
Chapter 3

Building an MLR Model

Building a multiple linear regression (MLR) model from data is one of the
most challenging regression problems. The “final full model” will have re-
sponse variable Y = t(Z), a constant x1 and predictor variables x2 =
t2(w2, ..., wr), ..., xp = tp(w2, ..., wr) where the initial data consists of Z, w2, ...,
wr. Choosing t, t2, ..., tp so that the final full model is a useful MLR approx-
imation to the data can be difficult.

Model building is an iterative process. Given the problem and data but
no model, the model building process can often be aided by graphs that help
visualize the relationships between the different variables in the data. Then
a statistical model can be proposed. This model can be fit and inference per-
formed. Then diagnostics from the fit can be used to check the assumptions
of the model. If the assumptions are not met, then an alternative model
can be selected. The fit from the new model is obtained, and the cycle is
repeated. This chapter provides some tools for building a good full model.

Warning: Researchers often have a single data set and tend to expect
statistics to provide far more information from the single data set than is
reasonable. MLR is an extremely useful tool, but MLR is at its best when
the final full model is known before collecting and examining the data. But
it is very common for researchers to build their final full model by using
the iterative process until the final model “fits the data well.” Researchers
should not expect that all or even many of their research questions can be
answered from such a full model. If the final MLR full model is built from
a single data set in order to fit that data set well, then typically inference
from that model will not be valid. The model may be useful for describing
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the data, but may perform very poorly for prediction of a future response.
The model may suggest that some predictors are much more important than
others, but a model that is chosen prior to collecting and examining the data
is generally much more useful for prediction and inference. A single data
set is a great place to start an analysis, but can be a terrible way
to end the analysis.

Often a final full model is built after collecting and examining the data.
This procedure is called “data snooping,” and such models can not be ex-
pected to be reliable. If possible, spend about 1/8 of the budget to collect
data and build an initial MLR model. Spend another 1/8 of the budget to
collect more data to check the initial MLR model. If changes are necessary,
continue this process until no changes from the previous step are needed,
resulting in a tentative MLR model. Then spend between 3/4 and 1/2 of the
budget to collect data assuming that the tentative model will be useful.

After obtaining a final full model, researchers will typically find a final
submodel after performing variable selection. Even if the final full model was
selected before collecting data, the final submodel, obtained after performing
variable selection, may not be useful for inference.

Rule of thumb 3.1. If the MLR model is built using the variable
selection methods from Section 3.4, then the final submodel can be used for
description but will often not be useful for inference and prediction.

3.1 Predictor Transformations

As a general rule, inferring about the distribution of Y |X from a lower
dimensional plot should be avoided when there are strong nonlinearities

among the predictors.
Cook and Weisberg (1999b, p. 34)

Predictor transformations are used to remove gross nonlinearities in the
predictors, and this technique is often very useful. Power transformations are
particularly effective, and the techniques of this section are often useful for
general regression problems, not just for multiple linear regression. A power
transformation has the form x = tλ(w) = wλ for λ �= 0 and x = t0(w) =
log(w) for λ = 0. Often λ ∈ ΛL where

ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1} (3.1)
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is called the ladder of powers. Often when a power transformation is needed,
a transformation that goes “down the ladder”, eg from λ = 1 to λ = 0 will
be useful. If the transformation goes too far down the ladder, eg if λ = 0 is
selected when λ = 1/2 is needed, then it will be necessary to go back “up
the ladder.” Additional powers such as ±2 and ±3 can always be added.

Definition 3.1. A scatterplot of x versus Y is used to visualize the
conditional distribution of Y |x. A scatterplot matrix is an array of scat-
terplots. It is used to examine the marginal relationships of the predictors
and response.

In this section we will only make a scatterplot matrix of the predictors.
Often nine or ten variables can be placed in a scatterplot matrix. The names
of the variables appear on the diagonal of the scatterplot matrix. The soft-
ware Arc gives two numbers, the minimum and maximum of the variable,
along with the name of the variable. The software R/Splus labels the values
of each variable in two places, see Example 3.2 below. Let one of the vari-
ables be W . All of the marginal plots above and below W have W on the
horizontal axis. All of the marginal plots to the left and the right of W have
W on the vertical axis.

There are several rules of thumb that are useful for visually selecting a
power transformation to remove nonlinearities from the predictors.

Rule of thumb 3.2. a) If strong nonlinearities are apparent in the
scatterplot matrix of the predictors w2, ..., wp, it is often useful to remove the
nonlinearities by transforming the predictors using power transformations.

b) Use theory if available.

c) Suppose that variable X2 is on the vertical axis and X1 is on the
horizontal axis and that the plot of X1 versus X2 is nonlinear. The unit rule
says that if X1 and X2 have the same units, then try the same transformation
for both X1 and X2.

Assume that all values of X1 and X2 are positive. Then the following six
rules are often used.

d) The log rule states that a positive predictor that has the ratio between
the largest and smallest values greater than ten should be transformed to logs.
So X > 0 and max(X)/min(X) > 10 suggests using log(X).
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e) The range rule states that a positive predictor that has the ratio
between the largest and smallest values less than two should not be trans-
formed. So X > 0 and max(X)/min(X) < 2 suggests keeping X.

f) The bulging rule states that changes to the power of X2 and the power
of X1 can be determined by the direction that the bulging side of the curve
points. If the curve is hollow up (the bulge points down), decrease the power
of X2. If the curve is hollow down (the bulge points up), increase the power
of X2 If the curve bulges towards large values of X1 increase the power of
X1. If the curve bulges towards small values of X1 decrease the power of X1.
See Tukey (1977, p. 173–176).

g) The ladder rule appears in Cook and Weisberg (1999a, p. 86).
To spread small values of a variable, make λ smaller.
To spread large values of a variable, make λ larger.

h) If it is known that X2 ≈ Xλ
1 and the ranges of X1 and X2 are such

that this relationship is one to one, then

Xλ
1 ≈ X2 and X

1/λ
2 ≈ X1.

Hence either the transformation Xλ
1 or X

1/λ
2 will linearize the plot. Note that

log(X2) ≈ λ log(X1), so taking logs of both variables will also linearize the
plot. This relationship frequently occurs if there is a volume present. For
example let X2 be the volume of a sphere and let X1 be the circumference
of a sphere.

i) The cube root rule says that if X is a volume measurement, then cube
root transformation X1/3 may be useful.

In the literature, it is sometimes stated that predictor transformations
that are made without looking at the response are “free.” The reasoning is
that the conditional distribution of Y |(x2 = a2, ..., xp = ap) is the same as
the conditional distribution of Y |[t2(x2) = t2(a2), ..., tp(xp) = tp(ap)]: there is
simply a change of labelling. Certainly if Y |x = 9 ∼ N(0, 1), then Y |√x =
3 ∼ N(0, 1). To see that Rule of thumb 3.2a does not always work, suppose
that Y = β1+β2x2+· · ·+βpxp+e where the xi are iid lognormal(0,1) random
variables. Then wi = log(xi) ∼ N(0, 1) for i = 2, ..., p and the scatterplot
matrix of the wi will be linear while the scatterplot matrix of the xi will
show strong nonlinearities if the sample size is large. However, there is an

105



MLR relationship between Y and the xi while the relationship between Y
and the wi is nonlinear: Y = β1 + β2e

w2 + · · ·+ βpe
wp + e �= βTw + e. Given

Y and the wi with no information of the relationship, it would be difficult
to find the exponential transformation and to estimate the βi. The moral
is that predictor transformations, especially the log transformation, can and
often do greatly simplify the MLR analysis, but predictor transformations
can turn a simple MLR analysis into a very complex nonlinear analysis.

Theory, if available, should be used to select a transformation. Frequently
more than one transformation will work. For example if W = weight and X1

= volume = (X2)(X3)(X4), then W versus X
1/3
1 and log(W ) versus log(X1) =

log(X2) + log(X3) + log(X4) may both work. Also if W is linearly related
with X2, X3, X4 and these three variables all have length units mm, say, then
the units of X1 are (mm)3. Hence the units of X

1/3
1 are mm.

Suppose that all values of the variable w to be transformed are positive.
The log rule says use log(w) if max(wi)/min(wi) > 10. This rule often works
wonders on the data and the log transformation is the most used (modified)
power transformation. If the variable w can take on the value of 0, use
log(w + c) where c is a small constant like 1, 1/2, or 3/8.

To use the ladder rule, suppose you have a scatterplot of two variables
xλ1

1 versus xλ2
2 where both x1 > 0 and x2 > 0. Also assume that the plotted

points follow a nonlinear one to one function. Consider the ladder of powers

ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1, }.

To spread small values of the variable, make λi smaller. To spread large
values of the variable, make λi larger.

For example, if both variables are right skewed, then there will be many
more cases in the lower left of the plot than in the upper right. Hence small
variables need spreading. Figures 1.8 and 10.4 b), 11.1 b) and 15.11 a) have
this shape.

Consider the ladder of powers. Often no transformation (λ = 1) is best,
then the log transformation, then the square root transformation, then the
reciprocal transformation.

Example 3.1. Examine Figure 3.1. Let X1 = w and X2 = x. Since w is
on the horizontal axis, mentally add a narrow vertical slice to the plot. If a
large amount of data falls in the slice at the left of the plot, then small values
need spreading. Similarly, if a large amount of data falls in the slice at the
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Figure 3.1: Plots to Illustrate the Bulging and Ladder Rules

right of the plot (compared to the middle and left of the plot), then large
values need spreading. For the variable on the vertical axis, make a narrow
horizontal slice. If the plot looks roughly like the northwest corner of a square
then small values of the horizontal and large values of the vertical variable
need spreading. Hence in Figure 3.1a, small values of w need spreading.
Notice that the plotted points bulge up towards small values of the horizontal
variable. If the plot looks roughly like the northeast corner of a square, then
large values of both variables need spreading. Hence in Figure 3.1b, large
values of x need spreading. Notice that the plotted points bulge up towards
large values of the horizontal variable. If the plot looks roughly like the
southwest corner of a square, as in Figure 3.1c, then small values of both
variables need spreading. Notice that the plotted points bulge down towards
small values of the horizontal variable. If the plot looks roughly like the
southeast corner of a square, then large values of the horizontal and small
values of the vertical variable need spreading. Hence in Figure 3.1d, small
values of x need spreading. Notice that the plotted points bulge down towards
large values of the horizontal variable.

Example 3.2: Mussel Data. Cook and Weisberg (1999a, p. 351, 433,
447) gave a data set on 82 mussels sampled off the coast of New Zealand.
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Figure 3.2: Scatterplot Matrix for Original Mussel Data Predictors
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Figure 3.3: Scatterplot Matrix for Transformed Mussel Data Predictors
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The response is muscle mass M in grams, and the predictors are a constant,
the length L and height H of the shell in mm, the shell width W and the
shell mass S. Figure 3.2 shows the scatterplot matrix of the predictors L,
H, W and S. Examine the variable length. Length is on the vertical axis
on the three top plots and the right of the scatterplot matrix (made with
R), labels this axis from 150 to 300. Length is on the horizontal axis on
the three leftmost marginal plots, and this axis is labelled from 150 to 300
on the bottom of the scatterplot matrix. The marginal plot in the bottom
left corner has length on the horizontal and shell on the vertical axis. The
marginal plot that is second from the top and second from the right has
height on the horizontal and width on the vertical axis.

Nonlinearity is present in several of the plots. For example, width and
length seem to be linearly related while length and shell have a nonlinear
relationship. The minimum value of shell is 10 while the max is 350. Since
350/10 = 35 > 10, the log rule suggests that log S may be useful. If log S
replaces S in the scatterplot matrix, then there may be some nonlinearity
present in the plot of log S versus W with small values of W needing spread-
ing. Hence the ladder rule suggests reducing λ from 1 and we tried log(W ).
Figure 3.3 shows that taking the log transformations of W and S results in
a scatterplot matrix that is much more linear than the scatterplot matrix of
Figure 3.2. Notice that the plot of W versus L and the plot of log(W ) versus
L both appear linear.

The plot of shell versus height in Figure 3.2 is nonlinear, and small values
of shell need spreading since if the plotted points were projected on the
horizontal axis, there would be too many points at values of shell near 0.
Similarly, large values of height need spreading.

3.2 Graphical Methods for Response Trans-

formations

If the ratio of largest to smallest value of y is substantial, we usually begin
by looking at log y.

Mosteller and Tukey (1977, p. 91)

The applicability of the multiple linear regression model can be expanded
by allowing response transformations. An important class of response trans-
formation models adds an additional unknown transformation parameter λo,
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such that

Yi = tλo(Zi) ≡ Z
(λo)
i = E(Yi|xi) + ei = xT

i β + ei. (3.2)

If λo was known, then Yi = tλo(Zi) would follow a multiple linear regression
model with p predictors including the constant. Here, β is a p × 1 vector
of unknown coefficients depending on λo, x is a p × 1 vector of predictors
that are assumed to be measured with negligible error, and the errors ei are
assumed to be iid with zero mean.

Definition 3.2. Assume that all of the values of the “response” Zi are
positive. A power transformation has the form Y = tλ(Z) = Zλ for λ �= 0
and Y = t0(Z) = log(Z) for λ = 0 where

λ ∈ ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1}.

Definition 3.3. Assume that all of the values of the response variable
Yi are positive. Then the modified power transformation family

tλ(Zi) ≡ Z
(λ)
i =

Zλ
i − 1

λ
(3.3)

for λ �= 0 and Z
(0)
i = log(Zi). Generally λ ∈ Λ where Λ is some interval such

as [−1, 1] or a coarse subset such as ΛL. This family is a special case of the
response transformations considered by Tukey (1957).

A graphical method for response transformations computes the “fitted
values” Ŵi = xT

i β̂λ from the multiple linear regression model using Wi =
tλ(Zi) as the “response.” Then a “response plot” of the Ŵ versus W is made
for each of the seven values of λ ∈ ΛL. The plotted points follow the identity
line in a (roughly) evenly populated band if the iid error MLR model is
reasonable for Y = W and x.

By adding the “response” Z to the scatterplot matrix, the methods of
the previous section can also be used to suggest good values of λ, and it is
usually a good idea to use predictor transformations to remove nonlineari-
ties from the predictors before selecting a response transformation. Notice
that the graphical method is equivalent to making “response plots” for the
seven values of W = tλ(Z), and choosing the “best response plot” where the
MLR model seems “most reasonable.” The seven “response plots” are called
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transformation plots below. Recall our convention that a plot of X versus Y
means that X is on the horizontal axis and Y is on the vertical axis.

Warning: The Rule of thumb 3.2 does not always work. For example,
the log rule may fail. If the relationships in the scatterplot matrix are al-
ready linear or if taking the transformation does not increase the linearity
(especially in the row containing the response), then no transformation may
be better than taking a transformation. For the Arc data set evaporat.lsp,
the log rule suggests transforming the response variable Evap, but no trans-
formation works better.

Definition 3.4. A transformation plot is a plot of Ŵ versus W with the
identity line added as a visual aid.

There are several reasons to use a coarse grid of powers. First, several
of the powers correspond to simple transformations such as the log, square
root, and cube root. These powers are easier to interpret than λ = .28,
for example. According to Mosteller and Tukey (1977, p. 91), the most
commonly used power transformations are the λ = 0 (log), λ = 1/2,
λ = −1 and λ = 1/3 transformations in decreasing frequency of use. Sec-
ondly, if the estimator λ̂n can only take values in ΛL, then sometimes λ̂n will
converge (eg in probability) to λ∗ ∈ ΛL. Thirdly, Tukey (1957) showed that
neighboring power transformations are often very similar, so restricting the
possible powers to a coarse grid is reasonable. Note that powers can always
be added to the grid ΛL. Useful powers are ±1/4,±2/3,±2, and ±3. Powers
from numerical methods can also be added.

Application 3.1. This graphical method for selecting a response trans-
formation is very simple. Let Wi = tλ(Zi). Then for each of the seven values
of λ ∈ ΛL, perform OLS on (Wi, xi) and make the transformation plot of
Ŵi versus Wi. If the plotted points follow the identity line for λ∗, then take
λ̂o = λ∗, that is, Y = tλ∗(Z) is the response transformation. (Note that this
procedure can be modified to create a graphical diagnostic for a numerical
estimator λ̂ of λo by adding λ̂ to ΛL.)

If more than one value of λ ∈ ΛL gives a linear plot, take the simplest or
most reasonable transformation or the transformation that makes the most
sense to subject matter experts. Also check that the corresponding “residual
plots” of Ŵ versus W − Ŵ look reasonable. The values of λ in decreasing
order of importance are 1, 0, 1/2,−1 and 1/3. So the log transformation
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Figure 3.4: Four Transformation Plots for the Textile Data
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would be chosen over the cube root transformation if both transformation
plots look equally good.

After selecting the transformation, the usual checks should be made. In
particular, the transformation plot for the selected transformation is the
response plot, and a residual plot should also be made. The following example
illustrates the procedure. In the following example, the plots show tλ(Z) on
the vertical axis. The label “TZHAT” of the horizontal axis are the “fitted
values” that result from using tλ(Z) as the “response” in the OLS software.

Example 3.3: Textile Data. In their pioneering paper on response
transformations, Box and Cox (1964) analyze data from a 33 experiment
on the behavior of worsted yarn under cycles of repeated loadings. The “re-
sponse” Z is the number of cycles to failure and a constant is used along with
the three predictors length, amplitude and load. Using the normal profile log
likelihood for λo, Box and Cox determine λ̂o = −0.06 with approximate 95
percent confidence interval −0.18 to 0.06. These results give a strong indi-
cation that the log transformation may result in a relatively simple model,
as argued by Box and Cox. Nevertheless, the numerical Box–Cox transfor-
mation method provides no direct way of judging the transformation against
the data.

