
Chapter 16

Survival Analysis

In the analysis of “time to event” data, there are n individuals and the time
until an event is recorded for each individual. Typical events are failure of
a product or death of a person or reoccurrence of cancer after surgery, but
other events such as first use of cigarettes or the time that baboons come
down from trees (early in the morning) can also be modeled. The data is
typically right skewed and censored data is often present.

Censoring occurs because of time and cost constraints. A product such as
light bulbs may be tested for 1000 hours. Perhaps 30% fail in that time but
the remaining 70% are still working. These are censored: they give partial
information on the lifetime of the bulbs because it is known that about
70% last longer than 1000 hours. Handling censoring and time dependent
covariates is what makes the analysis of time to event data different from
other fields of statistics.

Reliability analysis is used in engineering to study the lifetime (time until
failure) of manufactured products while survival analysis is used in actuarial
sciences, statistics and biostatistics to study the lifetime (time until death)
of humans, often after contracting a deadly disease. In the social sciences,
the study of the time until the occurrence of an event is called the analysis of
event time data or event history analysis. In economics, the study is called
duration analysis or transition analysis. Hence reliability data = failure time
data = lifetime data = survival data = event time data.

This chapter will begin with univariate survival analysis: there is a re-
sponse but no predictors. This model introduces terms also used in the 1D
regression models for survival analysis. The survival regression 1D models
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differ from the multiple linear regression, experimental design models, gen-
eralized linear models and single index models in that the conditional mean
function is no longer of primary interest. Instead, the conditional survival
function and the conditional hazard functions are of interest.

16.1 Univariate Survival Analysis

In this text log(t) = ln(t) = loge(t) while exp(t) = et. One of the difficulties
with survival analysis is that the response Y = survival time is usually not
observed, instead the a censored response is observed. In this chapter the
data will be right censored, and “right” will often be omitted. In the following
definition, note that both T ≥ 0 and Y ≥ 0 are nonnegative.

Definition 16.1. Let Y ≥ 0 be the time until an event occurs. Then Y
is called the survival time. The survival time is censored if the event of
interest has not been observed. Let Yi be the ith survival time. Let Zi be
the time the ith observation (possibly an individual or machine) leaves the
study for any reason other than the event of interest. Then Zi is the time
until the ith observation is censored. Then the right censored survival
time Ti of the ith observation is Ti = min(Yi, Zi). Let δi = 0 if Ti is (right)
censored (Ti = Zi) and let δi = 1 if Ti is not censored (Ti = Yi). Then the
univariate survival analysis data is (T1, δ1), (T2, δ2), ..., (Tn, δn). Alternatively,
the data is T1, T

∗
2 , T3, ..., T

∗
n−1, Tn where the * means that the case was (right)

censored. Sometimes the asterisk * is replaced by a plus +, and Yi, yi or ti

can replace Ti.

In this chapter we will assume that the censoring mechanism is indepen-
dent of the time to event: Yi and Zi are independent.

For example, in a study breast cancer patients who receive a lumpectomy,
suppose the researchers want to keep track of 100 patients for five years
after receiving a lumpectomy (tumor removal). The response is time until
death after a lumpectomy. Patients who are lost to the study (move or
eventually refuse to cooperate) and patients who are still alive after the study
are censored.Perhaps 15% die, 5% move away and so leave the study and 80%
are still alive after 5 years. Then 85% of the cases are (right) censored. The
actual study may take two years to recruit patients, follow each patient for
5 years, but end 5 years after the end of the two year recruitment period. So
patients enter the study at different times, but the censored response is the
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time until death or censoring from the time the patient entered the study.

Definition 16.2. i) The distribution function (df) of Y is F (t) =
P (Y ≤ t). Since Y ≥ 0, F (0) = 0, F (∞) = 1, and F (t) is nondecreasing.

ii) The probability density function (pdf) of Y is f(t) = F ′(t).
iii) The survival function of Y is S(t) = P (Y > t). S(0) = 1, S(∞) = 0

and S(t) is nonincreasing.

iv) The hazard function of Y is h(t) =
f(t)

1 − F (t)
for t > 0 and F (t) < 1.

Note that h(t) ≥ 0 if F (t) < 1.
v) The cumulative hazard function of Y is H(t) =

∫ t

0
h(u)du for t > 0.

It is true that H(0) = 0, H(∞) = ∞, and H(t) is nondecreasing.

Given one of F (t), f(t), S(t), h(t) or H(t), the following proposition shows
how to find the other 4 quantities for t > 0. In reliability analysis, the
reliability function R(t) = S(t), and in economics, Mill’s ratio = 1/h(t).

Proposition 16.1.
A) F (t) =

∫ t

0
f(u)du = 1−S(t) = 1−exp[−H(t)] = 1−exp[− ∫ t

0
h(u)du].

B) f(t) = F ′(t) = −S ′(t) = h(t)[1−F (t)] = h(t)S(t) = h(t) exp[−H(t)] =
H ′(t) exp[−H(t)].

