

Remark 8.6. For the PB(n) design, let c be a column from the table of
contrasts where + = 1 and − = −1. Let y be the column of responses since
m = 1. If k < n − 1, pool the last J = n − 1 − k “empty” effects into the
MSE with df = J as the full model. This procedure is done before looking
at the data, so is not data snooping. The MSE can also be given or found
by pooling insignificant MS’s into the MSE, but the latter method uses data
snooping. This pooling needs to be done if k = n − 1 since then there is no
df for MSE. The following formulas ignore the I effect.
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Figure 8.3: QQ Plot for Example 8.7

a) The effect corresponding to c is effect =
cT y

n/2
=

2cT y

n
.

b) The standard error for the effect is SE(effect) =

√
MSE

n/4
=

√
4MSE

n
.

c) SE(mean) =

√
MSE

n
.

d) The sum of squares and mean sum of squares for an effect is

MS(effect) = SS(effect) =
n

4
(effect)2.

For the PB(n) design, the least squares coefficient = 0.5 (effect). The sum
of squares for an x corresponding to an effect is equal to SS(effect). SE(coef)
= SE(β̂) = 0.5 SE(effect) =

√
MSE/n. Also SE(β̂0) =

√
MSE/n.

Example 8.7. On the following page is least squares output using
PB(12) data from Ledolter and Swersey (2007, p. 244-256). There were
k = 10 factors so the MSE has 1 df and there are too many terms in the
model. In this case the QQ plot shown in Figure 8.7 is more reliable for
finding significant effects.

a) Which effects, if any, appear to be significant from the QQ plot?

b) Let the reduced model Ŷ = β̂0 + β̂r1xr1 + · · · + β̂rjxrj where j is the
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number of significant terms found in a). Write down the reduced model.

c) Want large Y . Using the model in b), choose the x values that will
give large Y , and predict Y .

Estimate Std.Err t-value Pr(>|t|)

Intercept 6.7042 2.2042 3.0416 0.2022

c1 8.5792 2.2042 3.8922 0.1601

c2 -1.7958 2.2042 -0.8147 0.5648

c3 2.3125 2.2042 1.0491 0.4847

c4 4.1208 2.2042 1.8696 0.3127

c5 3.1542 2.2042 1.4310 0.3883

c6 -3.3958 2.2042 -1.5406 0.3665

c7 0.9542 2.2042 0.4329 0.7399

c8 -1.1208 2.2042 -0.5085 0.7005

c9 1.3125 2.2042 0.5955 0.6581

c10 1.7875 2.2042 0.8110 0.5662

Solution: a) The most significant effects are either in the top right or
bottom left corner. Although the points do not all scatter closely about
the line, the point in the bottom left is not significant. So none of the
effects corresponding to the bottom left of the plot are significant. A is the
significant effect with value 2(8.5792) = 17.1584. See the top right point of
Figure 8.7.

b) Ŷ = 6.7042 + 8.5792x1.
c) Ŷ = 6.7042 + 8.5792(1) = 15.2834.

The regpack function pb12 can be used to to find effects and MS(effect)
for PB(12) data. Least squares output and a QQ plot are also given.

8.4 Summary

1) In a table of contrasts, the contrast for A starts with a − then a + and
the pattern repeats. The contrast for B starts with 2 −’s and then 2 +’s and
the pattern repeats. The contrast for C starts with 4 −’s and then 4+’s and
the pattern repeats. The contrast for the ith main effects factor starts with
2i−1 −’s and 2i−1 +’s and the pattern repeats for i = 1, ..., k.

2) In a table of contrasts, a column for an interaction containing several
factors is obtained by multiplying the columns for each factor where + = 1
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and − = −1. So the column for ABC is obtained by multiplying the column
for A, the column for B and the column for C.

3) Let c be a column from the table of contrasts where + = 1 and − = −1.
Let y be the column of cell means. Then the effect corresponding to c is

effect =
cTy

2k−1
.

4) If the number of replications m ≥ 2, then the standard error for the
effect is

SE(effect) =

√
MSE

m2k−2
.

Sometimes MSE is replaced by σ̂2.

5)

SE(mean) =

√
MSE

m2k

where m2k = n, m ≥ 2 and sometimes MSE is replaced by σ̂2.

6) Since df = 1, the sum of squares and mean square for an effect is

MS(effect) = SS(effect) = m2k−2(effect)2

for m ≥ 1.

7) If a single run out of 2k cells gives good values for the response, then
that run is called a critical mix.

8) A factor is active if the response depends on the two levels of the factor,
and is inert, otherwise.

9) Randomization for a 2k design: randomly assign units to the m2k runs.
The runs are determined by the levels of the k main effects in the table of
contrasts. So a 23 design is determined by the levels of A, B and C. Similarly,
a 24 design is determined by the levels of A, B, C and D. Perform the m2k

runs in random order if possible.