Shown in Figure 3.4 are transformation plots of Ẑ versus Zλ for four
values of λ except log(Z) is used if λ = 0. The plots show how the trans-
formations bend the data to achieve a homoscedastic linear trend. Perhaps
more importantly, they indicate that the information on the transformation
is spread throughout the data in the plot since changing λ causes all points
along the curvilinear scatter in Figure 3.4a to form along a linear scatter in
Figure 3.4c. Dynamic plotting using λ as a control seems quite effective for
judging transformations against the data and the log response transformation
does indeed seem reasonable.

Note the simplicity of the method: Figure 3.4a shows that a response
transformation is needed since the plotted points follow a nonlinear curve
while Figure 3.4c suggests that Y = log(Z) is the appropriate response
transformation since the plotted points follow the identity line. If all 7
plots were made for λ ∈ ΛL, then λ = 0 would be selected since this plot
is linear. Also, Figure 3.4a suggests that the log rule is reasonable since
max(Z)/min(Z) > 10.

The essential point of the next example is that observations that influence
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the choice of the usual Box–Cox numerical power transformation are often
easily identified in the transformation plots. The transformation plots are
especially useful if the bivariate relationships of the predictors, as seen in the
scatterplot matrix of the predictors, are linear.

Example 3.4: Mussel Data. Consider the mussel data of Example
3.2 where the response is muscle mass M in grams, and the predictors are
the length L and height H of the shell in mm, the logarithm log W of the
shell width W, the logarithm log S of the shell mass S and a constant. With
this starting point, we might expect a log transformation of M to be needed
because M and S are both mass measurements and log S is being used as
a predictor. Using log M would essentially reduce all measurements to the
scale of length. The Box–Cox likelihood method gave λ̂0 = 0.28 with ap-
proximate 95 percent confidence interval 0.15 to 0.4. The log transformation
is excluded under this inference leading to the possibility of using different
transformations of the two mass measurements.

Shown in Figure 3.5 are transformation plots for four values of λ. A strik-
ing feature of these plots is the two points that stand out in three of the four
plots (cases 8 and 48). The Box–Cox estimate λ̂ = 0.28 is evidently influenced
by the two outlying points and, judging deviations from the identity line in
Figure 3.5c, the mean function for the remaining points is curved. In other
words, the Box–Cox estimate is allowing some visually evident curvature in
the bulk of the data so it can accommodate the two outlying points. Recom-
puting the estimate of λo without the highlighted points gives λ̂o = −0.02,
which is in good agreement with the log transformation anticipated at the
outset. Reconstruction of the transformation plots indicated that now the
information for the transformation is consistent throughout the data on the
horizontal axis of the plot.

Note that in addition to helping visualize λ̂ against the data, the transfor-
mation plots can also be used to show the curvature and heteroscedasticity in
the competing models indexed by λ ∈ ΛL. Example 3.4 shows that the plot
can also be used as a diagnostic to assess the success of numerical methods
such as the Box–Cox procedure for estimating λo.

Example 3.5: Mussel Data Again. Return to the mussel data, this
time considering the regression of M on a constant and the four untrans-
formed predictors L, H, W and S. Figure 3.2 shows the scatterplot matrix
of the predictors L, H, W and S. Again nonlinearity is present. Figure
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3.3 shows that taking the log transformations of W and S results in a linear
scatterplot matrix for the new set of predictors L, H, log W , and log S. Then
the search for the response transformation can be done as in Example 3.4.

3.3 Main Effects, Interactions and Indicators

Section 1.7 explains interactions, factors and indicator variables in an ab-
stract setting when Y x|xTβ where xTβ is the sufficient predictor (SP).
MLR is such a model. The interpretations given Section 1.7 in terms of the
SP can be given in terms of E(Y |x) for MLR since E(Y |x) = xT β = SP
for MLR.

Definition 3.5. Suppose that the explanatory variables have the form
x2, ..., xk, xjj = x2

j , xij = xixj, x234 = x2x3x4, et cetera. Then the variables
x2, ..., xk are main effects. A product of two or more different main effects is
an interaction. A variable such as x2

2 or x3
7 is a power. An x2x3 interaction

will sometimes also be denoted as x2 : x3 or x2 ∗ x3.

Definition 3.6. A factor W is a qualitative random variable. Suppose
W has c categories a1, ..., ac. Then the factor is incorporated into the MLR
model by using c − 1 indicator variables xWi = 1 if W = ai and xWi = 0
otherwise, where one of the levels ai is omitted, eg, use i = 1, ..., c− 1. Each
indicator variable has 1 degree of freedom. Hence the degrees of freedom of
the c − 1 indicator variables associated with the factor is c − 1.

Rule of thumb 3.3. Suppose that the MLR model contains at least one
power or interaction. Then the corresponding main effects that make up the
powers and interactions should also be in the MLR model.

Rule of thumb 3.3 suggests that if x2
3 and x2x7x9 are in the MLR model,

then x2, x3, x7 and x9 should also be in the MLR model. A quick way to check
whether a term like x2

3 is needed in the model is to fit the main effects models
and then make a scatterplot matrix of the predictors and the residuals, where
the residuals are on the top row. Then the top row shows plots of xk versus
r, and if a plot is parabolic, then x2

k should be added to the model. Potential
predictors wj could also be added to the scatterplot matrix. If the plot of
wj versus r shows a positive or negative linear trend add wj to the model.
If the plot is quadratic, add wj and w2

j to the model. This technique is for
quantitative variables xk and wj.
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The simplest interaction to interpret is the interaction between a quanti-
tative variable x2 and a qualitative variable x3 with 2 levels. Suppose that
x3 = 1 for level a2 and x3 = 0 for level a1. Then a first order model with
interaction is SP = E(Y |x) = β1 + β2x2 + β3x3 + β4x2x3. This model yields
two unrelated lines in the conditional expectation depending on the value of
x3: E(Y |x) = β1 + β3 + (β2 + β4)x2 if x3 = 1 and E(Y |x) = β1 + β2x2 if
x3 = 0. If β4 = 0, then there are two parallel lines: E(Y |x) = β1 +β3 +β2x2

if x2 = 1 and E(Y |x) = β1 + β2x2 if x3 = 0. If β3 = β4 = 0, then the two
lines are coincident: E(Y |x) = β1 + β2x2 for both values of x3. If β3 = 0,
then the two lines have the same intercept: E(Y |x) = β1 + (β2 + β4)x2 if
x3 = 1 and E(Y |x) = β1 + β2x2 if x3 = 0.

Notice that β4 = 0 corresponds to no interaction. The estimated slopes
of the two lines will not be exactly identical, so the two estimated lines will
not be parallel even if there is no interaction. If the two estimated lines
have similar slopes and do not cross, there is evidence of no interaction,
while crossing lines is evidence of interaction provided that the two lines
are not nearly coincident. Two lines with very different slopes also suggests
interaction. In general, as factors have more levels and interactions have
more terms, eg x2x3x4x5, the interpretation of the model rapidly becomes
very complex.

Example 3.6. Two varieties of cement that replace sand with coal waste
products were compared to a standard cement mix. The response Y was the
compressive strength of the cement measured after 7, 28, 60, 90 or 180 days
of curing time = x2. This cement was intended for sidewalks and barriers
but not for construction. The data is likely from small batches of cement
prepared in the lab, and is likely correlated; however, MLR can be used for
exploratory and descriptive purposes. Actually using the different cement
mixtures in the field (eg as sidewalks), would be very expensive. The factor
mixture had 3 levels, 2 for the standard cement and 0 and 1 for the coal based
cements. A plot of x2 versus Y (not shown but see Problem 3.15), resembled
the left half of a quadratic Y = −c(x2 − 180)2. Hence x2 and x2

2 were added
to the model.

Figure 3.6 shows the response plot and residual plots from this model.
The standard cement mix uses the symbol + while the coal based mixes use
an inverted triangle and square. OLS lines based on each mix are added
as visual aids. The lines from the two coal based mixes do not intersect,
suggesting that there may not be an interaction between these two mixes.
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Figure 3.6: Plots to Illustrate Interaction for the Cement Data

There is an interaction between the standard mix and the two coal mixes
since these lines do intersect. All three types of cement become stronger
with time, but the standard mix has the greatest strength at early curing
times while the coal based cements become stronger than the standard mix at
the later times. Notice that the interaction is more apparent in the residual
plot. Problem 3.15 adds a factor Fx3 based on mix as well as the x2 ∗ Fx3

and x2
2 ∗Fx3 interactions. The resulting model is an improvement, but there

is still some curvature in the residual plot, and one case is not fit very well.

3.4 Variable Selection

Variable selection, also called subset or model selection, is the search for a
subset of predictor variables that can be deleted without important loss of
information. A model for variable selection in multiple linear regression can
be described by

Y = xTβ + e = βTx + e = xT
SβS + xT

EβE + e = xT
SβS + e (3.4)
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where e is an error, Y is the response variable, x = (xT
S , xT

E)T is a p × 1
vector of predictors, xS is a kS × 1 vector and xE is a (p − kS) × 1 vector.
Given that xS is in the model, βE = 0 and E denotes the subset of terms
that can be eliminated given that the subset S is in the model.

Since S is unknown, candidate subsets will be examined. Let xI be the
vector of k terms from a candidate subset indexed by I , and let xO be the
vector of the remaining predictors (out of the candidate submodel). Then

Y = xT
I βI + xT

OβO + e. (3.5)

Definition 3.7. The model Y = xT β + e that uses all of the predictors
is called the full model. A model Y = xT

I βI + e that only uses a subset
xI of the predictors is called a submodel. The full model is always a
submodel. The sufficient predictor (SP) is the linear combination of the
predictor variables used in the model. Hence the full model has SP = xTβ
and the submodel has SP = xT

I βI .

The estimated sufficient predictor (ESP) is xT β̂ and the following re-
marks suggest that a submodel I is worth considering if the correlation
corr(ESP, ESP (I)) ≥ 0.95. Suppose that S is a subset of I and that model
(3.4) holds. Then

SP = xT β = xT
SβS = xT

SβS + xT
I/Sβ(I/S) + xT

O0 = xT
I βI (3.6)

where xI/S denotes the predictors in I that are not in S. Since this is true
regardless of the values of the predictors, βO = 0 and the sample correlation
corr(xT

i β, xT
I,iβI) = 1.0 for the population model if S ⊆ I .

All too often, variable selection is performed and then the researcher tries
to use the final submodel for inference as if the model was selected before
gathering data. At the other extreme, it could be suggested that variable
selection should not be done because inferences after variable selection are
not valid. Neither of these two extremes is useful.

Ideally the model is known before collecting the data. After the data
is collected, the MLR assumptions are checked and then the model is used
for inference. Alternatively, a preliminary study can be used to collect data.
Then the predictors and response can be transformed until a full model is
built that seems to be a useful MLR approximation of the data. Then variable
selection can be performed, suggesting a final model. Then this final model is
the known model used before collecting data for the main part of the study.
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In practice, the researcher often has one data set, builds the full model
and performs variable selection to obtain a final submodel. In other words,
an extreme amount of data snooping was used to build the final model. A
major problem with the final MLR model (chosen after variable selection
or data snooping) is that it is not valid for inference in that the p-values
for the OLS t-tests and ANOVA F test are likely to be too small, while
the p-value for the partial F test that uses the final model as the reduced
model is likely to be too high. Similarly, the actual coverage of the nominal
100(1 − δ)% prediction intervals tends to be too small and unknown (eg the
nominal 95% PIs may only contain 83% of the future responses Yf ). Thus
the model is likely to fit the data set from which it was built much better
than future observations. Call the data set from which the MLR model was
built the “training data,” consisting of cases (Yi, xi) for i = 1, ..., n. Then
the future predictions tend to be poor in that |Yf − Ŷf | tends to be larger

on average than |Yi − Ŷi|. To summarize, a final MLR model selected after
variable selection can be useful for description and exploratory analysis: the
tests and intervals can be used for exploratory purposes, but are not valid
for inference.

Generally the research paper should state that the model was built with
one data set, and is useful for description and exploratory purposes, but
should not be used for inference. The research paper should only suggest
that the model is useful for inference if the model has been shown to be
useful on data collected after the model was built. For example, if
the researcher can collect new data and show that the model produces valid
inferences (eg 97 out of 100 95% prediction intervals contained the future
response Yf ), then the researcher can perhaps claim to have found a model
that is useful for inference.

Other problems exist even if the full MLR model Y = xT β + e is good.
Let I ⊂ {1, ..., p} and let xI be the final vector of predictors. If xI is missing
important predictors contained in the full model, sometimes called underfit-
ting, then the final model Y = xT

I βI + e may be a very poor approximation
to the data, in particular the full model may be linear while the final model
may be nonlinear. Similarly the full model may satisfy V (ei) = σ2 while
the constant variance assumption is violated by the submodel: V (ei) = σ2

i .
These two problems are less severe if the joint distribution of (Y, xT )T is
multivariate normal, since then Y = xT

I βI + e satisfies the constant variance
MLR model regardless of the subset I used.
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In spite of these problems, if the researcher has a single data set with
many predictors, then usually variable selection must be done. Let p − 1 be
the number of nontrivial predictors and assume that the model also contains
a constant. Also assume that n > 10p. If the MLR model found after variable
selection has good response and residual plots, then the model may be very
useful for descriptive and exploratory purposes.

Simpler models are easier to explain and use than more complicated mod-
els, and there are several other important reasons to perform variable selec-
tion. First, an MLR model with unnecessary predictors has a mean square
error for prediction that is too large. Let xS contain the necessary predictors,
let x be the full model, and let xI be a submodel. If (3.4) holds and S ⊆ I ,
then E(Y |xI) = xT

I βI = xT
SβS = xT β. Hence OLS applied to Y and xI

yields an unbiased estimator β̂I of βI . If (3.4) holds, S ⊆ I , βS is a k × 1
vector and βI is a j × 1 vector with j > k, then it is shown in Chapter 13
that

1

n

n∑
i=1

V (ŶIi) =
σ2j

n
>

σ2k

n
=

1

n

n∑
i=1

V (ŶSi). (3.7)

In particular, the full model has j = p. Hence having unnecessary predic-
tors decreases the precision for prediction. Fitting unnecessary predictors is
sometimes called fitting noise or overfitting. As an extreme case, suppose
that the full model contains p = n predictors, including a constant, so that
the hat matrix H = In, the n × n identity matrix. Then Ŷ = Y so that
VAR(Ŷ |x) = VAR(Y ).

Secondly, often researchers are interested in examining the effects of cer-
tain predictors on the response. Recall that β̂i measures the effect of xi

given that all of the other predictors x1, ..., xi−1, xi+1, ..., xp are in the model.
If some of the predictors are highly correlated, then these predictors may
not be needed in the MLR model given that the other predictors are in the
model. Hence it will not be possible to examine the effects of these predictors
on the response unless the MLR model is changed.

Thirdly, there may be an extremely expensive predictor xp that researchers
would like to omit. If xp is not needed in the MLR model given that
x1, ..., xp−1 are in the model, then xp can be removed from the model, saving
money.

A major assumption before performing variable selection is that the full
model is good. A factor with c levels can be incorporated into the full
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model by creating c − 1 indicator variables. Sometimes the categories can
be combined into fewer categories. For example, if the factor is race with
levels white, black and other, new levels white and nonwhite may be useful
for some data sets. Two rules of thumb are useful for building a full model.
Notice that Rule of thumb 3.4 uses data snooping. Hence the full model and
the submodels chosen after variable selection can be used for description and
exploratory analysis, but should not be used for inference.

Rule of thumb 3.4. Remove strong nonlinearities from the predictors by
making scatterplot matrices of the predictors and the response. If necessary,
transform the predictors and the response using methods from Sections 3.1
and 3.2. Do not transform indicator variables. Each scatterplot matrix
should contain the response entered as the last variable. Do not use more
than 10 variables per scatterplot matrix. Hence if there are 90 predictor
variables, make 10 scatterplot matrices. The first will contain x1, ..., x9, Y
and the last will contain x81, ..., x90, Y.

Often a variable xi does not need to be transformed if the transformation
does not increase the linearity of the plot of xi versus Y . If the plot of xi

versus xj is nonlinear for some xj, try to transform one or both of xi and xj

in order to remove the nonlinearity, but be careful that the transformation
do not cause a nonlinearity to appear in the plots of xi and xj versus Y .

Rule of thumb 3.5. Let xw1, ..., xw,c−1 correspond to the indicator vari-
ables of a factor W. Either include all of the indicator variables in the model
or exclude all of the indicator variables from the model. If the model contains
powers or interactions, also include all main effects in the model (see Section
3.3).

Next we suggest methods for finding a good submodel. We make the
simplifying assumptions that the full model is good, that all predictors have
the same cost, that each submodel contains a constant and that there is
no theory requiring that a particular predictor must be in the model. Also
assume that n ≥ 5p and that the response and residual plots of the full model
are good. Rule of thumb 3.5 should be used for the full model and for all
submodels.

The basic idea is to obtain fitted values from the full model and the
candidate submodel. If the candidate model is good, then the plotted points
in a plot of the submodel fitted values versus the full model fitted values
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should follow the identity line. In addition, a similar plot should be made
using the residuals.

A problem with this idea is how to select the candidate submodel from
the nearly 2p potential submodels. One possibility would be to try to order
the predictors in importance, say x1, ..., xp. Then let the kth model contain
the predictors x1, x2, ..., xk for k = 1, ..., p. If the predicted values from the
submodel are highly correlated with the predicted values from the full model,
then the submodel is “good.” All subsets selection, forward selection and
backward elimination can be used (see Section 1.6), but criteria to separate
good submodels from bad are needed.

Two important summaries for submodel I are R2(I), the proportion of
the variability of Y explained by the nontrivial predictors in the model, and
MSE(I) = σ̂2

I , the estimated error variance. See Definitions 2.15 and 2.16.
Suppose that model I contains k predictors, including a constant. Since
adding predictors does not decrease R2, the adjusted R2

A(I) is often used,
where

R2
A(I) = 1 − (1 − R2(I))

n

n− k
= 1 − MSE(I)

n

SST
.

See Seber and Lee (2003, p. 400-401). Hence the model with the maximum
R2

A(I) is also the model with the minimum MSE(I).

For multiple linear regression, recall that if the candidate model of xI

has k terms (including the constant), then the partial F statistic for testing
whether the p − k predictor variables in xO can be deleted is

FI =
SSE(I) − SSE

(n − k) − (n − p)
/

SSE

n − p
=

n − p

p − k
[
SSE(I)

SSE
− 1]

where SSE is the error sum of squares from the full model and SSE(I) is the
error sum of squares from the candidate submodel. An extremely important
criterion for variable selection is the Cp criterion.

Definition 3.7.

Cp(I) =
SSE(I)

MSE
+ 2k − n = (p − k)(FI − 1) + k

where MSE is the error mean square for the full model.

From Section 1.6, recall that all subsets selection, forward selection and
backward elimination produce one or more submodels of interest for k =
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2, ..., p where the submodel contains k predictors including a constant. The
following proposition helps explain why Cp is a useful criterion and suggests
that for subsets I with k terms, submodels with Cp(I) ≤ min(2k, p) are es-
pecially interesting. Olive and Hawkins (2005) show that this interpretation
of Cp can be generalized to 1D regression models such as generalized lin-
ear models. Denote the residuals and fitted values from the full model by
ri = Yi − xT

i β̂ = Yi − Ŷi and Ŷi = xT
i β̂ respectively. Similarly, let β̂I be the

estimate of βI obtained from the regression of Y on xI and denote the cor-
responding residuals and fitted values by rI,i = Yi − xT

I,iβ̂I and ŶI,i = xT
I,iβ̂I

where i = 1, ..., n.

Proposition 3.1. Suppose that a numerical variable selection method
suggests several submodels with k predictors, including a constant, where
2 ≤ k ≤ p.

a) The model I that minimizes Cp(I) maximizes corr(r, rI).

b) Cp(I) ≤ 2k implies that corr(r, rI) ≥
√

1 − p

n
.

c) As corr(r, rI) → 1,

corr(xTβ̂, xT
I β̂I) = corr(ESP, ESP(I)) = corr(Ŷ, ŶI) → 1.

Proof. These results are a corollary of Proposition 3.2 below. QED

Remark 3.1. Consider the model Ii that deletes the predictor xi. Then
the model has k = p − 1 predictors including the constant, and the test
statistic is ti where

t2i = FIi.

Using Definition 3.7 and Cp(Ifull) = p, it can be shown that

Cp(Ii) = Cp(Ifull) + (t2i − 2).

Using the screen Cp(I) ≤ min(2k, p) suggests that the predictor xi should
not be deleted if

|ti| >
√

2 ≈ 1.414.

If |ti| <
√

2 then the predictor can probably be deleted since Cp decreases.
The literature suggests using the Cp(I) ≤ k screen, but this screen tends to
overfit: too many unimportant predictors are included in the model.
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More generally, it can be shown that Cp(I) ≤ 2k iff

FI ≤ p

p − k
.

Now k is the number of terms in the model including a constant while p− k
is the number of terms set to 0. As k → 0, the partial F test will reject Ho:
βO = 0 (ie, say that the full model should be used instead of the submodel
I) unless FI is not much larger than 1. If p is very large and p − k is very
small, then the partial F test will tend to suggest that there is a model I
that is about as good as the full model even though model I deletes p − k
predictors.

Six graphs will be used to compare the full model and the candidate
submodel. Let β̂ be the estimate of β obtained from the regression of Y on
all of the terms x.

Definition 3.8. The “fit–fit” or FF plot is a plot of ŶI,i versus Ŷi while
a “residual–residual” or RR plot is a plot rI,i versus ri. A response plot is a

plot of ŶI,i versus Yi. An EE plot is a plot of ESP(I) versus ESP. For MLR,
the EE and FF plots are equivalent.

Many numerical methods such as forward selection, backward elimina-
tion, stepwise and all subset methods using the Cp(I) criterion (Jones 1946,
Mallows 1973), have been suggested for variable selection. We will use the
FF plot, RR plot, the response plots from the full and submodel, and the
residual plots (of the fitted values versus the residuals) from the full and
submodel. These six plots will contain a great deal of information about
the candidate subset provided that Equation (3.4) holds and that a good
estimator (such as OLS) for β̂ and β̂I is used.

For these plots to be useful, it is crucial to verify that a multiple lin-
ear regression (MLR) model is appropriate for the full model. Both the
response plot and the residual plot for the full model need to be
used to check this assumption. The plotted points in the response plot
should cluster about the identity line (that passes through the origin with
unit slope) while the plotted points in the residual plot should cluster about
the horizontal axis (the line r = 0). Any nonlinear patterns or outliers in
either plot suggests that an MLR relationship does not hold. Similarly, be-
fore accepting the candidate model, use the response plot and the residual
plot from the candidate model to verify that an MLR relationship holds for
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the response Y and the predictors xI . If the submodel is good, then the
residual and response plots of the submodel should be nearly identical to the
corresponding plots of the full model. Assume that all submodels contain a
constant.

Application 3.2. To visualize whether a candidate submodel using pre-
dictors xI is good, use the fitted values and residuals from the submodel and
full model to make an RR plot of the rI,i versus the ri and an FF plot of ŶI,i

versus Ŷi. Add the OLS line to the RR plot and identity line to both plots as
visual aids. The subset I is good if the plotted points cluster tightly about
the identity line in both plots. In particular, the OLS line and the identity
line should nearly coincide near the origin in the RR plot.

To verify that the six plots are useful for assessing variable selection,
the following notation will be useful. Suppose that all submodels include
a constant and that X is the full rank n × p design matrix for the full
model. Let the corresponding vectors of OLS fitted values and residuals be
Ŷ = X(XTX)−1XTY = HY and r = (I − H)Y , respectively. Sup-
pose that XI is the n × k design matrix for the candidate submodel and
that the corresponding vectors of OLS fitted values and residuals are Ŷ I =
XI(X

T
I X I)

−1XT
I Y = HIY and rI = (I − HI)Y , respectively.

A plot can be very useful if the OLS line can be compared to a reference
line and if the OLS slope is related to some quantity of interest. Suppose
that a plot of w versus z places w on the horizontal axis and z on the vertical
axis. Then denote the OLS line by ẑ = a + bw. The following proposition
shows that the plotted points in the FF, RR and response plots will cluster
about the identity line. Notice that the proposition is a property of OLS and
holds even if the data does not follow an MLR model. Let corr(x, y) denote
the correlation between x and y.

Proposition 3.2. Suppose that every submodel contains a constant and
that X is a full rank matrix.
Response Plot: i) If w = ŶI and z = Y then the OLS line is the identity
line.
ii) If w = Y and z = ŶI then the OLS line has slope b = [corr(Y, ŶI)]

2 = R2(I)
and intercept a = Y (1 − R2(I)) where Y =

∑n
i=1 Yi/n and R2(I) is the

coefficient of multiple determination from the candidate model.
FF or EE Plot: iii) If w = ŶI and z = Ŷ then the OLS line is the identity
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line. Note that ESP (I) = ŶI and ESP = Ŷ .
iv) If w = Ŷ and z = ŶI then the OLS line has slope b = [corr(Ŷ , ŶI)]

2 =
SSR(I)/SSR and intercept a = Y [1 − (SSR(I)/SSR)] where SSR is the
regression sum of squares.
RR Plot: v) If w = r and z = rI then the OLS line is the identity line.
vi) If w = rI and z = r then a = 0 and the OLS slope b = [corr(r, rI)]

2 and

corr(r, rI) =

√
SSE

SSE(I)
=

√
n − p

Cp(I) + n − 2k
=

√
n − p

(p − k)FI + n − p
.

Proof: Recall that H and HI are symmetric idempotent matrices and
that HHI = HI . The mean of OLS fitted values is equal to Y and the
mean of OLS residuals is equal to 0. If the OLS line from regressing z on w
is ẑ = a + bw, then a = z − bw and

b =

∑
(wi − w)(zi − z)∑

(wi −w)2
=

SD(z)

SD(w)
corr(z, w).

Also recall that the OLS line passes through the means of the two variables
(w, z).

(*) Notice that the OLS slope from regressing z on w is equal to one if
and only if the OLS slope from regressing w on z is equal to [corr(z, w)]2.

i) The slope b = 1 if
∑

ŶI,iYi =
∑

Ŷ 2
I,i. This equality holds since Ŷ

T

I Y =

Y T HIY = Y T HIHIY = Ŷ
T

I Ŷ I . Since b = 1, a = Y − Y = 0.

ii) By (*), the slope

b = [corr(Y, ŶI)]
2 = R2(I) =

∑
(ŶI,i − Y )2∑
(Yi − Y )2

= SSR(I)/SSTO.

The result follows since a = Y − bY .

iii) The slope b = 1 if
∑

ŶI,iŶi =
∑

Ŷ 2
I,i. This equality holds since

Ŷ
T
Ŷ I = Y T HHIY = Y THIY = Ŷ

T

I Ŷ I . Since b = 1, a = Y − Y = 0.

iv) From iii),

1 =
SD(Ŷ )

SD(ŶI)
[corr(Ŷ , ŶI)].
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Hence

corr(Ŷ , ŶI) =
SD(ŶI)

SD(Ŷ )

and the slope

b =
SD(ŶI)

SD(Ŷ )
corr(Ŷ , ŶI) = [corr(Ŷ , ŶI)]

2.

Also the slope

b =

∑
(ŶI,i − Y )2∑
(Ŷi − Y )2

= SSR(I)/SSR.

The result follows since a = Y − bY .

v) The OLS line passes through the origin. Hence a = 0. The slope
b = rT rI/r

Tr. Since rT rI = Y T (I−H)(I−HI)Y and (I−H)(I −HI) =
I − H , the numerator rTrI = rTr and b = 1.

vi) Again a = 0 since the OLS line passes through the origin. From v),

1 =

√
SSE(I)

SSE
[corr(r, rI)].

Hence

corr(r, rI) =

√
SSE

SSE(I)

and the slope

b =

√
SSE

SSE(I)
[corr(r, rI)] = [corr(r, rI)]

2.

Algebra shows that

corr(r, rI) =

√
n − p

Cp(I) + n − 2k
=

√
n − p

(p − k)FI + n − p
. QED

A standard model selection procedure will often be needed to suggest
models. For example, forward selection or backward elimination could be
used. If p < 30, Furnival and Wilson (1974) provide a technique for selecting
a few candidate subsets after examining all possible subsets.
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Remark 3.2. Daniel and Wood (1980, p. 85) suggest using Mallows’
graphical method for screening subsets by plotting k versus Cp(I) for models
close to or under the Cp = k line. Proposition 3.2 vi) implies that if Cp(I) ≤ k
or FI < 1, then corr(r, rI) and corr(ESP, ESP (I)) both go to 1.0 as n → ∞.
Hence models I that satisfy the Cp(I) ≤ k screen will contain the true model
S with high probability when n is large. This result does not guarantee that
the true model S will satisfy the screen, hence overfit is likely (see Shao
1993). Let d be a lower bound on corr(r, rI). Proposition 3.2 vi) implies that
if

Cp(I) ≤ 2k + n

[
1

d2
− 1

]
− p

d2
,

then corr(r, rI) ≥ d. The simple screen Cp(I) ≤ 2k corresponds to

dn ≡
√

1 − p

n
.

To reduce the chance of overfitting, consider models I with Cp(I) ≤ min(2k, p).
Models under both the Cp = k line and the Cp = 2k line are of interest.

Rule of thumb 3.6. a) After using a numerical method such as forward
selection or backward elimination, let Imin correspond to the submodel with
the smallest Cp. Find the submodel II with the fewest number of predictors
such that Cp(II) ≤ Cp(Imin) + 1. Then II is the initial submodel that should
be examined. It is possible that II = Imin or that II is the full model.

b) Models I with fewer predictors than II such that Cp(I) ≤ Cp(Imin)+4
are interesting and should also be examined.

c) Models I with k predictors, including a constant and with fewer predic-
tors than II such that Cp(Imin) + 4 < Cp(I) ≤ min(2k, p) should be checked
but often underfit: important predictors are deleted from the model. Under-
fit is especially likely to occur if a predictor with one degree of freedom is
deleted (recall that if the c − 1 indicator variables corresponding to a factor
are deleted, then the factor has c − 1 degrees of freedom) and the jump in
Cp is large, greater than 4, say.

d) If there are no models I with fewer predictors than II such that Cp(I) ≤
min(2k, p), then model II is a good candidate for the best subset found by
the numerical procedure.

Rule of thumb 3.7. Assume that the full model has good response and
residual plots and that n > 5p. Let subset I have k predictors, including a
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constant. Know how to find good models from output. The following rules of
thumb (roughly in order of decreasing importance) may be useful. It is often
not possible to have all 10 rules of thumb to hold simultaneously. Let Imin

be the minimum Cp model and let II be the model with the fewest predictors
satisfying Cp(II) ≤ Cp(Imin) + 1. Do not use more predictors than model II

to avoid overfitting. Then the submodel I is good if
i) the response and residual plots for the submodel looks like the response
and residual plots for the full model.
ii) corr(ESP,ESP(I)) = corr(Ŷ, ŶI) ≥ 0.95.
iii) The plotted points in the FF plot (= EE plot for MLR) cluster tightly
about the identity line.
iv) Want the p-value ≥ 0.01 for the partial F test that uses I as the reduced
model.
v) Want k ≤ n/10.
vi) The plotted points in the RR plot cluster tightly about the identity line.
vii) Want R2(I) > 0.9R2 and R2(I) > R2−0.07 (recall that R2(I) ≤ R2(full)
since adding predictors to I does not decrease R2(I)).
viii) Want Cp(Imin) ≤ Cp(I) ≤ min(2k, p) with no big jumps in Cp (the
increase should be less than four) as variables are deleted.
ix) Want hardly any predictors with p-values > 0.05.
x) Want few predictors with p-values between 0.01 and 0.05.

The following description of forward selection and backward elimina-
tion modifies the description of Section 1.6 slightly. Criterion such as AIC,
MSE(I) or R2

A(I) are sometimes used instead of Cp. For forward selection,
the numerical method may add the predictor not yet in the model that has
the smallest pvalue for the t test. For backward elimination, the numerical
method may delete the variable in the model (that is not a constant) that
has the largest pvalue for the t test.

Forward selection Step 1) k = 1: Start with a constant w1 = x1. Step
2) k = 2: Compute Cp for all models with k = 2 containing a constant and
a single predictor xi. Keep the predictor w2 = xj, say, that minimizes Cp.
Step 3) k = 3: Fit all models with k = 3 that contain w1 and w2. Keep the
predictor w3 that minimizes Cp. ...
Step j) k = j: Fit all models with k = j that contains w1, w2, ..., wj−1. Keep
the predictor wj that minimizes Cp. ...
Step p): Fit the full model.

130



Backward elimination: All models contain a constant = u1. Step 0)
k = p: Start with the full model that contains x1, ..., xp. We will also say
that the full model contains u1, ..., up where u1 = x1 but ui need not equal
xi for i > 1.
Step 1) k = p − 1: Fit each model with k = p − 1 predictors including a
constant. Delete the predictor up, say, that corresponds to the model with
the smallest Cp. Keep u1, ..., up−1.
Step 2) k = p−2: Fit each model with p−2 predictors including a constant.
Delete the predictor up−1 corresponding to the smallest Cp. Keep u1, ..., up−2.
...
Step j) k = p − j: fit each model with p − j predictors including a con-
stant. Delete the predictor up−j+1 corresponding to the smallest Cp. Keep
u1, ..., up−j. ...
Step p − 2) k = 2. The current model contains u1, u2 and u3. Fit the model
u1, u2 and the model u1, u3. Assume that model u1, u2 minimizes Cp. Then
delete u3 and keep u1 and u2.

Heuristically, backward elimination tries to delete the variable that will
increase Cp the least. An increase in Cp greater than 4 (if the predictor has 1
degree of freedom) may be troubling in that a good predictor may have been
deleted. In practice, the backward elimination program may use some other
criterion: eg, delete the variable such that the submodel I with j predictors
has a) the smallest Cp(I) or b) the biggest p–value in the test Ho βi = 0
versus HA βi �= 0 where the model with j + 1 terms from the previous step
(using the j predictors in I and the variable x∗

j+1) is treated as the full model.
Heuristically, forward selection tries to add the variable that will decrease

Cp the most. A decrease in Cp less than 4 (if the predictor has 1 degree of
freedom) may be troubling in that a bad predictor may have been added.
In practice, the forward selection program may use some other criterion, eg,
add the variable such that the submodel I with j nontrivial predictors has
a) the smallest Cp(I) or b) the smallest p–value in the test Ho βi = 0 versus
HA βi �= 0 where the current model with j terms plus the predictor xi is
treated as the full model (for all variables xi not yet in the model).

Suppose that the full model is good and is stored in M1. Let M2, M3,
M4 and M5 be candidate submodels found after forward selection, backward
elimination, et cetera. Recall that ESP (I) = ŶI . Make a scatterplot matrix
of the ESPs for M1, M2, M3, M4, M5 and Y . Good candidates should have
estimated sufficient predictors that are highly correlated with the full model
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ESP (the correlation should be at least 0.9 and preferably greater than 0.95).
Similarly, make a scatterplot matrix of the residuals for M1, M2, M3, M4
and M5.