10) A table of contrasts for a 23 design is shown on the following page.
The first column is for the mean and is not a contrast. The last column
corresponds to the cell means. Note that y1110 = y111 if m = 1. So y might
be replaced by y if m = 1.
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I A B C AB AC BC ABC y
+ − − − + + + − y1110

+ + − − − − + + y2110

+ − + − − + − + y1210

+ + + − + − − − y2210

+ − − + + − − + y1120

+ + − + − + − − y2120

+ − + + − − + − y1220

+ + + + + + + + y2220

divisor 8 4 4 4 4 4 4 4

11) Be able to pick out active and inert factors and good (or the best)
combinations of factors (cells or runs) from the table of contrasts = table of
runs.

12) Plotted points far away from the identity line and r = 0 line are
potential outliers, but often the identity line goes through or near an outlier
that is large in magnitude. Then the case has a small residual.

13) A 95% confidence interval (CI) for an effect is

effect± tdfe,0.975SE(effect)

where dfe is the MSE degrees of freedom. Use tdfe,0.975 ≈ z0.975 = 1.96 if
dfe > 30. The effect is significant if the CI does not contain 0, while the
effect is not significant if the CI contains 0.

14) Suppose there is no replication so m = 1. Find J interaction mean
squares that are small compared to the bulk of the mean squares. Add them
up to make MSE with dfe = J . So

MSE =
sum of small MS′s

J
.

This method uses data snooping and MSE tends to underestimate σ2. So
the F test statistics are too large and the pvalues too small. Use this method
for exploratory data analysis, not for inference based on the F distribution.

15) MS = SS ≈ σ2χ2
1 ≈ MSEχ2

1 if the effect is not significant. MSE ≈
σ2χ2

dfe
/dfe if the model holds. A rule of thumb is that an effect is significant

if MS > 5MSE. The rule comes from the fact that χ2
1,.975 ≈ 5.
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16) The table of contrasts for a 24 design is below. The column of ones
corresponding to I was omitted.

run A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD

1 - - - - + + + + + + - - - - +

2 + - - - - - - + + + + + + - -

3 - + - - - + + - - + + + - + -

4 + + - - + - - - - + - - + + +

5 - - + - + - + - + - + - + + -

6 + - + - - + - - + - - + - + +

7 - + + - - - + + - - - + + - +

8 + + + - + + - + - - + - - - -

9 - - - + + + - + - - - + + + -

10 + - - + - - + + - - + - - + +

11 - + - + - + - - + - + - + - +

12 + + - + + - + - + - - + - - -

13 - - + + + - - - - + + + - - +

14 + - + + - + + - - + - - + - -

15 - + + + - - - + + + - - - + -

16 + + + + + + + + + + + + + + +

17) Below is the Anova table for a 23 design. Let m = 1. For A, use
H0 : µ100 = µ200. For B, use H0 : µ010 = µ020. For C, use H0 : µ001 = µ002.
For interaction, use H0 : no interaction.

Source df SS MS F p-value
A 1 SSA MSA FA pA

B 1 SSB MSB FB pB

C 1 SSC MSC FC pC

AB 1 SSAB MSAB FAB pAB

AC 1 SSAC MSAC FAC pAC

BC 1 SSBC MSBC FBC pBC

ABC 1 SSABC MSA FABC pABC

Error (m− 1)2k SSE MSE

18) If m = 1, pool J interaction mean squares that are small compared to
the bulk of the data into an MSE with dfe = J . Such tests are for exploratory
purposes only: the MSE underestimates σ2, so the F test statistics are too
large and the pvalues = P (F1,J > F0) are too small. For example F0 = FA =
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MSA/MSE. As a convention for using an F table, use the denominator df
closest to dfe = J , but if dfe = J > 30 use denominator df = ∞.

19) Below is the Anova table for a 2k design. For A, use H0 : µ10···0 =
µ20···0. The other main effect have similar null hypotheses. For interaction,
use H0 : no interaction. If m = 1 use a procedure similar to point 18) for
exploratory purposes.

Source df SS MS F p-value
k main effects 1 eg SSA = MSA FA pA(

k
2

)
2 factor interactions 1 eg SSAB = MSAB FAB pAB(

k
3

)
3 factor interactions 1 eg SSABC = MSABC FABC pABC

...
...

...
...

...(
k

k−1

)
k − 1 factor interactions

the k factor interaction 1 SSA· · ·L = MSA· · ·L FA···L pA···L
Error (m − 1)2k SSE MSE

20) Genuine run replicates need to be used. A common error is to take m
measurements per run, and act as if the m measurements are from m runs.
If as a data analyst you encounter this error, average the m measurements
into a single value of the response.