To summarize, the final submodel should have few predictors, few vari-
ables with large OLS t test p–values (0.01 to 0.05 is borderline), good re-
sponse and residual plots and an FF plot (= EE plot) that clusters tightly
about the identity line. If a factor has c − 1 indicator variables, either keep
all c − 1 indicator variables or delete all c − 1 indicator variables, do not
delete some of the indicator variables.

Example 3.7. The pollution data of McDonald and Schwing (1973) can
be obtained from STATLIB or the text’s website. The response Y = mort
is the mortality rate and most of the independent variables were related to
pollution. A scatterplot matrix of the first 9 predictors and Y was made
and then a scatterplot matrix of the remaining predictors with Y . The log
rule suggested making the log transformation with 4 of the variables. The
summary output is shown on the following page. The response and residual
plots were good. Notice that p = 16 and n = 60 < 5p. Also many p-values
are too high.

Response = MORT

Label Estimate Std. Error t-value p-value

Constant 1881.11 442.628 4.250 0.0001

DENS 0.00296328 0.00396521 0.747 0.4588

EDUC -19.6669 10.7005 -1.838 0.0728

log[HC] -31.0112 15.5615 -1.993 0.0525

HOUS -0.401066 1.64372 -0.244 0.8084

HUMID -0.445403 1.06762 -0.417 0.6786

JANT -3.58522 1.05355 -3.403 0.0014

JULT -3.84292 2.12079 -1.812 0.0768

log[NONW] 27.2397 10.1340 2.688 0.0101

log[NOX] 57.3041 15.4764 3.703 0.0006

OVR65 -15.9444 8.08160 -1.973 0.0548

POOR 3.41434 2.74753 1.243 0.2206

POPN -131.823 69.1908 -1.905 0.0633

PREC 3.67138 0.778135 4.718 0.0000

log[SO] -10.2973 7.38198 -1.395 0.1700

WWDRK 0.882540 1.50954 0.585 0.5618
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R Squared: 0.787346 Sigma hat: 33.2178

Number of cases: 60 Degrees of freedom: 44

Summary Analysis of Variance Table

Source df SS MS F p-value

Regression 15 179757. 11983.8 10.86 0.0000

Residual 44 48550.5 1103.42

Shown below this paragraph is some output from forward selection. The
minimum Cp model had Cp = 7.353 with 7 predictors. Deleting JANT from
this model increased Cp to 17.763, suggesting that JANT is an important
predictor. Notice that Cp > 2k = 12 for the model that deletes JANT.

Base terms: (log[NONW] EDUC log[SO] PREC)

df RSS | k C_I

Add: log[NOX] 54 72563.9 | 6 17.763

Add: JANT 54 72622. | 6 17.815

Add: HOUS 54 74884.8 | 6 19.866

Add: POPN 54 75350.2 | 6 20.288

Add: log[HC] 54 75373.4 | 6 20.309

Add: JULT 54 75405.8 | 6 20.338

Add: OVR65 54 75692.2 | 6 20.598

Add: HUMID 54 75747.4 | 6 20.648

Add: DENS 54 75872.1 | 6 20.761

Add: POOR 54 75938.4 | 6 20.821

Add: WWDRK 54 75971.8 | 6 20.851

Base terms: (log[NONW] EDUC log[SO] PREC log[NOX])

df RSS | k C_I

Add: JANT 53 58871. | 7 7.353

Add: log[HC] 53 69233.3 | 7 16.744

Add: HOUS 53 70774.1 | 7 18.141

Add: POPN 53 71424.7 | 7 18.730

Add: POOR 53 72049.4 | 7 19.296

Add: OVR65 53 72337.1 | 7 19.557

Add: JULT 53 72348.6 | 7 19.568

Add: WWDRK 53 72483.1 | 7 19.690
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Add: DENS 53 72494.9 | 7 19.700

Add: HUMID 53 72563.9 | 7 19.763

Output for backward elimination is shown below, and the minimum Cp

model had Cp = 6.284 with 6 predictors. Deleting EDUC increased Cp to
10.800 > 2k = 10. Since Cp increased by more than 4, EDUC is probably
important.

Current terms: (EDUC JANT log[NONW] log[NOX] OVR65 PREC)

df RSS | k C_I

Delete: OVR65 54 59897.9 | 6 6.284

Delete: EDUC 54 66809.3 | 6 12.547

Delete: log[NONW] 54 73178.1 | 6 18.319

Delete: JANT 54 76417.1 | 6 21.255

Delete: PREC 54 83958.1 | 6 28.089

Delete: log[NOX] 54 86823.1 | 6 30.685

Current terms: (EDUC JANT log[NONW] log[NOX] PREC)

df RSS | k C_I

Delete: EDUC 55 67088.1 | 5 10.800

Delete: JANT 55 76467.4 | 5 19.300

Delete: PREC 55 87206.7 | 5 29.033

Delete: log[NOX] 55 88489.6 | 5 30.196

Delete: log[NONW] 55 95327.5 | 5 36.393

Taking the minimum Cp model from backward elimination gives the out-
put shown below. The response and residual plots were OK although the
correlation in the RR and FF plots was not real high. The R2 in the sub-
model decreased from about 0.79 to 0.74 while σ̂ =

√
MSE was 33.22 for

the full model and 33.31 for the submodel. Removing nonlinearities from
the predictors by using two scatterplots and the log rule, and then using
backward elimination and forward selection, seems to be very effective for
finding the important predictors for this data set. See Problem 3.17 in order
to reproduce this example with the essential plots.

Response = MORT

Label Estimate Std. Error t-value p-value

Constant 943.934 82.2254 11.480 0.0000
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EDUC -15.7263 6.17683 -2.546 0.0138

JANT -1.86899 0.483572 -3.865 0.0003

log[NONW] 33.5514 5.93658 5.652 0.0000

log[NOX] 21.7931 4.29248 5.077 0.0000

PREC 2.92801 0.590107 4.962 0.0000

R Squared: 0.737644 Sigma hat: 33.305

Number of cases: 60 Degrees of freedom: 54

Summary Analysis of Variance Table

Source df SS MS F p-value

Regression 5 168410. 33681.9 30.37 0.0000

Residual 54 59897.9 1109.22

Example 3.8. The FF and RR plots can be used as a diagnostic for
whether a given numerical method is including too many variables. Glad-
stone (1905-1906) attempts to estimate the weight of the human brain (mea-
sured in grams after the death of the subject) using simple linear regression
with a variety of predictors including age in years, height in inches, head
height in mm, head length in mm, head breadth in mm, head circumference
in mm, and cephalic index. The sex (coded as 0 for females and 1 for males)
of each subject was also included. The variable cause was coded as 1 if the
cause of death was acute, 3 if the cause of death was chronic, and coded as 2
otherwise. A variable ageclass was coded as 0 if the age was under 20, 1 if the
age was between 20 and 45, and as 3 if the age was over 45. Head size, the
product of the head length, head breadth, and head height, is a volume mea-
surement, hence (size)1/3 was also used as a predictor with the same physical
dimensions as the other lengths. Thus there are 11 nontrivial predictors and
one response, and all models will also contain a constant. Nine cases were
deleted because of missing values, leaving 267 cases.

Figure 3.7 shows the response plots and residual plots for the full model
and the final submodel that used a constant, size1/3, age and sex. The five
cases separated from the bulk of the data in each of the four plots correspond
to five infants. These may be outliers, but the visual separation reflects the
small number of infants and toddlers in the data. A purely numerical variable
selection procedure would miss this interesting feature of the data. We will
first perform variable selection with the entire data set, and then examine the
effect of deleting the five cases. Using forward selection and the Cp statistic
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Figure 3.7: Gladstone data: comparison of the full model and the submodel.

on the Gladstone data suggests the subset I5 containing a constant, (size)1/3,
age, sex, breadth, and cause with Cp(I5) = 3.199. The p–values for breadth
and cause were 0.03 and 0.04, respectively. The subset I4 that deletes cause
has Cp(I4) = 5.374 and the p–value for breadth was 0.05. Figure 3.8d shows
the RR plot for the subset I4. Note that the correlation of the plotted points
is very high and that the OLS and identity lines nearly coincide.

A scatterplot matrix of the predictors and response suggests that (size)1/3

might be the best single predictor. First we regressed Y = brain weight on
the eleven predictors described above (plus a constant) and obtained the
residuals ri and fitted values Ŷi. Next, we regressed Y on the subset I
containing (size)1/3 and a constant and obtained the residuals rI,i and the

fitted values ŷI,i. Then the RR plot of rI,i versus ri, and the FF plot of ŶI,i

versus Ŷi were constructed.
For this model, the correlation in the FF plot (Figure 3.8b) was very high,

but in the RR plot the OLS line did not coincide with the identity line (Figure
3.8a). Next sex was added to I , but again the OLS and identity lines did not
coincide in the RR plot (Figure 3.8c). Hence age was added to I. Figure 3.9a

136



SRES1

F
R

E
S

-200 -100 0 100 200

-2
00

0
10

0
20

0

a) RR Plot for (size)^(1/3)

SFIT1

F
F

IT

400 600 800 1000 1200 1400

40
0

60
0

80
0

12
00

b) FF Plot for (size)^(1/3)

SRES2

F
R

E
S

-200 -100 0 100 200

-2
00

0
10

0
20

0

c) RR Plot for 2 Predictors

SRES4

F
R

E
S

-200 -100 0 100 200

-2
00

0
10

0
20

0

d) RR Plot for 4 Predictors

Figure 3.8: Gladstone data: submodels added (size)1/3, sex, age and finally
breadth.
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Figure 3.9: Gladstone data with Predictors (size)1/3, sex, and age
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Figure 3.10: RR and FF Plots for Rat Data

shows the RR plot with the OLS and identity lines added. These two lines
now nearly coincide, suggesting that a constant plus (size)1/3, sex, and age
contains the relevant predictor information. This subset has Cp(I) = 7.372,
R2

I = 0.80, and σ̂I = 74.05. The full model which used 11 predictors and a
constant has R2 = 0.81 and σ̂ = 73.58. Since the Cp criterion suggests adding
breadth and cause, the Cp criterion may be leading to an overfit.

Figure 3.9b shows the FF plot. The five cases in the southwest corner
correspond to five infants. Deleting them leads to almost the same conclu-
sions, although the full model now has R2 = 0.66 and σ̂ = 73.48 while the
submodel has R2

I = 0.64 and σ̂I = 73.89.

Example 3.9. Cook and Weisberg (1999a, p. 261, 371) describe a data
set where rats were injected with a dose of a drug approximately proportional
to body weight. The data set is included as the file rat.lsp in the Arc soft-
ware and can be obtained from the website (www.stat.umn.edu/arc/). The
response Y is the fraction of the drug recovered from the rat’s liver. The
three predictors are the body weight of the rat, the dose of the drug, and the
liver weight. The experimenter expected the response to be independent of
the predictors, and 19 cases were used. However, the Cp criterion suggests
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using the model with a constant, dose and body weight, both of whose co-
efficients were statistically significant. The RR and FF plots are shown in
Figure 3.10. The identity line was added to both plots and the OLS line was
added to the RR plot. The FF plot shows one outlier, the third case, that is
clearly separated from the rest of the data.

We deleted this case and again searched for submodels. The Cp statistic
is less than one for all three simple linear regression models, and the RR and
FF plots look the same for all submodels containing a constant. Figure 2.2
shows the RR plot where the residuals from the full model are plotted against
Y −Y , the residuals from the model using no nontrivial predictors. This plot
suggests that the response Y is independent of the nontrivial predictors.

The point of this example is that a subset of outlying cases can cause
numeric second-moment criteria such as Cp to find structure that does not
exist. The FF and RR plots can sometimes detect these outlying cases,
allowing the experimenter to run the analysis without the influential cases.
The example also illustrates that global numeric criteria can suggest a model
with one or more nontrivial terms when in fact the response is independent
of the predictors.

Numerical variable selection methods for MLR are very sensitive to “in-
fluential cases” such as outliers. Olive and Hawkins (2005) show that a plot
of the residuals versus Cook’s distances (see Section 3.5) can be used to de-
tect influential cases. Such cases can also often be detected from response,
residual, RR and FF plots.

Warning: deleting influential cases and outliers will often lead to
better plots and summary statistics, but the cleaned data may no
longer represent the actual population. In particular, the resulting
model may be very poor for prediction.

Multiple linear regression data sets with cases that influence numerical
variable selection methods are common. Table 3.1 shows results for seven
interesting data sets. The first two rows correspond to the Ashworth (1842)
data, the next 2 rows correspond to the Gladstone Data in Example 3.8, and
the next 2 rows correspond to the Gladstone data with the 5 infants deleted.
Rows 7 and 8 are for the Buxton (1920) data while rows 9 and 10 are for
the Tremearne (1911) data. These data sets are available from the book’s
website. Results from the final two data sets are given in the last 4 rows. The
last 2 rows correspond to the rat data described in Example 3.9. Rows 11
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Table 3.1: Summaries for Seven Data Sets

influential cases submodel I p, Cp(I), Cp(I, c)
file, response transformed predictors

14, 55 log(x2) 4, 12.665, 0.679
pop, log(y) log(x1), log(x2), log(x3)

118, 234, 248, 258 (size)1/3, age, sex 10, 6.337, 3.044
cbrain,brnweight (size)1/3

118, 234, 248, 258 (size)1/3, age, sex 10, 5.603, 2.271
cbrain-5,brnweight (size)1/3

11, 16, 56 sternal height 7, 4.456, 2.151
cyp,height none

3, 44 x2, x5 6, 0.793, 7.501
major,height none

11, 53, 56, 166 log(LBM), log(Wt), sex 12, −1.701, 0.463

ais,%Bfat log(Ferr), log(LBM), log(Wt),
√

Ht
3 no predictors 4, 6.580, −1.700

rat,y none

and 12 correspond to the Ais data that comes with Arc (Cook and Weisberg,
1999a).

The full model used p predictors, including a constant. The final sub-
model I also included a constant, and the nontrivial predictors are listed in
the second column of Table 3.1. For a candidate submodel I , let Cp(I, c)
denote the value of the Cp statistic for the clean data that omits influential
cases and outliers. The third column lists p, Cp(I) and Cp(I, c) while the
first column gives the set of influential cases. Two rows are presented for
each data set. The second row gives the response variable and any predictor
transformations. For example, for the Gladstone data p = 10 since there
were 9 nontrivial predictors plus a constant. Only the predictor size was
transformed, and the final submodel is the one given in Example 3.8. For
the rat data, the final submodel is the one given in Example 3.9: none of the
3 nontrivial predictors was used.

Table 3.1 and simulations suggest that if the subset I has k predictors,
then using the Cp(I) ≤ min(2k, p) screen is better than using the conventional
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Cp(I) ≤ k screen. The major and ais data sets show that deleting the
influential cases may increase the Cp statistic. Thus interesting models from
the entire data set and from the clean data set should be examined.

Example 3.10. Conjugated linoleic acid (CLA), occurs in beef and
dairy products and appears to have many human health benefits. Joanne
Numrich provided four data sets where the response was the amount of CLA
(or related compounds) and the explanatory variables were feed components
from the cattle diet. The data was to be used for descriptive and exploratory
purposes. Several data sets had outliers with unusually high levels of CLA.
These outliers were due to one researcher and may be the most promising
cases in the data set. However, to describe the bulk of the data with OLS
MLR, the outliers were omitted. In one of the data sets there are 33 cases
and 25 predictors, including a constant. Regressing Y on all of the predictors
gave R2 = .84 and an ANOVA F test p-value of 0.223, suggesting that none of
the predictors are useful. From Proposition 2.5, an R2 > (p−1)/(n−1) = .75
is not very surprising. Remarks above Theorem 2.7 help explain why R2 can
be high with a high ANOVA F test p-value.

Of course just fitting the data to the collected variables is a poor way
to proceed. Only variables x1, x2, x5, x6, x20 and x21 took on more than a
few values. Taking log(Y ) and using variables x2, x9, x23, and x24 seemed to
result in an adequate model, although the number of distinct fitted values
was rather small. See Problem 3.18 for more details.

3.5 Diagnostics

Automatic or blind use of regression models, especially in exploratory work,
all too often leads to incorrect or meaningless results and to confusion

rather than insight. At the very least, a user should be prepared to make
and study a number of plots before, during, and after fitting the model.

Chambers, Cleveland, Kleiner, and Tukey (1983, p. 306)

Diagnostics are used to check whether model assumptions are reasonable.
This section focuses on diagnostics for the multiple linear regression model
with iid constant variance symmetric errors. Under this model,

Yi = xT
i β + ei
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for i = 1, ..., n where the errors are iid from a symmetric distribution with
E(ei) = 0 and VAR(ei) = σ2. The zero mean and symmetry assumptions are
often not very important.

It is often useful to use notation to separate the constant from the non-
trivial predictors. Assume that xi = (1, xi,2, ..., xi,p)

T ≡ (1, uT
i )T where the

(p−1)×1 vector of nontrivial predictors ui = (xi,2, ..., xi,p)
T . In matrix form,

Y = Xβ + e,

X = [X1, X2, ..., Xp] = [1, U ],

1 is an n × 1 vector of ones, and U = [X2, ..., Xp] is the n × (p − 1) matrix
of nontrivial predictors. The kth column of U is the n × 1 vector of the
jth predictor Xj = (x1,j, ..., xn,j)

T where j = k + 1. The sample mean and
covariance matrix of the nontrivial predictors are

u =
1

n

n∑
i=1

ui (3.8)

and

C = Cov(U ) =
1

n − 1

n∑
i=1

(ui − u)(ui − u)T , (3.9)

respectively.

Some important numerical quantities that are used as diagnostics measure
the distance of ui from u and the influence of case i on the OLS fit β̂ ≡ β̂OLS.
Recall that the vector of fitted values =

Ŷ = Xβ̂ = X(XT X)−1XTY = HY

where H is the hat matrix. Recall that the ith residual ri = Yi− Ŷi. Case (or
leave one out or deletion) diagnostics are computed by omitting the ith case
from the OLS regression. Following Cook and Weisberg (1999a, p. 357), let

Ŷ (i) = Xβ̂(i) (3.10)

denote the n× 1 vector of fitted values from estimating β with OLS without
the ith case. Denote the jth element of Ŷ (i) by Ŷ(i),j. It can be shown that
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the variance of the ith residual VAR(ri) = σ2(1 − hi). The usual estimator
of the error variance is

σ̂2 =

∑n
i=1 r2

i

n − p
.

The (internally) studentized residual

êi =
ri

σ̂
√

1 − hi

has zero mean and unit variance.

Definition 3.9. The ith leverage hi = H ii is the ith diagonal element of
the hat matrix H . The ith squared (classical) Mahalanobis distance

MD2
i = (ui − u)TC−1(ui − u).

The ith Cook’s distance

CDi =
(β̂(i) − β̂)T XTX(β̂(i) − β̂)

pσ̂2
=

(Ŷ (i) − Ŷ )T (Ŷ (i) − Ŷ )

pσ̂2
(3.11)

=
1

pσ̂2

n∑
j=1

(Ŷ(i),j − Ŷj)
2.

Proposition 3.3. a) (Rousseeuw and Leroy 1987, p. 225)

hi =
1

n − 1
MD2

i +
1

n
.

b) (Cook and Weisberg 1999a, p. 184)

hi = xT
i (XT X)−1xi = (xi − x)T (UT U)−1(xi − x) +

1

n
.

c) (Cook and Weisberg 1999a, p. 360)

CDi =
r2
i

pσ̂2(1 − hi)

hi

1 − hi
=

ê2
i

p

hi

1 − hi
.

When the statistics CDi, hi and MDi are large, case i may be an outlier or
influential case. Examining a stem plot or dot plot of these three statistics for
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unusually large values can be useful for flagging influential cases. Cook and
Weisberg (1999a, p. 358) suggest examining cases with CDi > 0.5 and that
cases with CDi > 1 should always be studied. Since H = HT and H = HH ,
the hat matrix is symmetric and idempotent. Hence the eigenvalues of H are
zero or one and trace(H) =

∑n
i=1 hi = p. It can be shown that 0 ≤ hi ≤ 1.

Rousseeuw and Leroy (1987, p. 220 and p. 224) suggest using hi > 2p/n
and MD2

i > χ2
p−1,0.95 as benchmarks for leverages and Mahalanobis distances

where χ2
p−1,0.95 is the 95th percentile of a chi–square distribution with p − 1

degrees of freedom.
Note that Proposition 3.3c) implies that Cook’s distance is the product

of the squared residual and a quantity that becomes larger the farther ui is
from u. Hence influence is roughly the product of leverage and distance of
Yi from Ŷi (see Fox 1991, p. 21). Mahalanobis distances and leverages both
define ellipsoids based on a metric closely related to the sample covariance
matrix of the nontrivial predictors. All points ui on the same ellipsoidal
contour are the same distance from u and have the same leverage (or the
same Mahalanobis distance).

Cook’s distances, leverages, and Mahalanobis distances can be effective
for finding influential cases when there is a single outlier, but can fail if
there are two or more outliers. Nevertheless, these numerical diagnostics
combined with response and residual plots are probably the most effective
techniques for detecting cases that effect the fitted values when the multiple
linear regression model is a good approximation for the bulk of the data. In
fact, these diagnostics may be useful for perhaps up to 90% of such data
sets while residuals from robust regression and Mahalanobis distances from
robust estimators of multivariate location and dispersion may be helpful for
perhaps another 3% of such data sets.

A scatterplot of x versus y (recall the convention that a plot of x versus
y means that x is on the horizontal axis and y is on the vertical axis) is
used to visualize the conditional distribution y|x of y given x (see Cook and
Weisberg 1999a, p. 31). For the simple linear regression model (with one
nontrivial predictor x2), by far the most effective technique for checking the
assumptions of the model is to make a scatterplot of x2 versus Y and a
residual plot of x2 versus ri. Departures from linearity in the scatterplot
suggest that the simple linear regression model is not adequate. The points
in the residual plot should scatter about the line r = 0 with no pattern. If
curvature is present or if the distribution of the residuals depends on the
value of x2, then the simple linear regression model is not adequate.
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Similarly if there are two nontrivial predictors, say x2 and x3, make a
three-dimensional (3D) plot with Y on the vertical axis, x2 on the horizontal
axis and x3 on the out of page axis. Rotate the plot about the vertical
axis, perhaps superimposing the OLS plane. As the plot is rotated, linear
combinations of x2 and x3 appear on the horizontal axis. If the OLS plane
b1 +b2x2+b3x3 fits the data well, then the plot of b2x2 +b3x3 versus Y should
scatter about a straight line. See Cook and Weisberg (1999a, ch. 8).

In general there are more than two nontrivial predictors and in this set-
ting two plots are crucial for any multiple linear regression analysis,
regardless of the regression estimator (eg OLS, L1 etc.). The first plot is the

residual plot of the fitted values Ŷi versus the residuals ri, and the second
plot is the response plot of the fitted values Ŷi versus the response Yi.

Recalling Definitions 2.11 and 2.12, residual and response plots are plots
of wi = xT

i η versus ri and Yi, respectively, where η is a known p × 1 vec-

tor. The most commonly used residual and response plots takes η = β̂.
Plots against the individual predictors xj and potential predictors are also
used. If the residual plot is not ellipsoidal with zero slope, then the multi-
ple linear regression model with iid constant variance symmetric errors is not
sustained. In other words, if the variables in the residual plot show some type
of dependency, eg increasing variance or a curved pattern, then the multiple
linear regression model may be inadequate. Proposition 2.1 showed that the
response plot simultaneously displays the fitted values, response, and residu-
als. The plotted points in the response plot should scatter about the identity
line if the multiple linear regression model holds. Recall that residual plots
magnify departures from the model while the response plot emphasizes how
well the model fits the data.

When the bulk of the data follows the MLR model, the following rules of
thumb are useful for finding influential cases and outliers form the response
and residual plots. Look for points with large absolute residuals and for
points far away from Y . Also look for gaps separating the data into clusters.
To determine whether small clusters are outliers or good leverage points, give
zero weight to the clusters, and fit a MLR estimator to the bulk of the data.
Denote the weighted estimator by β̂w. Then plot Ŷw versus Y using the entire
data set. If the identity line passes through the bulk of the data but not the
cluster, then the cluster points may be outliers.

To see why gaps are important, recall that the coefficient of determination
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R2 is equal to the squared correlation (corr(Y, Ŷ ))2. R2 over emphasizes the
strength of the MLR relationship when there are two clusters of data since
much of the variability of Y is due to the smaller cluster.

Information from numerical diagnostics can be incorporated into the re-
sponse plot by highlighting cases that have large absolute values of the di-
agnostic. For example, the Cook’s distance CDi for the ith case tends to be
large if Ŷi is far from the sample mean Y and if the corresponding absolute
residual |ri| is not small. If Ŷi is close to Y then CDi tends to be small unless
|ri| is large. An exception to these rules of thumb occurs if a group of cases
form a cluster and the OLS fit passes through the cluster. Then the CDi’s
corresponding to these cases tend to be small even if the cluster is far from
Y . Thus cases with large Cook’s distances can often be found by examining
the response and residual plots.

Example 3.11. Tremearne (1911) presents a data set of about 17 mea-
surements on 115 people of Hausa nationality. We deleted 3 cases (107, 108
and 109) because of missing values and used height as the response variable
Y . The five predictor variables used were height when sitting, height when
kneeling, head length, nasal breadth, and span (perhaps from left hand to right
hand). Figure 2.1 presents the OLS residual and response plots for this data
set. Points corresponding to cases with Cook’s distance > min(0.5, 2p/n) are
shown as highlighted squares (cases 3, 44 and 63). The 3rd person was very
tall while the 44th person was rather short. From the plots, the standard
deviation of the residuals appears to be around 10. Hence cases 3 and 44 are
certainly worth examining. Two other cases have residuals near fifty.

Data sets like this one are very common. The majority of the cases seem
to follow a multiple linear regression model with iid Gaussian errors, but
a small percentage of cases seem to come from an error distribution with
heavier tails than a Gaussian distribution.

3.6 Outlier Detection

Do not attempt to build a model on a set of poor data! In human surveys,
one often finds 14–inch men, 1000–pound women, students with “no” lungs,
and so on. In manufacturing data, one can find 10,000 pounds of material

in a 100 pound capacity barrel, and similar obvious errors. All the
planning, and training in the world will not eliminate these sorts of
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problems. ... In our decades of experience with “messy data,” we have yet
to find a large data set completely free of such quality problems.

Draper and Smith (1981, p. 418)

There is an enormous literature on outlier detection in multiple linear re-
gression. Typically a numerical measure such as Cook’s distance or a residual
plot based on resistant fits is used. The following terms are frequently en-
countered.

Definition 3.10. Outliers are cases that lie far from the bulk of the
data. Hence Y outliers are cases that have unusually large vertical distances
from the MLR fit to the bulk of the data while x outliers are cases with
predictors x that lie far from the bulk of the xi. Suppose that some analysis
to detect outliers is performed. Masking occurs if the analysis suggests that
one or more outliers are in fact good cases. Swamping occurs if the analysis
suggests that one or more good cases are outliers.

The residual and response plots are very useful for detecting outliers. If
there is a cluster of cases with outlying Y s, the identity line will often pass
through the outliers. If there are two clusters with similar Y s, then the two
plots may fail to show the clusters. Then using methods to detect x outliers
may be useful.

Let the q continuous predictors in the MLR model be collected into vec-
tors ui for i = 1, ..., n. Let the n × q matrix W have n rows uT

1 , ..., uT
n . Let

the q × 1 column vector T (W ) be a multivariate location estimator, and let
the q×q symmetric positive definite matrix C(W ) be a covariance estimator.
Often q = p − 1 and only the constant is omitted from xi to create ui.

Definition 3.11. The ith squared Mahalanobis distance is

D2
i = D2

i (T (W ), C(W )) = (ui − T (W ))TC−1(W )(ui − T (W )) (3.12)

for each point ui. Notice that D2
i is a random variable (scalar valued).

The classical Mahalanobis distance corresponds to the sample mean and
sample covariance matrix

T (W ) = u =
1

n

n∑
i=1

ui,
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and

C(W ) = S =
1

n − 1

n∑
i=1

(ui − T (W ))(ui − T (W ))T

and will be denoted by MDi. When T (W ) and C(W ) are robust estimators,
Di =

√
D2

i will sometimes be denoted by RDi. We suggest using the Olive
(2009) FCH estimator as the robust estimator. The sample Mahalanobis
distance Di =

√
D2

i is an analog of the absolute value of the sample z-score
|zi| = |(Yi − Y )/σ̂|. Also notice that the Euclidean distance of ui from the
estimate of center T (W ) is Di(T (W ), Iq) where Iq is the q × q identity
matrix. Plot the MDi versus the RDi to detect outlying u.

Definition 3.12: Rousseeuw and Van Driessen (1999). The DD
plot is a plot of the classical Mahalanobis distances MDi versus robust Ma-
halanobis distances RDi.

Olive (2002) shows that the plotted points in the DD plot will follow the
identity line with zero intercept and unit slope if the predictor distribution
is multivariate normal (MVN), and will follow a line with zero intercept but
non–unit slope if the distribution is elliptically contoured with nonsingular
covariance matrix but not MVN. (Such distributions have linear scatterplot
matrices. See Chapter 14.) Hence if the plotted points in the DD plot follow
some line through the origin, then there is some evidence that outliers and
strong nonlinearities have been removed from the predictors.

Example 3.12. Buxton (1920, p. 232-5) gives 20 measurements of 88
men. We chose to predict stature using an intercept, head length, nasal
height, bigonal breadth, and cephalic index. Observation 9 was deleted since
it had missing values. Five individuals, numbers 62-66, were reported to be
about 0.75 inches tall with head lengths well over five feet! This appears to
be a clerical error; these individuals’ stature was recorded as head length and
the integer 18 or 19 given for stature, making the cases massive outliers with
enormous leverage.

Figure 3.11 shows the response plot and residual plot for the Buxton
data. Although an index plot of Cook’s distance CDi may be useful for
flagging influential cases, the index plot provides no direct way of judging
the model against the data. As a remedy, cases in the response plot with
CDi > min(0.5, 2p/n) were highlighted. Notice that the OLS fit passes
through the outliers, but the response plot is resistant to Y –outliers since Y
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Figure 3.11: Residual and Response Plots for Buxton Data

is on the vertical axis. Also notice that although the outlying cluster is far
from Y , only two of the outliers had large Cook’s distance. Hence masking
occurred for both Cook’s distances and for OLS residuals, but not for OLS
fitted values.

Figure 3.12a shows the DD plot made from the four predictors head length,
nasal height, bigonal breadth, and cephalic index. The five massive outliers
correspond to head lengths that were recorded to be around 5 feet. Fig-
ure 3.12b is the DD plot computed after deleting these points and suggests
that the predictor distribution is now much closer to a multivariate normal
distribution.

High leverage outliers are a particular challenge to conventional numer-
ical MLR diagnostics such as Cook’s distance, but can often be visualized
using the response and residual plots. The following techniques are useful for
detecting outliers when the multiple linear regression model is appropriate.

1. Find the OLS residuals and fitted values and make a response plot and
a residual plot. Look for clusters of points that are separated from the
bulk of the data and look for residuals that have large absolute values.
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Figure 3.12: DD Plots for Buxton Data

Beginners frequently label too many points as outliers. Try to estimate
the standard deviation of the residuals in both plots. In the residual
plot, look for residuals that are more than 5 standard deviations away
from the r = 0 line. The identity line and r = 0 line may pass right
through a cluster of outliers, but the cluster of outliers can often be
detected because there is a large gap between the cluster and the bulk
of the data, as in Figure 3.11.

2. Make a DD plot of the predictors that take on many values (the con-
tinuous predictors).

3. Make a scatterplot matrix of several diagnostics such as leverages,
Cook’s distances and studentized residuals.

Detecting outliers is much easier than deciding what to do with them.
After detection, the investigator should see whether the outliers are recording
errors. The outliers may become good cases after they are corrected. But
frequently there is no simple explanation for why the cases are outlying.
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Typical advice is that outlying cases should never be blindly deleted and that
the investigator should analyze the full data set including the outliers as well
as the data set after the outliers have been removed (either by deleting the
cases or the variables that contain the outliers).

Typically two methods are used to find the cases (or variables) to delete.
The investigator computes OLS diagnostics and subjectively deletes cases,
or a resistant multiple linear regression estimator is used that automatically
gives certain cases zero weight. A third, much more effective method, is to
use the response and residual plots.

Suppose that the data has been examined, recording errors corrected, and
impossible cases deleted. For example, in the Buxton (1920) data, 5 people
with heights of 0.75 inches were recorded. For this data set, these heights
could be corrected. If they could not be corrected, then these cases should
be discarded since they are impossible. If outliers are present even after
correcting recording errors and discarding impossible cases, then we can add
an additional rough guideline.

If the purpose is to display the relationship between the predictors and the
response, make a response plot using the full data set (computing the fitted
values by giving the outliers weight zero) and using the data set with the
outliers removed. Both plots are needed if the relationship that holds for
the bulk of the data is obscured by outliers. The outliers are removed from
the data set in order to get reliable estimates for the bulk of the data. The
identity line should be added as a visual aid and the proportion of outliers
should be given.

3.7 Summary

1) Suppose you have a scatterplot of two variables xλ1
1 versus xλ2

2 , x1, x2 > 0
and that the plotted points follow a nonlinear one to one function. Consider
the ladder of powers −1,−0.5,−1/3, 0, 1/3, 0.5, and 1. The ladder rule
says to spread small values of the variable, make λi smaller. To spread large
values of the variable, make λi larger.

2) Suppose w is positive. The log rule says use log(w) if
max(wi)/min(wi) > 10.

3) There are several guidelines for choosing power transformations. First,
see the rule 1) and 2) above. Suppose that all values of the variable w to
be transformed are positive. The log rule often works wonders on the data.
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If the variable w can take on the value of 0, use log(w + c) where c is a
small constant like 1, 1/2, or 3/8. The unit rule says that if Xi and y
have the same units, then use the same transformation of Xi and y. The
cube root rule says that if w is a volume measurement, then cube root
transformation w1/3 may be useful. Consider the ladder of powers given in
point 1). No transformation (λ = 1) is best, then the log transformation,
then the square root transformation. Theory, if available, should be used to
select a transformation. Frequently more than one transformation will work.
For example if y = weight, X1 = volume = X2 ∗X3 ∗X4, then y vs. X

1/3
1 or

log(y) vs. log(X1) = log(X2) + log(X3) + log(X4) may both work. Also if y
is linearly related with X2, X3, X4 and these three variables all have length
units mm, say, then the units of X1 are (mm)3. Hence the units of X

1/3
1 are

mm.
4) To find a response transformation, make the transformation plots

and choose a transformation such that the transformation plot is linear.
5) A factor (with c levels a1, ..., ac) is incorporated into the MLR model

by using c− 1 indicator variables xWi = 1 if W = ai and xWi = 0 otherwise,
where one of the levels ai is omitted, eg, use i = 1, ..., c− 1.

6) For variable selection, the model Y = xTβ + e that uses all of
the predictors is called the full model. A model Y = xT

I βI + e that only
uses a subset xI of the predictors is called a submodel. The full model is
always a submodel. The full model has SP = xTβ and the submodel has
SP = xT

I βI.
7) Make scatterplot matrices of the predictors and the response. Then

remove strong nonlinearities from the predictors using power trans-
formations. The log rule is very useful.