21) One can use t statistics for effects with t0 =
effect

SE(effect)
≈ tdfe where

dfe is the MSE df. Then t20 = MS(effect)/MSE = F0 ≈ F1,dfe.
22) A 2k design can be fit with least squares. In the table of contrasts

let a “+ = 1” and a “− = −1.” Need a row for each response: can’t use the
mean response for each fixed combination of levels. Let x0 correspond to I ,
the column of 1s. Let xi correspond to the ith main effect for i = 1, ..., k.
Let xij correspond to 2 factor interactions, and let xi1,...,iG correspond to
G way interactions for G = 2, ..., k. Let the design matrix X have columns
corresponding to the x. Let y be the vector of responses.

23) The table below relates the quantities in the 23 table of contrasts with
the quantities used in least squares. The design matrix

X = [x0, x1, x2, x3, x12, x13, x23, x123].

Software often does not need the column of ones x0.

x0 x1 x2 x3 x12 x13 x23 x123 y
I A B C AB AC BC ABC y
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24) The table below relates quantities in the 24 table of contrasts with
the quantities used in least squares. Again x0 corresponds to I , the column
of ones, while y is the vector of responses.
x1 x2 x3 x4 x12 x13 x14 x23 x24 x34 x123 x124 x134 x234 x1234

A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD

25) A typical least squares output for the 23 design is shown below. Often
“Estimate” is replaced by “Coef”.

Estimate Std.Err t-value Pr(>|t|)

Intercept 64.25 0.7071 90.8632 0.0000

x1 11.50 0.7071 16.2635 0.0000

x2 -2.50 0.7071 -3.5355 0.0077

x3 0.75 0.7071 1.0607 0.3198

x12 0.75 0.7071 1.0607 0.3198

x13 5.00 0.7071 7.0711 0.0001

x23 0.00 0.7071 0.0000 1.0000

x123 0.25 0.7071 0.3536 0.7328

26) i) The least squares coefficient or “estimate” = effect/2. So in the
above table, the A effect = 2(11.5) = 23. If x corresponds to the least squares
coefficient, then the coefficient = (xT y)/(xT x).

ii) The sum of squares = means square corresponding to an xi··· is equal
to the sum of squares = mean square of the corresponding effect. If x corre-
sponds to the least squares coefficient, then the SS = MS = (xT y)2/(xT x).

iii) Suppose m ≥ 2. Then SE(coef) = SE(effect)/2 = 0.5
√

MSE/(m2k−2).
Hence in the above table, SE(effect) = 2(.7071) = 1.412.

iv) The t statistic t0 = coef/SE(coef), and t20 = F0 where t0 ≈ tdfe and
F0 ≈ F1,dfe where dfe = (m − 1)2k is the MSE df. Hence the pvalues for
least squares and the 2k software are the same. For example, the pvalue for
testing the significance of x1 = pvalue for testing significance of A effect =
0.000 in the above table. Also tA = 16.2635 and t2A = FA = 264.501.

v) The MSE, fitted values and residuals are the same for the least squares
output and the 2k software.

27) There are several advantages to least squares over 2k software. i) If
there are several missing values or outliers, delete the corresponding rows
from the design matrix X and the vector of responses y as long as the
number of rows of the design matrix ≥ the number of columns. ii) If the exact
quantitative levels are not observed, replace them by the observed levels in
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the design matrix. See point 28). iii) If the wrong levels are used in a run,
replace the corresponding row in the design matrix by a row corresponding
to the levels actually used.

28) Suppose the two levels of the quantitative variable are a < b and x is

the actual value used. Then code x as c =
2x − (a + b)

b − a
. Note that the code

gives c = −1 for x = a and c = 1 for x = b.

29) A normal QQ plot is a plot of the effects versus standard normal
percentiles. There are L = 2k − 1 effects for a 2k design. A rule of thumb is
that nonsignificant effects tend to follow a line closely in the middle of the
plot while the significant effects do not follow the line closely. Significant
effects will be the most negative or the most positive effects.

30) A 2k−f
R fractional factorial design has k factors and takes m2k−f runs

where the number of replications m is usually 1.

31) Let ko = k − f . Some good fractional factorial designs for ko = 3 are
shown below. The designs shown use the same table of contrasts as the 23

design given in point 10), and can be fit with 23 software.