8) Either include all of the indicator variables for a factor in the model
or exclude all of them. If the model contains powers or interactions, also
include all main effects in the model.

9) After selecting a submodel I , make the response and residual plots for
the full model and the submodel. Make the RR plot of rI,i versus ri and the

FF plot of ŶI,i versus Yi. The submodel is good if the plotted points in the
FF and RR plots cluster tightly about the identity line. In the RR plot, the
OLS line and identity line can be added to the plot as visual aids. It should
be difficult to see that the OLS and identity lines intersect at the origin, so
the two lines should nearly coincide at the origin. If the FF plot looks good
but the RR plot does not, the submodel may be good if the main goal of the
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analysis is for prediction.
10) Forward selection Step 1) k = 1: Start with a constant w1 = x1.

Step 2) k = 2: Compute Cp for all models with k = 2 containing a constant
and a single predictor xi. Keep the predictor w2 = xj, say, that minimizes
Cp.
Step 3) k = 3: Fit all models with k = 3 that contain w1 and w2. Keep the
predictor w3 that minimizes Cp. ...
Step j) k = j: Fit all models with k = j that contains w1, w2, ..., wj−1. Keep
the predictor wj that minimizes Cp. ...
Step p): Fit the full model.

Backward elimination: All models contain a constant = u1. Step 0)
k = p: Start with the full model that contains x1, ..., xp. We will also say
that the full model contains u1, ..., up where u1 = x1 but ui need not equal
xi for i > 1.
Step 1) k = p − 1: Fit each model with k = p − 1 predictors including a
constant. Delete the predictor up, say, that corresponds to the model with
the smallest Cp. Keep u1, ..., up−1.
Step 2) k = p−2: Fit each model with p−2 predictors including a constant.
Delete the predictor up−1 corresponding to the smallest Cp. Keep u1, ..., up−2.
...
Step j) k = p − j: fit each model with p − j predictors including a con-
stant. Delete the predictor up−j+1 corresponding to the smallest Cp. Keep
u1, ..., up−j. ...
Step p − 2) k = 2. The current model contains u1, u2 and u3. Fit the model
u1, u2 and the model u1, u3. Assume that model u1, u2 minimizes Cp. Then
delete u3 and keep u1 and u2.

11) Let Imin correspond to the submodel with the smallest Cp. Find
the submodel II with the fewest number of predictors such that Cp(II) ≤
Cp(Imin) + 1. Then II is the initial submodel that should be examined. It
is possible that II = Imin or that II is the full model. Models I with fewer
predictors than II such that Cp(I) ≤ Cp(Imin)+ 4 are interesting and should
also be examined. Models I with k predictors, including a constant and with
fewer predictors than II such that Cp(Imin) + 4 < Cp(I) ≤ min(2k, p) should
be checked.

12) There are several guidelines for building a MLR model. Suppose that
variable Z is of interest and variables W1, ..., Wr have been collected along
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with Z. Make a scatterplot matrix of W1, ..., Wr and Z. (If r is large, several
matrices may need to be made. Each one should include Z.) Remove or
correct any gross outliers. It is often a good idea to transform the Wi to re-
move any strong nonlinearities from the predictors. Eventually you
will find a response variable Y = tZ(Z) and predictor variable X1, ..., Xp−1

for the full model. Interactions such as Xk = WiWj and powers such as
Xk = W 2

i may be of interest. Indicator variables are often used in interac-
tions but do not transform an indicator variable. The response plot for the
full model should be linear and the residual plot should be ellipsoidal with
zero trend. Find the LS output. The statistic R2 gives the proportion of
the variance of Y explained by the predictors and is of great importance.
Use backwards elimination and forward selection with the Cp(I) statistic to
suggest candidate models I . As a rule of thumb, (assuming that the sample
size n is much larger than the pool of predictors, eg n > 5p), make sure that
R2

I > 0.9R2 or R2
I > R2 − 0.07. Often want the number of predictors k in

the submodel to be small. We will almost always include a constant in the
submodel. If the submodel seems to be good, make the response plot and
residual plot for the submodel. They should be linear and ellipsoidal with
zero trend, respectively. From the output, see if any terms can be eliminated
(are there any predictors Xi such that the p–value for Ho:βi = 0 > 0.01?)

13) Assume that the full model has good response and residual plots and
than n > 5p. Let subset I have k predictors, including a constant. The
following rules of thumb may be useful, but may not all hold simultaneously.
Let Imin be the minimum Cp model and let II be the model with the fewest
predictors satisfying Cp(II) ≤ Cp(Imin)+ 1. Do not use more predictors than
model II to avoid overfitting. Then the submodel I is good if
i) the response and residual plots for the submodel looks like the response
and residual plots for the full model.
ii) corr(ESP,ESP(I)) = corr(Ŷ, ŶI) ≥ 0.95.
iii) The plotted points in the FF plot cluster tightly about the identity line.
iv) Want the p-value ≥ 0.01 for the partial F test that uses I as the reduced
model.
v) Want k ≤ n/10.
vi) The plotted points in the RR plot cluster tightly about the identity line.
vii) Want R2(I) > 0.9R2 and R2(I) > R2−0.07 (recall that R2(I) ≤ R2(full)
since adding predictors to I does not decrease R2(I)).
viii) Want Cp(Imin) ≤ Cp(I) ≤ min(2k, p) with no big jumps in Cp (the
increase should be less than four) as variables are deleted.
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ix) Want hardly any predictors with p-values > 0.05.
x) Want few predictors with p-values between 0.01 and 0.05.

14) Always check that the full model is good. If the candidate model
seems to be good, the usual MLR checks should still be made. In particular,
the response plot and residual plot need to be made for the submodel.

15) Influence is roughly (leverage)(discrepancy). The leverages hi are
the diagonal elements of the hat matrix H and measure how far xi is from
the sample mean of the predictors. Cook’s distance is widely used, but the
response plot and residual plot are the most effective tools for detecting
outliers and influential cases.

3.8 Complements

With one data set, OLS is a great place to start but a bad place to end. If
n = 5kp where k > 2, it may be useful to take a random sample of n/k cases
to build the MLR model. Then check the model on the full data set.

Predictor Transformations

One of the most useful techniques in regression is to remove
gross nonlinearities in the predictors by using predictor transfor-
mations. The log rule is very useful for transforming highly skewed
predictors. The linearizing of the predictor relationships could be done by
using marginal power transformations or by transforming the joint distri-
bution of the predictors towards an elliptically contoured distribution. The
linearization might also be done by using simultaneous power transformations

λ = (λ2, . . . , λp)
T of the predictors so that the vector wλ = (x

(λ2)
2 , ..., x

(λp)
p )T

of transformed predictors is approximately multivariate normal. A method
for doing this was developed by Velilla (1993). (The basic idea is the same
as that underlying the likelihood approach of Box and Cox for estimating a
power transformation of the response in regression, but the likelihood comes

from the assumed multivariate normal distribution of wλ.) The Cook and
Nachtsheim (1994) procedure can cause the distribution to be closer to ellip-
tical symmetry. Marginal Box-Cox transformations also seem to be effective.
Power transformations can also be selected with slider bars in Arc. More will
be said about predictor transformations in Section 15.3.

Suppose that it is thought that the model Y = xT β + e could be im-
proved by transforming xj. Let xTβ = uTη + βjxj where uT η = x1β1 +
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· · ·+ xj−1βj−1 + xj+1βj+1 + · · ·+ xpβp. Let τ (xj) denote the unknown trans-
formation.

Definition 3.13. Consider the OLS residuals ri(j) = Yi −uT
i η̂ obtained

from the OLS regression of Y on u. A partial residual plot or component
plus residual plot or ceres plot with linear augmentation is a plot of the ri(j)
versus xj and is used to visualize τ .

Cook (1993) shows that partial residual plots are useful for visualizing τ
provided that the plots of xi versus xj are linear. More general ceres plots,
in particular ceres plots with smooth augmentation, can be used to visualize
τ if Y = uT η + τ (xj) + e but the linearity condition fails.

The assumption that all values of x1 and x2 are positive for power trans-
formation can be removed by using the modified power transformations of
Yeo and Johnson (2000).

Response Transformations

Application 3.1 was suggested by Olive (2004b) and Olive and Hawkins
(2009a). An advantage of this graphical method is that it works for linear
models: that is, for multiple linear regression and for many experimental
design models. Notice that if the plotted points in the transformation plot
follow the identity line, then the plot is also a response plot. The method is
also easily performed for MLR methods other than least squares.

A variant of the method would plot the residual plot or both the response
and the residual plot for each of the seven values of λ. Residual plots are also
useful, but they no not distinguish between nonlinear monotone relationships
and nonmonotone relationships. See Fox (1991, p. 55).

Cook and Olive (2001) also suggest a graphical method for selecting and
assessing response transformations under model (3.2). Cook and Weisberg
(1994) show that a plot of Z versus xT β̂ (swap the axis on the transformation
plot for λ = 1) can be used to visualize t if Y = t(Z) = xTβ + e, suggesting
that t−1 can be visualized in a plot of xT β̂ versus Z.

If there is nonlinearity present in the scatterplot matrix of the nontrivial
predictors, then transforming the predictors to remove the nonlinear-
ity will often be a useful procedure. More will be said about response
transformations for experimental designs in Section 5.3.

There has been considerable discussion on whether the response transfor-
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mation parameter λ should be selected with maximum likelihood (see Bickel
and Doksum 1981), or selected by maximum likelihood and then rounded to
a meaningful value on a coarse grid ΛL (see Box and Cox 1982 and Hinkley
and Runger 1984). Suppose that no strong nonlinearities are present among
the predictors x and that if predictor transformations were used, then the
transformations were chosen without examining the response. Also assume
that

Y = tλo(Z) = xT β + e.

Suppose that a transformation tλ̂ is chosen without examining the response.
Results in Li and Duan (1989), Chen and Li (1998) and Chang and Olive
(2009) suggest that if x has an approximate multivariate normal distribution,
then the OLS ANOVA F, partial F and Wald t tests will have the correct
level asymptotically, even if λ̂ �= λo.

Now assume that the response is used to choose λ̂. For example assume
that the numerical Box Cox method is used. Then λ̂ is likely to be variable
unless the sample size is quite large, and considerable bias can be introduced,
as observed by Bickel and Doksum (1981). Now assume that λ̂ is chosen with
the graphical method (and assume that ties are broken by using theory or by
using the following list in decreasing order of importance 1, 0, 1/2,−1 and 1/3
so that the log transformation is chosen over the cube root transformation if
both look equally good). Then λ̂ will often rapidly converge in probability
to a value λ∗ ∈ ΛL. Hence for moderate sample sizes, it may be reasonable
to assume that the OLS tests have approximately the correct level. Let
W = tλ̂(Z) and perform the OLS regression of W on x. If the response and
residual plots suggest that the MLR model is appropriate, then the response
transformation from the graphical method will be useful for description and
exploratory purposes, and may be useful for prediction and inference.

The MLR assumptions always need to be checked after making a response
transformation. Since the graphical method uses a response plot to choose
the transformation, the graphical method should be much more reliable than
a numerical method. Transformation plots should be made if a numerical
method is used, but numerical methods are not needed to use the graphical
method.

Variable Selection and Multicollinearity

The literature on numerical methods for variable selection in the OLS
multiple linear regression model is enormous. Three important papers are
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Jones (1946), Mallows (1973), and Furnival and Wilson (1974). Chatterjee
and Hadi (1988, p. 43-47) give a nice account on the effects of overfitting
on the least squares estimates. Also see Claeskins and Hjort (2003), Hjort
and Claeskins (2003) and Efron, Hastie, Johnstone and Tibshirani (2004).
Texts include Burnham and Anderson (2002), Claeskens and Hjort (2008)
and Linhart and Zucchini (1986).

Cook and Weisberg (1999, p. 264-265) give a good discussion of the effect
of deleting predictors on linearity and the constant variance assumption.
Walls and Weeks (1969) note that adding predictors increases the variance
of a predicted response. Also R2 gets large. See Freedman (1983).

Discussion of biases introduced by variable selection and data snooping
include Hurvich and Tsai (1990), Selvin and Stuart (1966) and Hjort and
Claeskins (2003). This theory assumes that the full model is known before
collecting the data, but in practice the full model is often built after collecting
the data. Freedman (2005, p. 192–195) gives an interesting discussion on
model building and variable selection.

Olive and Hawkins (2005) discuss influential cases in variable selection,
as do Léger and Altman (1993).

The interpretation of Mallows Cp given in Proposition 3.2 is due to Olive
and Hawkins (2005) and can be generalized to other 1D regression models.
Other interpretations of the Cp statistic specific to MLR can be given. See
Gilmour (1996). The Cp statistic is due to Jones (1946). Also see Kenard
(1971).

The AIC(I) statistic is often used instead of Cp(I). The full model and
the model Imin found with the smallest AIC are always of interest. Burnham
and Anderson (2004) suggest that if ∆(I) = AIC(I) − AIC(Imin), then
models with ∆(I) ≤ 2 are good, models with 4 ≤ ∆(I) ≤ 7 are borderline,
and models with ∆(I) > 10 should not be used as the final submodel. Find
the submodel II with the smallest number of predictors such that ∆(II) ≤ 2.
Then II is the initial submodel to examine, and often II = Imin. Also examine
submodels I with fewer predictors than II with ∆(I) ≤ 7.

When there are strong linear relationships among the predictors, multi-
collinearity is present. Let R2

k be the coefficient of multiple determination
when xk is regressed on the remaining predictor variables, including a con-
stant. The variance inflation factor is VIF(k) = 1/(1 − R2

k). Both R2
k and

VIF(k) are large when multicollinearity is present. Following Cook and Weis-
berg (1999, p. 274), if sk is the sample standard deviation of xk, than the
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standard error of β̂k is

se(β̂k) =

√
MSE

sk

√
n − 1

1

1 − R2
k

=

√
MSE

sk

√
n − 1

√
V IF (k).

Hence βk becomes more difficult to estimate when multicollinearity is present.
Variable selection is a useful way to reduce multicollinearity, and alternatives
such as ridge regression are discussed in Gunst and Mason (1980). Belsley
(1984) shows that centering the data before diagnosing the data for multi-
collinearity is not necessarily a good idea.

We note that the pollution data of Example 3.7 has been heavily analyzed
in the ridge regression literature, but this data was easily handled by the log
rule combined with variable selection. The pollution data can be obtained
from this text’s website, or from the STATLIB website:
(http://lib.stat.cmu.edu/).

The leaps function in Splus and Proc Rsquare in SAS can be used to
perform all subsets variable selection with the Cp criterion. The step func-
tion in R/Splus can be used for forward selection and backward elimination.

Diagnostics

Excellent introductions to OLS diagnostics include Fox (1991) and Cook
and Weisberg (1999, p. 161-163, 183-184, section 10.5, section 10.6, ch.
14, ch. 15, ch. 17, ch. 18, and section 19.3). More advanced works include
Belsley, Kuh, and Welsch (1980), Cook and Weisberg (1982), Atkinson (1985)
and Chatterjee and Hadi (1988). Hoaglin and Welsh (1978) examines the
hat matrix while Cook (1977) introduces Cook’s distance. Also see Velleman
and Welsch (1981). Cook and Weisberg (1997, 1999 ch. 17) call a plot that
emphasizes model agreement a model checking plot.

Outliers

Olive (2009) is an authoritative introduction to outlier detection. Some
useful properties of the DD plot are given in Olive (2002). Theory for the
FCH estimators is given in Olive (2009, ch. 10) and Olive and Hawkins
(2009b).
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3.9 Problems

Problems with an asterisk * are especially important.

Output for problem 3.1.

Current terms: (finger to ground nasal height sternal height)

df RSS | k C_I

Delete: nasal height 73 35567.2 | 3 1.617

Delete: finger to ground 73 36878.8 | 3 4.258

Delete: sternal height 73 186259. | 3 305.047

3.1. From the output from backward elimination given on the previous
page, what terms should be used in the MLR model to predict Y ? (You can
tell that the nontrivial variables are finger to ground, nasal height and sternal
height from the “delete lines.” DON’T FORGET THE CONSTANT!)

Output for Problem 3.2.
L1 L2 L3 L4

# of predictors 10 6 4 3
# with 0.01 ≤ p-value ≤ 0.05 0 0 0 0

# with p-value > 0.05 6 2 0 0
R2(I) 0.774 0.768 0.747 0.615

corr(Ŷ , ŶI) 1.0 0.996 0.982 0.891
Cp(I) 10.0 3.00 2.43 22.037√
MSE 63.430 61.064 62.261 75.921

p-value for partial F test 1.0 0.902 0.622 0.004

3.2. The above table gives summary statistics for 4 MLR models con-
sidered as final submodels after performing variable selection. The response
plot and residual plot for the full model L1 was good. Model L3 was the min-
imum Cp model found. Which model should be used as the final submodel?
Explain briefly why each of the other 3 submodels should not be used.
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Output for Problem 3.3.
L1 L2 L3 L4

# of predictors 10 5 4 3
# with 0.01 ≤ p-value ≤ 0.05 0 1 0 0

# with p-value > 0.05 8 0 0 0
R2(I) 0.655 0.650 0.648 0.630

corr(Ŷ , ŶI) 1.0 0.996 0.992 0.981
Cp(I) 10.0 4.00 5.60 13.81√
MSE 73.548 73.521 73.894 75.187

p-value for partial F test 1.0 0.550 0.272 0.015

3.3. The above table gives summary statistics for 4 MLR models con-
sidered as final submodels after performing variable selection. The response
plot and residual plot for the full model L1 was good. Model L2 was the
minimum Cp model found.

a) Which model is II , the initial submodel to look at?
b) What other model or models, if any, should be examined?
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Output for Problem 3.4.

ADJUSTED 99 cases 2 outliers

k CP R SQUARE R SQUARE RESID SS MODEL VARIABLES

-- ----- -------- -------- --------- --------------

1 760.7 0.0000 0.0000 185.928 INTERCEPT ONLY

2 12.7 0.8732 0.8745 23.3381 B

2 335.9 0.4924 0.4976 93.4059 A

2 393.0 0.4252 0.4311 105.779 C

3 12.2 0.8748 0.8773 22.8088 B C

3 14.6 0.8720 0.8746 23.3179 A B

3 15.7 0.8706 0.8732 23.5677 A C

4 4.0 0.8857 0.8892 20.5927 A B C

ADJUSTED 97 cases after deleting the 2 outliers

k CP R SQUARE R SQUARE RESID SS MODEL VARIABLES

-- ----- -------- -------- --------- --------------

1 903.5 0.0000 0.0000 183.102 INTERCEPT ONLY

2 0.7 0.9052 0.9062 17.1785 B

2 406.6 0.4944 0.4996 91.6174 A

2 426.0 0.4748 0.4802 95.1708 C

3 2.1 0.9048 0.9068 17.0741 A C

3 2.6 0.9043 0.9063 17.1654 B C

3 2.6 0.9042 0.9062 17.1678 A B

4 4.0 0.9039 0.9069 17.0539 A B C

3.4. The output above is from software that does all subsets variable
selection. The data is from Ashworth (1842). The predictors were A =
log(1692 property value), B = log(1841 property value) and C = log(percent
increase in value) while the response variable is Y = log(1841 population).

a) The top output corresponds to data with 2 small outliers. From this
output, what is the best model? Explain briefly.

b) The bottom output corresponds to the data with the 2 outliers re-
moved. From this output, what is the best model? Explain briefly.

Problems using R/Splus.

Warning: Use the command source(“A:/regpack.txt”) to download
the programs. See Preface or Section 17.1. Typing the name of the
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regpack function, eg tplot, will display the code for the function. Use the
args command, eg args(tplot), to display the needed arguments for the func-
tion.

3.5∗. You may also copy and paste R commands for this problem from
(www.math.siu.edu/olive/reghw.txt).

a) Download the R/Splus function tplot that makes the transformation
plots for λ ∈ ΛL.

b) Use the following R/Splus command to make a 100 × 3 matrix. The
columns of this matrix are the three nontrivial predictor variables.

nx <- matrix(rnorm(300),nrow=100,ncol=3)

Use the following command to make the response variable Y.

y <- exp( 4 + nx%*%c(1,1,1) + 0.5*rnorm(100) )

This command means the MLR model log(Y ) = 4 + X2 + X3 + X4 + e
will hold where e ∼ N(0, 0.25).

To find the response transformation, you need the program tplot given
in a). Type ls() to see if the programs were downloaded correctly.

c) To make the transformation plots type the following command.

tplot(nx,y)

The first plot will be for λ = −1. Move the cursor to the plot and hold the
rightmost mouse key down (and in R, highlight stop) to go to the next
plot. Repeat these mouse operations to look at all of the plots. The identity
line is included in each plot. When you get a plot where the plotted points
cluster about the identity line with no other pattern, include this transfor-
mation plot in Word by pressing the Ctrl and c keys simultaneously. This
will copy the graph. Then in Word use the menu commands “File>Paste”.
You should get the log transformation.

d) Type the following commands.

out <- lsfit(nx,log(y))

ls.print(out)
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Use the mouse to highlight the created output and include the output in
Word.

e) Write down the least squares equation for ̂log(Y ) using the output in
d).

3.6. Download cbrainx and cbrainy from
(www.math.siu.edu/olive/regdata.txt) into R. Either use the source com-
mand on regdata.txt if it is saved on a disk, or copy and paste the two files
into R. Copy and paste the R commands for this problem from
(www.math.siu.edu/olive/reghw.txt).

The data is the brain weight data from Gladstone (1905-6). The response
Y is brain weight while the predictors are age, breadth, cephalic, circum,
headht, height, len, sex and a constant. The step function can be used to
perform forward selection and backward elimination in R.

a) Copy and paste the commands for this problem into R. The commands
fit the full model, display the LS output and perform backward elimination
using the AIC criterion. Copy and paste the output for backward elimination
into Word (one page of output).

zx <- cbrainx[,c(1,3,5,6,7,8,9,10)]

zbrain <- as.data.frame(cbind(cbrainy,zx))

zfull <- lm(cbrainy~.,data=zbrain)

summary(zfull)

back <- step(zfull)

b) Want low AIC and as few predictors as possible. Backward elimination
starts with the full model then deletes one nontrivial predictor at a time. The
term <None> corresponds to the current model that does not eliminate any
terms. The terms listed above <None> correspond to models that have
smaller AIC than the current model. R stops when eliminating terms makes
the AIC higher than the current model. Which terms, including a constant,
were in this minimum AIC model?

c) Copy and paste the commands for this problem into R. The commands
fit the null model that only contains a constant. Forward selection starts at
the null model (corresponding to lower) and considers 8 nontrivial predictors
(given by upper).

Copy and paste the output for forward selection into Word (two pages of
output).
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zint <- lm(cbrainy~1,data=zbrain)

forw <- step(zint,scope=list(lower=~1,

upper=~age+breadth+cephalic+circum+headht+height+len+sex),

direction="forward")

d) Forward selection in R starts with the null model and then adds a
predictor circum to the model. Forward selection in R allows you to consider
models with fewer predictors than the minimum AIC model (unlike backward
elimination). Which terms, including a constant, were in the minimum AIC
model?

Problems using ARC

To quit Arc, move the cursor to the x in the northeast corner and click.
Problems 3.7–3.11 use data sets that come with Arc (Cook and Weisberg
1999a).

3.7∗. a) In Arc enter the menu commands “File>Load>Data>ARCG”
and open the file big-mac.lsp. Next use the menu commands “Graph&Fit>
Plot of” to obtain a dialog window. Double click on TeachSal and then
double click on BigMac. Then click on OK. These commands make a plot
of x = TeachSal = primary teacher salary in thousands of dollars versus y =
BigMac = minutes of labor needed to buy a Big Mac and fries. Include the
plot in Word.

Consider transforming y with a (modified) power transformation

y(λ) =

{
(yλ − 1)/λ, λ �= 0

log(y), λ = 0

b) Should simple linear regression be used to predict y from x? Explain.

c) In the plot, λ = 1. Which transformation will increase the linearity of
the plot, log(y) or y(2)? Explain.

3.8∗. In Arc enter the menu commands “File>Load>Data>ARCG” and
open the file mussels.lsp. Use the commands “Graph&Fit>Scatterplot Ma-
trix of.” In the dialog window select H, L, W, S and M (so select M last).
Click on “OK” and include the scatterplot matrix in Word. The response M
is the edible part of the mussel while the 4 predictors are shell measurements.
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Are any of the marginal predictor relationships nonlinear? Is E(M |H) linear
or nonlinear?

3.9∗. The file wool.lsp has data from a 33 experiment on the behavior
of worsted yarn under cycles of repeated loadings. The response Y is the
number of cycles to failure and the three predictors are the length, amplitude
and load. Make five transformation plots by using the following commands.

From the menu “Wool” select “transform” and double click on Cycles.
Select “modified power” and use p = −1,−0.5, 0 and 0.5. Use the menu
commands “Graph&Fit>Fit linear LS” to obtain a dialog window. Next fit
LS five times. Use Amp, Len and Load as the predictors for all 5 regres-
sions, but use Cycles−1, Cycles−0.5, log[Cycles], Cycles0.5 and Cycles as the
response.

Use the menu commands “Graph&Fit>Plot of” to create a dialog window.
Double click on L5:Fit-Values and double click on Cycles, double click on
L4:Fit-Values and double click on Cycles0.5, double click on L3:Fit-Values and
double click on log[Cycles], double click on L2:Fit-Values and double click on
Cycles−0.5, double click on L1:Fit-Values and double click on Cycles−1.

a) You may stop when the resulting plot in linear. Let Z = Cycles.

Include the plot of Ŷ versus Y = Z(λ) that is linear in Word. Move the OLS
slider bar to 1. What response transformation do you end up using?

b) Use the menu commands “Graph&Fit>Plot of” and put L5:Fit-Values
in the H box and L3:Fit-Values in the V box. Is the plot linear?

3.10. In Arc enter the menu commands “File>Load>Data>ARCG” and
open the file bcherry.lsp. The menu Trees will appear. Use the menu com-
mands “Trees>Transform” and a dialog window will appear. Select terms
Vol, D, and Ht. Then select the log transformation. The terms log Vol, log D
and log H should be added to the data set. If a tree is shaped like a cylinder
or a cone, then V ol ∝ D2Ht and taking logs results in a linear model.

a) Fit the full model with Y = log V ol, X1 = log D and X2 = log Ht.
Add the output that has the LS coefficients to Word.

b) Fitting the full model will result in the menu L1. Use the commands
“L1>AVP–All 2D.” This will create a plot with a slider bar at the bottom
that says log[D]. This is the added variable plot for log(D). To make an added
variable plot for log(Ht), click on the slider bar. Add the OLS line to the
AV plot for log(Ht) by moving the OLS slider bar to 1, and add the zero line
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by clicking on the “Zero line box”. Include the resulting plot in Word.

c) Fit the reduced model that drops log(Ht). Make an RR plot with
the residuals from the full model on the V axis and the residuals from the
submodel on the H axis. Add the LS line and the identity line as visual aids.
(Click on the Options menu to the left of the plot and type “y=x” in the
resulting dialog window to add the identity line.) Include the plot in Word.

d) Similarly make an FF plot using the fitted values from the two models.
Add the OLS line which is the identity line. Include the plot in Word.

e) Next put the residuals from the submodel on the V axis and log(Ht)
on the H axis. Move the OLS slider bar to 1, and include this residual plot
in Word.

f) Next put the residuals from the submodel on the V axis and the fitted
values from the submodel on the H axis. Include this residual plot in Word.

g) Next put log(Vol) on the V axis and the fitted values from the submodel
on the H axis. Move the OLS slider bar to 1, and include this response plot
in Word.

h) Does log(Ht) seem to be an important term? If the only goal is to
predict volume, will much information be lost if log(Ht) is omitted? Beside
each of the 6 plots, remark on the information given by the plot.
(Some of the plots will suggest that log(Ht) is needed while others will suggest
that log(Ht) is not needed.)

3.11∗. a) In this problem we want to build a MLR model to predict
Y = t(BigMac) where t is some power transformation. In Arc enter the
menu commands “File>Load>Data>Arcg” and open the file big-mac.lsp.
Make a scatterplot matrix of the variate valued variables and include the
plot in Word.

b) The log rule makes sense for the BigMac data. From the scatterplot
matrix, use the “Transformations” menu and select “Transform to logs”.
Include the resulting scatterplot matrix in Word.

c) From the “Mac” menu, select “Transform”. Then select all 10 vari-
ables and click on the “Log transformations” button. Then click on “OK”.
From the “Graph&Fit” menu, select “Fit linear LS.” Use log[BigMac] as the
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response and the other 9 “log variables” as the Terms. This model is the full
model. Include the output in Word.

d) Make a response plot (L1:Fit-Values in H and log(BigMac) in V) and
residual plot (L1:Fit-Values in H and L1:Residuals in V) and include both
plots in Word.

e) Using the “L1” menu, select “Examine submodels” and try forward
selection and backward elimination. Using the Cp ≤ min(2k, p) rule suggests
that the submodel using log[service], log[TeachSal] and log[TeachTax] may be
good. From the “Graph&Fit” menu, select “Fit linear LS”, fit the submodel
and include the output in Word.

f) Make a response plot (L2:Fit-Values in H and log(BigMac) in V) and
residual plot (L2:Fit-Values in H and L2:Residuals in V) for the submodel
and include the plots in Word.

g) Make an RR plot (L2:Residuals in H and L1:Residuals in V) and
FF plot (L2:Fit-Values in H and L1:Fit-Values in V) for the submodel and
include the plots in Word. Move the OLS slider bar to 1 in each plot to
add the identity line. For the RR plot, click on the Options menu then type
y = x in the long horizontal box near the bottom of the window and click on
OK to add the identity line.

h) Do the plots and output suggest that the submodel is good? Explain.

Warning: The following problems uses data from the book’s
webpage. Save the data files on a disk. Get in Arc and use the menu
commands “File > Load” and a window with a Look in box will appear. Click
on the black triangle and then on 3 1/2 Floppy(A:). Then click twice on the
data set name.

3.12∗. The following data set has 5 babies that are “good leverage
points:” they look like outliers but should not be deleted because they follow
the same model as the bulk of the data.

a) In Arc enter the menu commands “File>Load>3 1/2 Floppy(A:)” and
open the file cbrain.lsp. Select transform from the cbrain menu, and add
size1/3 using the power transformation option (p = 1/3). From
Graph&Fit, select Fit linear LS. Let the response be brnweight and as terms
include everything but size and Obs. Hence your model will include size1/3.
This regression will add L1 to the menu bar. From this menu, select Examine
submodels. Choose forward selection. You should get models including k =
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2 to 12 terms including the constant. Find the model with the smallest
Cp(I) = CI statistic and include all models with the same k as that model
in Word. That is, if k = 2 produced the smallest CI , then put the block
with k = 2 into Word. Next go to the L1 menu, choose Examine submodels
and choose Backward Elimination. Find the model with the smallest CI and
include all of the models with the same value of k in Word.

b) What was the minimum Cp model was chosen by forward selection?

c) What was the minimum Cp model was chosen by backward elimination?

d) Which minimum Cp model do you prefer? Explain.

e) Give an explanation for why the two models are different.

f) Pick a submodel and include the regression output in Word.

g) For your submodel in f), make an RR plot with the residuals from the
full model on the V axis and the residuals from the submodel on the H axis.
Add the OLS line and the identity line y=x as visual aids. Include the RR
plot in Word.

h) Similarly make an FF plot using the fitted values from the two models.
Add the OLS line which is the identity line. Include the FF plot in Word.

i) Using the submodel, include the response plot (of Ŷ versus Y ) and
residual plot (of Ŷ versus the residuals) in Word.

j) Using results from f)-i), explain why your submodel is a good model.

3.13. Activate the cyp.lsp data set. Choosing no more than 3 nonconstant
terms, try to predict height with multiple linear regression. Include a plot
with the fitted values on the horizontal axis and height on the vertical axis. Is
your model linear? Also include a plot with the fitted values on the horizontal
axis and the residuals on the vertical axis. Does the residual plot suggest that
the linear model may be inappropriate? (There may be outliers in the plot.
These could be due to typos or because the error distribution has heavier
tails than the normal distribution.) State which model you use.

3.14. Activate the insulation data, contributed by Elizabeth Spector,
with the commands “File>Load>3 1/2 Floppy (A:)>insulation.lsp.”
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The data description should appear in the “Listener” window.
Then go to the “Graph&Fit” menu and choose “Plot of ...” and select

“time” for the “H box” “y” for the “V box” and “type” for the “Mark by
box”. Then click on “OK” and a window with a plot should open.

a) The OLS popdown menu is the triangle below OLS. Select “Fit by
marks–general” and then use the cursor to mover the small black box to 2 on
the OLS slider bar. Then copy and paste the plot to Word. This command
fits least squares quadratic functions to the data from each of the 5 types of
insulation.

b) If there is no interaction, then the 5 curves will be roughly parallel
and will not cross. The curves will cross if there is interaction. Is there
interaction?

c) The top curve corresponds to no insulation and the temperature rapidly
rose and then rapidly cooled off. Corn pith corresponds to curve 2. Is corn
pith comparable to the more standard types of insulation 3–5?

3.15. Activate the cement.lsp data, contributed by Alyass Hossin. Act
as if 20 different samples were used to collect this data. If 5 measurements
on 4 different samples were used, then experimental design with repeated
measures or longitudinal data analysis may be a better way to analyze this
data.

a) From Graph&Fit select Plot of, place x1 in H, y in V and x2 in the
Mark by box. From the OLS menu, select Fit by marks–general and move
the slider bar to 2. Include the plot in Word.

b) A quadratic seems to be a pretty good MLR model. From the cement
menu, select Transform, select x1, and place a 2 in the p box. This should
add x12 to the data set. From Graph&Fit select Fit linear LS, select x1 and
x12 as the terms and y as the response. Include the output in Word.

c) Make the response plot. Again from the OLS menu, select Fit by
marks–general and move the slider bar to 1. Include the plot in Word. This
plot suggests that there is an interaction: the CM cement is stronger for
low curing times and weaker for higher curing times. The plot suggests that
there may not be an interaction between the two new types of cement.

d) Place the residual plot in Word. (Again from the OLS menu, select Fit
by marks–general and move the slider bar to 1.) The residual plot is slightly
fan shaped.

e) From the cement menu, select Make factors and select x2. From the
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cement menu, select Make interactions and select x1 and (F)x2. Repeat,
selecting x12 and (F)x2. From Graph&Fit select Fit linear LS, select x1, x12,
(F)x2, x1*(F)x2 and x12*(F)x2 as the terms and y as the response. Include
the output in Word.

f) Include the response plot and residual plot in Word.

g) Next delete the standard cement in order to compare the two coal
based cements. From Graph&Fit select Scatterplot–matrix of, then select x1,
x2 and y. Hold down the leftmost mouse button and highlight the x2 = 2
cases. Then from the Case deletions menu, select Delete selection from data
set. From Graph&Fit select Fit linear LS, select x1, x12, x2 as the terms and
y as the response. Include the output in Word. The output suggests that
the MA brand is about 320 psi less strong than the ME brand. (May need
to add x2*x1 and x2*x12 interactions.)

h) Include the response plot and residual plot in Word. The residual plot
is not particularly good.