23 A B C AB AC BC ABC
24−1

IV A B C AB+ AC+ BC+ D
25−2

III A B C D E BC+ BE+
26−3

III A B C D E F AF+
27−4

III A B C D E F G

32) Some good fractional factorial designs for ko = k − f = 4 are shown
below. The designs shown use the same table of contrasts as the 24 design
given in point 16), and can be fit with 24 software. Here the designs are i)
24, and the fractional factorial designs ii) 25−1

V , iii) 26−2
IV , iv) 27−3

IV , v) 28−4
IV , vi)

29−5
III and vii) 215−11

III .

design

i) A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD

ii) A B C D AB AC AD BC BD CD DE CE BE AE E

iii) A B C D AB+ AC+ AD+ BC+ BD+ CD+ E 3int 3int F AF+

iv) A B C D AB+ AC+ AD+ BC+ BD+ CD+ E 3int F G AG+

v) A B C D AB+ AC+ AD+ BC+ BD+ CD+ E F G H AH+

vi) A B C D AB+ AC+ AD+ BC+ BD+ CD+ E F G H J

vii) A B C D E F G H J K L M N O P
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33) Let ko = k − f for a 2k−f
R design. Then the formulas for effects and

mean squares are like the formulas for a 2ko design. Let c be a column from
the table of contrasts where + = 1 and − = −1. Let y be the column of
cell means. Need MSE = σ̂2 to be given or estimated by setting high order
interactions to 0 for m = 1. Typically m = 1 for fractional factorial designs.

a) The effect corresponding to c is effect =
cTy

2ko−1
.

b) The standard error for the effect is SE(effect) =

√
MSE

m2ko−2
.

c) SE(mean) =

√
MSE

m2ko
where m2ko = n.

d) The mean square and sum of squares for an effect are
MS(effect) = SS(effect) = m2ko−2(effect)2.

34) Least squares estimates for the 2k−f
R designs in points 31) and 32) are

obtained by using the design matrix corresponding to the table of contrasts
in point 10) for ko = 3 and point 16) for ko = 4.

35) The QQ plot for 2k−f
R designs is used in a manner similar to point

29).

36) Randomly assign units to runs. Do runs in random order if possible.
In industry, units are often time slots (periods of time), so randomization
consists of randomly assigning time slots to units, which is equivalent to
doing the runs in random order. For the 2k−f

R designs in points 31) and 32),
fix the main effects using the corresponding columns of contrasts given in
points 10) and 16) to determine the levels needed in the m2k−f runs.

37) Active factors appear to change the mean response as the level of
the factor changes from −1 to 1. Inert factors do not appear to change the
response as the level of the factor changes from −1 to 1. An inert factor could
be needed but the level low or high is not important, or the inert factor may
not be needed and so can be omitted from future studies. Often subject
matter experts can tell whether the inert factor is needed or not.

38) A 2k−f
R design has no q factor interaction (or main effect for q = 1)

confounded with any other effect consisting of less than R − q factors. So
a 2k−f

III design has R = 3 and main effects are confounded with 2 factor
interactions. In a 2k−f

IV design, R = 4 and main effects are not confounded
with 2 factor interactions but 2 factor interactions are confounded with other
2 factor interactions. In a 2k−f

V design, R = 5 and main effects and 2 factor
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interactions are only confounded with 4 and 3 way or higher interactions
respectively.

39) In a 2k−f
R design, each effect is confounded or aliased with 2f−1 other

effects. Thus the Mth main effect is really an estimate of the Mth main effect
plus 2f−1 other effects. If R ≥ 3 and none of the two factor interactions are
significant, then the Mth main effect is typically a useful estimator of the
population Mth main effect.

40) The R = 4 and R = 5 designs are good because the 3 way and higher
interactions are rarely significant, but these designs are more expensive than
the R = 3 designs.

41) In this text, most of the DOE models can be fit with least squares,
and the model can be written as Y = xT β+e with least squares fitted values
Ŷ = xT β̂. In matrix form the model is Y = Xβ +e and the vector of fitted
values is Ŷ = Xβ̂.

42) The full model for a 23 or 2k−f
R design where k − f = 3 is

Yi = β0 + β1xi1 + β2xi2 + β3xi3 + β12xi12 + β13xi13 + β23xi23 + β123xi123 + ei

with least squares fitted or predicted values given by
Ŷi = β̂0 + β̂1xi1 + β̂2xi2 + β̂3xi3 + β̂12xi12 + β̂13xi13 + β̂23xi23 + β̂123xi123.

43) An interaction such as xi123 satisfies xi123 = (xi1)(xi2)(xi3).

44) For orthogonal designs like 2k, 2k−f
R or PB(n) (described in point 52)),

the x value of an effect takes on values −1 or 1. The columns of the design
matrix X are orthogonal: cT

i cj = 0 for i �= j where ci is the ith column of
X.

45) Suppose the full model using all of the columns of X is used. If the
some columns are removed (eg those corresponding to the insignificant ef-
fects), then for orthogonal designs in point 44) the following quantities remain
unchanged for the terms that were not deleted: the effects, the coefficients,
SS(effect) = MS(effect). The MSE, SE(effect), F and t statistics, pvalues,
fitted values and residuals do change.

46) The regression equation corresponding to the significant effects (eg
found with a QQ plot) can be used to form a reduced model. For example,
suppose the full (least squares) fitted model is Ŷi = β̂0 + β̂1xi1 + β̂2xi2 +
β̂3xi3 + β̂12xi12 + β̂13xi13 + β̂23xi23 + β̂123xi123. Suppose the A, B and AB
effects are significant. Then the reduced (least squares) fitted model is Ŷi =
β̂0 + β̂1xi1 + β̂2xi2 + β̂12xi12 where the coefficients (β̂’s) for the reduced model
are taken from the full model.
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47) For the designs in 44), the coefficient β̂0 corresponding to I is equal
to the I effect, but the coefficient of a factor x corresponding to an effect is
β̂ = 0.5 effect. Consider significant effects and assume interactions can be
ignored.
i) If a large response Y is desired and β̂ > 0, use x = 1. If β̂ < 0, use x = −1.

ii) If a small response Y is desired and β̂ > 0, use x = −1. If β̂ < 0, use
x = 1.

48) Rule of thumb: to predict Y with Ŷ , the number of coefficients =
the number of β̂’s in the model should be ≤ n/2, where the sample size n =
number of runs.

49) From the regression equation Ŷ = xT β̂, be able to predict Y given x.
Be able to tell whether x = 1 or x = −1 should be used. Given the x values
of the main effects, get the x values of the interactions using 43).

50) Least squares output for an example and in symbols are shown below
and on the following page for the designs in 44). Often “Estimate” is replaced
by “Coef” or “Coefficient”. Often “Intercept” is replaced by “Constant”. The
t statistic and pvalue are for whether the term or effect is significant. So t12

and p12 are for testing whether the x12 term or AB effect is significant.

Residual Standard Error=2.8284 = sqrt(MSE)

R-Square=0.9763 F-statistic (df=7, 8)=47.0536 p-value=0

Estimate Std.Err t-value Pr(>|t|)

Intercept 64.25 0.7071 90.8632 0.0000

x1 11.50 0.7071 16.2635 0.0000

x2 -2.50 0.7071 -3.5355 0.0077

x3 0.75 0.7071 1.0607 0.3198

x12 0.75 0.7071 1.0607 0.3198

x13 5.00 0.7071 7.0711 0.0001

x23 0.00 0.7071 0.0000 1.0000

x123 0.25 0.7071 0.3536 0.7328
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Coef or Est. Std.Err t pvalue

Intercept or constant β̂0 SE(coef) t0 p0

x1 β̂1 SE(coef) t1 p1

x2 β̂2 SE(coef) t2 p2

x3 β̂3 SE(coef) t3 p3

x12 β̂12 SE(coef) t12 p12

x13 β̂13 SE(coef) t13 p13

x23 β̂23 SE(coef) t23 p23

x123 β̂123 SE(coef) t123 p123

51) The least squares coefficient = 0.5 (effect). The sum of squares for
an x corresponding to an effect is equal to SS(effect). SE(coef) = SE(β̂) =
0.5 SE(effect) =

√
MSE/n. Also SE(β̂0) =

√
MSE/n.

52) The Plackett Burman PB(n) designs have k factors where 2 ≤ k ≤
n−1. The factors have 2 levels and orthogonal contrasts like the 2k and 2k−f

R

designs. The PB(n) designs are resolution 3 designs, but the confounding of
main effects with 2 factor interactions is complex. The PB(n) designs use
n runs where n is a multiple of 4. The values n = 12, 20, 24, 28 and 36 are
especially common.

53) The PB(n) designs are usually used with main effects so assume
that all interactions are insignificant. So they are main effects designs used
to screen k main effects when the number of runs n is small. Often k =
n − 4, n − 3, n − 2 or n − 1 is used. We will assume that the number of
replications m = 1.

54) If k = n − 1 there is no df for MSE. If k < n − 1, pool the last
J = n − 1 − k “empty” effects into the MSE with df = J as the full model.
This procedure is done before looking at the data, so is not data snooping.

55) The contrast matrix for the PB(12) design is shown on the following
page. Again the column of plusses corresponding to I is omitted. If k = 8
then effects A to H are used but effects J, K and L are “empty.” As a
convention the mean square and sum of squares for factor E will be denoted
as MSe and SSe while MSE = σ̂2.
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run A B C D E F G H J K L

1 + - + - - - + + + - +

2 + + - + - - - + + + -

3 - + + - + - - - + + +

4 + - + + - + - - - + +

5 + + - + + - + - - - +

6 + + + - + + - + - - -

7 - + + + - + + - + - -

8 - - + + + - + + - + -

9 - - - + + + - + + - +

10 + - - - + + + - + + -

11 - + - - - + + + - + +

12 - - - - - - - - - - -

56) The PB(n) designs are k factor 2 level orthogonal designs. So finding
effects, MS, SS, least squares estimates et cetera for PB(n) designs is similar
to finding the corresponding quantities for the 2k and 2k−f

R designs.