3.16. This problem gives a slightly simpler model than Problem 3.15 by
using the indicator variable x3 = 1 if standard cement (if x2 = 2) and x3 =
0 otherwise (if x2 is 0 or 1). Activate the cement.lsp data.

a) From the cement menu, select Transform, select x1, and place a 2 in
the p box. This should add x12 to the data set. From the cement menu,
select Make interactions and select x1 and x3.

b) From Graph&Fit select Fit linear LS, select x1, x12, x3 and x1*x3 as
the terms and y as the response. Include the output in Word.

c) Make the response and residual plots. When making these plots, place
x2 in the Mark by box. Include the plots in Word. Does the model seem ok?

3.17∗. Get the McDonald and Schwing (1973) data pollution.lsp from
(www.math.siu.edu/olive/regbk.htm), and save the file on a disk. Activate
the pollution.lsp dataset with the menu commands “File > Load > 3 1/2
Floppy(A:) > pollution.lsp.” Scroll up the screen to read the data description.
Often simply using the log rule on the predictors with max(x)/min(x) > 10
works wonders.

a) Make a scatterplot matrix of the first nine predictor variables and
the response Mort. The commands “Graph&Fit > Scatterplot-Matrix of”
will bring down a Dialog menu. Select DENS, EDUC, HC, HOUS, HUMID,
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JANT, JULT, NONW, NOX and MORT. Then click on OK.
A scatterplot matrix with slider bars will appear. Move the slider bars

for NOX, NONW and HC to 0, providing the log transformation. In Arc, the
diagonals have the min and max of each variable, and these were the three
predictor variables satisfying the log rule. Open Word.

In Arc, use the menu commands “Edit > Copy.” In Word, use the menu
commands “Edit > Paste.” This should copy the scatterplot matrix into the
Word document. Print the graph.

b) Make a scatterplot matrix of the last six predictor variables and the
response Mort. The commands “Graph&Fit > Scatterplot-Matrix of” will
bring down a Dialog menu. Select OVR65, POOR, POPN, PREC, SO,
WWDRK and MORT. Then click on OK. Move the slider bar of SO to 0
and copy the plot into Word. Print the plot as described in a).

c) Click on the pollution menu and select Transform. Click on the log
transformations button and select HC, NONW, NOX and SO. Click on OK.

Then fit the full model with the menu commands “Graph&Fit > Fit lin-
ear LS”. Select MORT for the response. For the terms, select DENS, EDUC,
log[HC], HOUS, HUMID, JANT, JULT, log[NONW], log[NOX], OVR65,
POOR, POPN, PREC, log[SO] and WWDRK. Click on OK.

This model is the full model. To make the response plot use the menu
commands “Graph&Fit >Plot of”. Select MORT for the V-box and L1:Fit-
Values for the H-box. Click on OK. When the graph appears, move the OLS
slider bar to 1 to add the identity line. Copy the plot into Word.

To make the residual plot use the menu commands “Graph&Fit >Plot
of”. Select L1:Residuals for the V-box and L1:Fit-Values for the H-box. Click
on OK. Copy the plot into Word. Print the two plots.

d) Using the “L1” menu, select “Examine submodels” and try forward
selection. Using the “L1” menu, select “Examine submodels” and try back-
ward elimination. You should get a lot of output including that shown in
Example 3.7.

Fit the submodel with the menu commands “Graph&Fit > Fit linear
LS”. Select MORT for the response. For the terms, select EDUC, JANT,
log[NONW], log[NOX], and PREC. Click on OK.

This model is the submodel suggested by backward elimination. To make
the response plot use the menu commands “Graph&Fit >Plot of”. Select
MORT for the V-box and L2:Fit-Values for the H-box. Click on OK. When
the graph appears, move the OLS slider bar to 1 to add the identity line.
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Copy the plot into Word.
To make the residual plot use the menu commands “Graph&Fit >Plot

of”. Select L2:Residuals for the V-box and L2:Fit-Values for the H-box. Click
on OK. Copy the plot into Word. Print the two plots.

e) To make an RR plot use the menu commands “Graph&Fit >Plot of”.
Select L1:Residuals for the V-box and L2:Residuals for the H-box. Click on
OK. Move the OLS slider bar to one. On the window for the plot, click on
Options. A window will appear. Type y = x and click on OK to add the
identity line. Copy the plot into Word. Print the plot.

f) To make an FF plot use the menu commands “Graph&Fit >Plot of”.
Select L1:Fit-Values for the V-box and L2:Fit-Values for the H-box. Click
on OK. Move the OLS slider bar to one and click on OK to add the identity
line. Copy the plot into Word.

g) Using the response and residual plots from the full model and submodel
along with the RR and FF plots, does the submodel seem ok?

3.18. Get the Joanne Numrich data c12.lsp from
(www.math.siu.edu/olive/regbk.htm), and save the file on a disk. Acti-
vate the c12.lsp dataset with the menu commands “File > Load > 3 1/2
Floppy(A:) > c12.lsp.” Scroll up the screen to read the data description.
This data set is described in Example 3.10.

a) A bad model uses Y1 and all 24 nontrivial predictors. There are many
indicator variables. Click on the CLA menu and select Transform. Click on
the log transformations button and select y1. Click on OK.

b) Use the menu commands “Graph&Fit > Fit linear LS”. Select log[y1]
for the response. For the terms, select x1, x2, x8, x9, x10, x11, x18, x20, x23
and x24. Click on OK.

This model will be used as the full model. To make the response plot use
the menu commands “Graph&Fit >Plot of”. Select log[y1] for the V-box
and L1:Fit-Values for the H-box. Click on OK. When the graph appears,
move the OLS slider bar to 1 to add the identity line. Copy the plot into
Word.

To make the residual plot use the menu commands “Graph&Fit >Plot
of”. Select L1:Residuals for the V-box and L1:Fit-Values for the H-box. Click
on OK. Copy the plot into Word. Print the two plots.

c) As in Problem 3.17, use forward selection, backward elimination and
plots to find a good submodel.
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Using material learned in Chapters 2–3, analyze the data sets described
in Problems 3.19–3.29. Assume that the response variable Y = t(Z) and
that the predictor variable X2, ..., Xp are functions of remaining variables
W2, ..., Wr. Unless told otherwise, the full model Y, X1, X2, ..., Xp (where
X1 ≡ 1) should use functions of every variable W2, ..., Wr (and often p = r).
(In practice, often some of the variables and some of the cases are deleted,
but we will use all variables and cases, unless told otherwise, primarily so
that the instructor has some hope of grading the problems in a reasonable
amount of time.)

Read the description of the data provided by Arc. Once you have a
good full model, perform forward selection and backward elimination. Find
the model Imin that minimizes Cp(I), find the model II with the fewest
number of predictors such that Cp(II) ≤ Cp(Imin) + 1 (it is possible that
II = Imin), and find the smallest value of k such that Cp(I) ≤ min(p, 2k).
Model II often has too many terms while the 2nd model often has too few
terms.

a) Give the output for your full model, including Y = t(Z) and R2. If it
is not obvious from the output what your full model is, then write down the
full model. Include a response plot for the full model. (This plot should be
linear). Also include a residual plot.

b) Give the output for your final submodel. If it is not obvious from the
output what your submodel is, then write down the final submodel.

c) Give between 3 and 5 plots that justify that your multiple linear re-
gression submodel is reasonable. Below or beside each plot, give a brief
explanation for how the plot gives support for your model.

3.19. For the file bodfat.lsp, described in Problem 2.2, use Z = Y =
bodyfat but do not use X1 = density as a predictor in the full model. You
may use the remaining 13 nontrivial predictor variables. Do parts a), b) and
c) above.

3.20∗. For the file boston2.lsp, described in Examples 15.6 and 15.7 use
Z = (y =) CRIM. Do parts a), b) and c) above Problem 3.19.

Note: Y = log(CRIM), X4, X8, is an interesting submodel, but more
predictors are probably needed.

3.21∗. For the file major.lsp, described in Example 2.3, use Z = Y . Do
parts a), b) and c) above Problem 3.19.

Note: there are 1 or more outliers that affect numerical methods of vari-
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able selection.
3.22. For the file marry.lsp, described below, use Z = Y . This data set

comes from Hebbler (1847). The census takers were not always willing to
count a woman’s husband if he was not at home. Do not use the predictor
X2 in the full model. Do parts a), b) and c) above Problem 3.19.

3.23∗. For the file museum.lsp, described below, use Z = Y . Do parts
a), b) and c) above Problem 3.19.

This data set consists of measurements taken on skulls at a museum and
was extracted from tables in Schaaffhausen (1878). There are at least three
groups of data: humans, chimpanzees and gorillas. The OLS fit obtained
from the humans passes right through the chimpanzees. Since Arc numbers
cases starting at 0, cases 47–59 are apes. These cases can be deleted by
highlighting the cases with small values of Y in the scatterplot matrix and
using the case deletions menu. (You may need to maximize the window
containing the scatterplot matrix in order to see this menu.)

i) Try variable selection using all of the data.
ii) Try variable selection without the apes.
If all of the cases are used, perhaps only X1, X2 and X3 should be used

in the full model. Note that
√

Y and X2 have high correlation.

3.24∗. For the file pop.lsp, described below, use Z = Y . Do parts a), b)
and c) above Problem 3.19.

This data set comes from Ashworth (1842). Try transforming all variables
to logs. Then the added variable plots show two outliers. Delete these
two cases. Notice the effect of these two outliers on the p–values for the
coefficients and on numerical methods for variable selection.

Note: then log(Y ) and log(X2) make a good submodel.

3.25∗. For the file pov.lsp, described below, use i) Z = flife and ii)
Z = gnp2 = gnp + 2. This dataset comes from Rouncefield (1995). Making
loc into a factor may be a good idea. Use the commands poverty>Make
factors and select the variable loc. For ii), try transforming to logs and
deleting the 6 cases with gnp2 = 0. (These cases had missing values for gnp.
The file povc.lsp has these cases deleted.) Try your final submodel on the
data that includes the 6 cases with gnp2 = 0. Do parts a), b) and c) above
Problem 3.19.
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3.26∗. For the file skeleton.lsp, described below, use Z = y.
This data set is also from Schaaffhausen (1878). At one time I heard

or read a conversation between a criminal forensics expert with his date. It
went roughly like “If you wound up dead and I found your femur, I could tell
what your height was to within an inch.” Two things immediately occurred
to me. The first was “no way” and the second was that the man must not
get many dates! The files cyp.lsp and major.lsp have measurements including
height, but their R2 ≈ 0.9. The skeleton data set has at least four groups:
stillborn babies, newborns and children, older humans and apes.

a) Take logs of each variable and fit the regression on log(Y) on log(X1),
..., log(X13). Make a residual plot and highlight the case with the smallest
residual. From the Case deletions menu, select Delete selection from data
set. Go to Graph&Fit and again fit the regression on log(Y) on log(X1), ...,
log(X13) (you should only need to click on OK). The output should say that
case 37 has been deleted. Include this output for the full model in Word.

b) Do part b) above Problem 3.19.
c) Do part c) above Problem 3.19.

3.27. Activate big-mac.lsp in Arc. Assume that a multiple linear regres-
sion model holds for t(y) and some terms (functions of the predictors) where
y is BigMac = hours of labor to buy Big Mac and fries. Using techniques
you have learned in class find such a model. (Hint: Recall from Problem 3.11
that transforming all variables to logs and then using the model constant,
log(service), log(TeachSal) and log(TeachTax) was ok but the residuals did
not look good. Try adding a few terms from the minimal Cp model.)

a) Write down the full model that you use (eg a very poor full model is
exp(BigMac) = β1 + β2 exp(EngSal) + β3(TeachSal)3 + e) and include a
response plot for the full model. (This plot should be linear). Give R2 for
the full model.

b) Write down your final model (eg a very poor final model is
exp(BigMac) = β1 + β2 exp(EngSal) + β3(TeachSal)3 + e).

c) Include the least squares output for your model and between 3 and
5 plots that justify that your multiple linear regression model is reasonable.
Below or beside each plot, give a brief explanation for how the plot gives
support for your model.
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3.28. This is like Problem 3.27 with the BigMac data. Assume that
a multiple linear regression model holds for Y = t(Z) and for some terms
(usually powers or logs of the predictors). Using the techniques learned in
class, find such a model. Give output for the full model, output for the final
submodel and use several plots to justify your choices. These data sets, as
well as the BigMac data set, come with Arc. See Cook and Weisberg (1999a).
(INSTRUCTOR: Allow 2 hours for each part.)

file "response" Z

a) allomet.lsp BRAIN

b) casuarin.lsp W

c) evaporat.lsp Evap

d) hald.lsp Y

e) haystack.lsp Vol

f) highway.lsp rate

(from the menu Highway, select ‘‘Add a variate" and type

sigsp1 = sigs + 1. Then you can transform sigsp1.)

g) landrent.lsp Y

h) ozone.lsp ozone

i) paddle.lsp Weight

j) sniffer.lsp Y

k) water.lsp Y

i) Write down the full model that you use and include the full model
residual plot and response plot in Word. Give R2 for the full model.

ii) Write down the final submodel that you use.

iii) Include the least squares output for your model and between 3 and
5 plots that justify that your multiple linear regression model is reasonable.
Below or beside each plot, give a brief explanation for how the plot gives
support for your model.

177



3.29∗. a) Activate buxton.lsp (you need to download the file onto your
disk Floppy 3 1/2 A:). From the “Graph&Fit” menu, select “Fit linear LS.”
Use height as the response variable and bigonal breadth, cephalic index, head
length and nasal height as the predictors. Include the output in Word.

b) Make a response plot (L1:Fit-Values in H and height in V) and residual
plot (L1:Fit-Values in H and L1:Residuals in V) and include both plots in
Word.

c) In the residual plot use the mouse to move the cursor just above and
to the left of the outliers. Hold the leftmost mouse button down and move
the mouse to the right and then down. This will make a box on the residual
plot that contains the outliers. Go to the “Case deletions menu” and click
on Delete selection from data set. From the “Graph&Fit” menu, select “Fit
linear LS” and fit the same model as in a) (the model should already be
entered, just click on “OK”). Include the output in Word.

d) Make a response plot (L2:Fit-Values in H and height in V) and residual
plot (L2:Fit-Values in H and L2:Residuals in V) and include both plots in
Word.

e) Explain why the outliers make the MLR relationship seem much stronger
than it actually is. (Hint: look at R2.)
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Variable Selection in SAS
3.30. Copy and paste the SAS program for this problem from

(www.math.siu.edu/olive/reghw.txt) into the SAS editor. Then perform the
menu commands “Run>Submit” to obtain about 15 pages of output. Do
not print out the output.

The key SAS code is shown below.

proc reg data=fitness;

model Oxygen=Age Weight RunTime RunPulse RestPulse MaxPulse;

output out =a p = pred r = resid;

model Oxygen=Age Weight RunTime RunPulse RestPulse MaxPulse

/ selection=forward;

model Oxygen=Age Weight RunTime RunPulse RestPulse MaxPulse

/ selection=backward;

model Oxygen=Age Weight RunTime RunPulse RestPulse MaxPulse

/ selection=cp best = 10;

proc rsquare cp data = fitness;

model Oxygen=Age Weight RunTime RunPulse RestPulse MaxPulse;

proc plot data = a;

plot resid*(pred);

plot Oxygen*pred;

proc reg data=fitness;

model Oxygen=Age RunTime RunPulse MaxPulse;

output out =sub p = pred r = resid;

proc plot data = sub;

plot resid*(pred);

plot Oxygen*pred;

run;

The data is from SAS Institute (1985, p. 695-704, 717-718). Aerobic
fitness is being measured by the ability to consume oxygen. The response
Y = Oxygen (uptake rate) is expensive to measure, and it is hoped that
the OLS Ŷ can be used instead. The variables are Age in years, Weight in
kg, RunTime = time in minutes to run 1.5 miles, RunPulse = heart rate

179



when Y is measured, RestPulse = heart rate while running and MaxPulse =
maximum heart rate recorded while running.

The selection commands do forward selection, backward elimination and
all subset selection where the best ten models with the lowest Cp are recorded.
The proc rsquare command also does all subsets regression with the Cp cri-
terion.

The plots give the response and residual plots for the full model and the
submodel that used Age, RunTime, RunPulse, MaxPulse and a constant.

a) Was the above plot for the minimum Cp model?
b) Do the plots suggest that the submodel was good?

Variable Selection in Minitab
3.31. Get the data set prof.mtb as described in Problem 2.15. The data is

described in McKenzie and Goldman (1999, p. ED-22-ED-23). Assign the re-
sponse variable to be instrucr (the instructor rating from course evaluations)
and the predictors to be interest in the course, manner of the instructor, and
course = rating of the course.

a) To get residual and response plots you need to store the residuals
and fitted values. Use the menu commands “Stat>Regression>Regression”
to get the regression window. Put instrucr in the Response and interest,
manner and course in the Predictors boxes. The click on Storage. From
the resulting window click on Fits and Residuals. Then click on OK twice.

b) To get a response plot, use the commands “Graph>Plot,” (double
click) place instrucr in the Y box, and Fits1 in the X box. Then click on
OK. Print the plot by clicking on the graph and then clicking on the printer
icon.

c) To make a residual plot, use the menu commands “Graph>Plot” to
get a window. Place “Resi1” in the Y box and “Fits1” in the X box. Then
click on OK. Print the plot by clicking on the graph and then clicking on
the printer icon.

d) To perform all subsets regression, use the menu commands
“Stat>Regression>Best Subsets” to get the regression window. Put instrucr
in the Response and interest, manner and course in the Free predictors
boxes. Which submodel is good?
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