57) For the PB(n) design, let c be a column from the table of contrasts
where + = 1 and − = −1. Let y be the column of responses since m = 1.
For k < n− 1, MSE can be found for the full model as in 54). MSE can also
be given or found by pooling insignificant MS’s into the MSE, but the latter
method uses data snooping.

a) The effect corresponding to c is effect =
cT y

n/2
=

2cT y

n
.

b) The standard error for the effect is SE(effect) =

√
MSE

n/4
=

√
4MSE

n
.

c) SE(mean) =

√
MSE

n
.

d) The sum of squares and mean square for an effect is

MS(effect) = SS(effect) =
n

4
(effect)2.

58) For the PB(n) design, the least squares coefficient = 0.5 (effect). The
sum of squares for an x corresponding to an effect is equal to SS(effect).
SE(coef) = SE(β̂) = 0.5 SE(effect) =

√
MSE/n. Also SE(β̂0) =

√
MSE/n.
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8.5 Complements

Box, Hunter and Hunter (2005) and Ledolter and Swersey (2007) are excellent
references for k factor 2 level orthogonal designs.

Suppose it is desired to increase the response Y and that A, B, C, ... are
the k factors. The main effects for A, B, ... measure

∂Y

∂A
,
∂Y

∂B
,

et cetera. The interaction effect AB measures

∂Y

∂A∂B
.

Hence
∂Y

∂A
≈ 0,

∂Y

∂B
≈ 0 and

∂Y

∂A∂B
large

implies that the design is in the neighborhood of a maximum of a response
that looks like a ridge.

An estimated contrast is Ĉ =
∑p

i=1 diY i0, and

SE(Ĉ) =

√√√√MSE

p∑
i=1

d2
i

ni
.

If di = ±1, p = 2k and ni = m, then SE(Ĉ) =
√

MSE 2k/m. For a 2k

design, an effect can be written as a contrast with di = ±1/2k−1, p = 2k and
ni = m. Thus

SE(effect) =

√√√√MSE
2k∑
i=1

1

m

1

22k−2
=

√
MSE

m2k−2
.

There is an “ algebra” for computing confounding patterns for fractional
factorial designs. Let M be any single letter effect (A, B, C et cetera), and
let I be the identity element. Then i) IM = M , ii) MM = I and iii)
multiplication is commutative: LM = ML.

For a 2k−1
R design, set one main effect equal to an interaction, eg D =

ABC . The equation D = ABC is called a “generator.” Note that DD = I =
DABC = ABCD. The equation I = ABCD is the generating relationship.
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Then MI = M = ABCDM , so M is confounded or aliased with ABCDM .
So A = AI = AABCD = BCD and A is confounded with BCD. Similarly,
BD = BDI = BDABCD = AC , so BD is confounded with AC .

For a 2k−2
R design, 2 main effects L and M are set equal to an interaction.

Thus L2 = I and M2 = I , but it is also true that L2M2 = I. As an illus-
tration, consider the 26−2

IV design with E = ABC and F = BCD. So E2 =
I = ABCE, F 2 = I = BCDF and F 2E2 = I = ABCEBCDF = ADEF.
Hence the generating relationship I = ABCE = BCDF = ADEF has 3
“words,” and each effect is confounded with 3 other effects. For example,
AI = AABCE = ABCDF = AADEF or A = BCE = ABCDF = DEF .

For a 2k−f
R design, f main effects L1, ..., LF are set equal to interactions.

There are
(

f
1

)
equations of the form L2

i = I,
(

f
2

)
equations of the form L2

i L
2
j =

I,
(

f
3

)
equations of the form L2

i1L
2
i2L

2
i3 = I, ...,

(
f
f

)
equations of the form

L2
1L

2
2 · · ·L2

f = I . These equations give a generating relationship with 2f − 1

“words,” so each effect is confounded with 2f − 1 other effects.
If the generating relationship is I = W1 = W2 = · · · = W2f−1, then the

resolution R is equal to the length of the smallest word. So I = ABC and
I = ABCE = ABC = ADEF both have R = 3.

The convention is to ignore 3 way or higher order interactions. So the
alias patterns for the k main effects and the

(
k
2

)
2 way interactions with other

main effects and 2 way interactions is of interest.

8.6 Problems

Problems with an asterisk * are especially important.

Output for 8.1: Residual Standard Error=2.8284 R-Square=0.9763

F-statistic (df=7, 8)=47.0536 p-value=0

Estimate Std.Err t-value Pr(>|t|)

Intercept 64.25 0.7071 90.8632 0.0000

x1 11.50 0.7071 16.2635 0.0000

x2 -2.50 0.7071 -3.5355 0.0077

x3 0.75 0.7071 1.0607 0.3198

x12 0.75 0.7071 1.0607 0.3198

x13 5.00 0.7071 7.0711 0.0001

x23 0.00 0.7071 0.0000 1.0000

x123 0.25 0.7071 0.3536 0.7328
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8.1. From the least squares output on the previous page, what is the AB
effect?

I A B C AB AC BC ABC Y
+ − − − + + + − 3.81
+ + − − − − + + 4.28
+ − + − − + − + 3.74
+ + + − + − − − 4.10
+ − − + + − − + 3.75
+ + − + − + − − 3.66
+ − + + − − + − 3.82
+ + + + + + + + 3.68

8.2. Ledolter and Swersey (2007, p. 108 - 109) describes a 23 experi-
ment designed to increase subscriptions of the magazine Ladies’ Home Jour-
nal. The 2005 campaign made 8 brochures containing an order card. Each
brochure was mailed to 15042 households, and the response Y was the per-
centage of orders. Factor A was front side of order card with (−1) highlight-
ing “Double our Best Offer” and (+1) highlighting “We never had a bigger
sale.” Factor B was back side of order card with (−1) emphasizing “Two
extra years free,” while (+1) featured magazine covers of a previous issue.
Factor C was brochure cover with (−1) featuring Kelly Ripa and (+1) Dr.
Phil. Assume m = 1.

a) Find the A effect.

b) Find the C effect.

c) Find SSC = MSC.

d) If two of the three factors A, B and C are active, which is inactive?

I A B C AB AC BC ABC y
+ − − − + + + − 86.8
+ + − − − − + + 85.9
+ − + − − + − + 79.4
+ + + − + − − − 60.0
+ − − + + − − + 94.6
+ + − + − + − − 85.4
+ − + + − − + − 84.5
+ + + + + + + + 80.3
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8.3. The table of 23 contrasts on the previous page is for 25−2
III data.

a) Estimate the B effect.

b) Estimate the D effect.

8.4. Suppose that for 23 data with m = 2, the MSE = 407.5625. Find
SE(effect).

I A B C AB AC BC ABC y
+ − − − + + + − 63.6
+ + − − − − + + 76.8
+ − + − − + − + 60.3
+ + + − + − − − 80.3
+ − − + + − − + 67.2
+ + − + − + − − 71.3
+ − + + − − + − 68.3
+ + + + + + + + 74.3

divisor 8 4 4 4 4 4 4 4

8.5. Ledolter and Swersey (2007, p. 131) describe a 27−4
III data set shown

with the table of 23 contrasts above. Estimate the D effect.

I A B C AB AC BC ABC y
+ − − − + + + − 32
+ + − − − − + + 35
+ − + − − + − + 28
+ + + − + − − − 31
+ − − + + − − + 48
+ + − + − + − − 39
+ − + + − − + − 28
+ + + + + + + + 29

divisor 8 4 4 4 4 4 4 4

8.6. Kuehl (1994, p. 361-366) describes a 23 experiment designed to
investigate the effects of furnace temperature (1840 or 1880oF), heating time
(23 or 25 sec) and transfer time (10 or 12 sec) on the quality of a leaf spring
used for trucks. (The response Y was a measure of the quality.) The table
of contrasts is shown above.
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a) Find the A effect.
b) Find the B effect.
c) Find the AB effect.
d) If m = 1, find SSA.
e) If m = 1, find SSB.
f) If m = 1, find SSAB.
g) If m = 2 and MSE = 9, find SE(effect).

(The SE is the same regardless of the effect.)
h) Suppose high Y = y is desirable. If two of the factors A, B and C are

inert and one is active, then which is active and which are inert. (Hint: look
at the 4 highest values of y. Is there a pattern?)

i) If one of the factors has an interaction with the active factor, what is
the interaction (eg AB, AC or BC)?

8.7. Suppose the B effect = −5, SE(effect) =
√

2 and dfe = 8.
i) Find a 95% confidence interval for the B effect.
ii) Is the B effect significant? Explain briefly.

8.8. Copy the Box, Hunter and Hunter (2005, p. 199) product develop-
ment data from (www.math.siu.edu/olive/regdata.txt) into R.

Then type the following commands.

out <- aov(conversion~K*Te*P*C,devel)

summary(out)

a) Include the output in Word.
b) What are the five effects with the biggest mean squares?

Note: an AB interaction is denoted by A:B in R.

8.9. Get the SAS program from (www.math.siu.edu/olive/reghw.txt) for
this problem. The data is the pilot plant example from Box, Hunter and
Hunter (2005, p. 177-186). The response varible is Y=yield, while the three
predictors (T = temp, C = concentration, K = catalyst) are at two levels.

a) Print out the output but do not turn in the first page.
b) Do the residual and response plots look ok?

8.10. Get the data from (www.math.siu.edu/olive/reghw.txt) for this
problem. The data is the pilot plant example from Box, Hunter and Hunter
(2005, p. 177-186) examined in Problem 8.9. Minitab needs the levels for
the factors and the interactions.
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Highlight the data and use the menu commands “Edit>Copy.” In Minitab,
use the menu command “Edit>PasteCells.” After a window appears, click
on ok.

Below C1 type “A”, below C2 type “B”, below C3 type “C” and below
C8 type “yield.”

a) Use the menu command “STAT>ANOVA>BalancedAnova” put “yield”
in the responses box and

A|B|C
in the Model box. Click on “Storage.” When a window appears, click on
“Fits” and “Residuals.” Then click on “OK”. This window will disappear.
Click on “OK.”

b) Next highlight the bottom 8 lines and use the menu commands
“Edit>Delete Cells”. Then the data set does not have replication. Use
the menu command “STAT>ANOVA>Balanced Anova” put “yield” in the
responses box and

A B C A*C
in the Model box. Click on “Storage.” When a window appears, click on
“Fits” and “Residuals.” Then click on “OK”. This window will disappear.
Click on “OK.”

(The model A|B|C would have resulted in an error message, not enough
data.)

c) Print the output by clicking on the top window and then clicking on
the printer icon.

d) Make a response plot with the menu commands “Graph>Plot” with
yield in the Y box and FIT2 in the X box. Print by clicking on the printer
icon.

e) Make a residual plot with the menu commands “Graph>Plot” with
RESI2 in the Y box and FIT2 in the X box. Print by clicking on the printer
icon.

f) Do the plots look ok?

8.11. Get the R code and data for this problem from
(www.math.siu.edu/olive/reghw.txt). The data is the pilot plant example
from Box, Hunter and Hunter (2005, p. 177-186) examined in Problems 8.9
and 8.10.

a) Copy and paste the code into R. Then copy and paste the output into
Notepad. Print out the page of output.
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b) The least squares estimate = coefficient for x1 is half the A effect. So
what is the A effect?

8.12. a) Obtain and the R program twocub from
(www.math.siu.edu/olive/regpack.txt). To get the effects, mean squares and
SE(effect) for the Box, Hunter and Hunter (2005, p. 177) pilot plant data,
type the following commands and include the output in Word.

mns <- c(60,72,54,68,52,83,45,80)

twocub(mns,m=2,MSE=8)

b) Which effects appear to be significant from the QQ plot? (Match the
effects on the plot with the output on the screen.)

8.13. Box, Hunter and Hunter (2005, p. 237) describe a 24−1
IV fractional

factorial design. Assuming that you downloaded the twocub function in the
previous problem, type the following commands.

mns <- c(20,14,17,10,19,13,14,10)

twocub(mns,m=1)

a) Include the output in Word, print out the output and label the effects
on the output with the corresponding effects from a 24−1

IV fractional factorial
design.

b) Include the QQ plot in Word. Print out the plot. Which effects (from
the fractional factorial design) seem to be significant?

8.14. a) Download (www.math.siu.edu/olive/regpack.txt) into R, and
type the following commands.

mns <- c(14,16,8,22,19,37,20,38,1,8,4,10,12,30,13,30)

twofourth(mns)

This is the Ledolter and Swersey (2007, p. 80) cracked pots 24 data and
the response and residual plots are from the model without 3 and 4 factor
interactions.

b) Copy the plots into Word and print the plots. Do the response and
residual plots look ok?

8.15. Download (www.math.siu.edu/olive/regpack.txt) into R. The data
is the PB(12) example from Box, Hunter and Hunter (2005, p. 287).

a) Type the following commands. Copy and paste the QQ plot into Word
and print the plot.
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resp <- c(56,93,67,60,77,65,95,49,44,63,63,61)

pb12(resp,k=5)

b) Copy and paste the output into Notepad and print the output.

c) As a 25 design, the effects B, D, BD, E and DE were thought to be real.
The PB(12) design works best when none of the interactions is significant.
From the QQ plot and the output for the PB(12) design, which factors, if
any, appear to be significant?

d) The output gives the A, B, C, D and E effects along with the cor-
responding least squares coefficients β̂1, ..., β̂5. What is the relationship
between the coefficients and the effects?

For parts e) to g), act as if the PB(12) design with 5 factors is
appropriate.

e) The full model has Ŷ = β̂0 + β̂1x1 + β̂2x2 + β̂3x3 + β̂4x4 + β̂5x5. The
reduced model is Ŷ = β̂0 + β̂jxj where xj is the significant term found in c).
Give the numerical formula for the reduced model.

f) Compute Ŷ using the full model if xi = 1 for i = 1, ..., 5. Then compute
Ŷ using the reduced model if xj = 1.

g) If the goal of the experiment is to produce large values of Y , should
xj = 1 or xj = −1 in the reduced model? Explain briefly.
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