C) S(t) = 1 − F (t) = 1 − ∫ t

0
f(u)du =

∫∞
t

f(u)du = exp[−H(t)] =

exp[− ∫ t

0
h(u)du].

D)

h(t) =
f(t)

1 − F (t)
=

f(t)

S(t)
=

F ′(t)
1 − F (t)

=
−S ′(t)
S(t)

= − d

dt
log[S(t)] = H ′(t).

E) H(t) =
∫ t

0
h(u)du = − log[S(t)] = − log[1 − F (t)].

Tips: i) If F (t) = 1 − exp[G(t)] for t > 0, then H(t) = −G(t) and
S(t) = exp[G(t)].

ii) For S(t) > 0, note that S(t) = exp[log(S(t))] = exp[−H(t)]. Finding
exp[log(S(t))] and setting H(t) = − log[S(t)]is easier than integrating h(t).

Next an interpretation for the hazard function is given. Suppose the time
until event is the time until death. Note that

P [t < Y < t + ∆t|Y > t] =
P [t < Y ≤ t + ∆t]

P (Y > t)
=

F (t + ∆t) − F (t)

1 − F (t)
.
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So

lim
∆t→0

1

∆t
P [t < Y ≤ t + ∆t|Y > t] = lim

∆t→0

F (t+∆t)−F (t)
∆t

1 − F (t)

=
f(t)

1 − F (t)
= h(t).

So for small ∆t, it follows that h(t)∆t ≈ P [t < Y < t+∆t|Y > t] ≈ P(person
dies in interval (t, t + ∆t] given that the person has survived up to time t).
Larger h(t) implies that the hazard of death is higher. The hazard function
takes into account the aging of the observation (person or product).

For example, an 80 year old white male has about a 50% chance of living
to 85 while a 100 year old white male has about a 50% chance of living to
101, although the percentage of white males living to 101 is tiny.

Example 16.1. Suppose Y ∼ EXP (λ) where λ > 0, then h(t) = λ for
t > 0, f(t) = λe−λt for t > 0, F (t) = 1− e−λt for t > 0, S(t) = e−λt for t > 0,
H(t) = λt for t > 0 and E(T ) = 1/λ. The exponential distribution can
be a good model if failures are due to random shocks that follow a Poisson
process (light bulbs, electrical components), but constant hazard means that
a used product is as good as a new product: aging has no effect on the
probability of failure of the product. Derive H(t), S(t), F (t) and f(t) from
the constant hazard function h(t) = λ for t > 0 and some λ > 0.

Solution: H(t) =
∫ t

0
h(u)du =

∫ t

0
λdu = λt for t > 0.

S(t) = e−H(t) = e−λt, for t > 0.
F (t) = 1 − S(t) = 1 − e−λt for t > 0.
Finally, f(t) = h(t)S(t) = λe−λt = F ′(t) for t > 0.

Suppose the observed survival times T1, ..., Tn are a censored data set
from an exponential EXP (λ) distribution. Let Ti = Y ∗

i . Let δi = 0 if the
case is censored and let δi = 1, otherwise. Let r =

∑n
i=1 δi = the number

of uncensored cases. Then the MLE λ̂ = r/
∑n

i=1 Ti. So λ̂ = r/
∑n

i=1 Y ∗
i . A

95% CI for λ is λ̂ ± 1.96λ̂/
√

r.

Example 16.2. If Y ∼ Weibull(λ, γ) where λ > 0 and γ > 0, then h(t) =
λγtγ−1 for t > 0, f(t) = λγtγ−1 exp(−λtγ) for t > 0, F (t) = 1 − exp(−λtγ)
for t > 0, S(t) = exp(−λtγ) for t > 0, H(t) = λtγ for t > 0. The Weibull(
λ, γ = 1) distribution is the EXP(λ) distribution. The hazard function can be
increasing, decreasing or constant. Hence the Weibull distribution often
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fits reliability data well, and the Weibull distribution is the most important
distribution in reliability analysis. Derive H(t), S(t), F (t) and f(t) if Y ∼
Weibull(λ, γ).

Solution:

H(t) =

∫ t

0

h(u)du =

∫ t

0

λγuγ−1du = λγ
uγ

γ

∣∣∣∣
t

0

= λtγ for t > 0.

S(t) = exp[−H(t)] = exp[−λtγ], for t > 0.
F (t) = 1 − S(t) = 1 − exp[−λtγ] for t > 0.
Finally, f(t) = h(t)S(t) = λγtγ−1 exp[−λtγ] for t > 0.

Recall from the central limit theorem that the sample mean X =∑n
i=1 Xi/n is approximately normal for many distributions. For many dis-

tributions, min(X1, ..., Xn) is approximately Weibull. Suppose a product is
made of m components with iid failure times Xim. Suppose the product fails
as soon as one of the components fails, eg a chain of links fails when the
weakest link fails. Then often the failure time Yi = min(Xim, ..., Xim) is
approximately Weibull.

Notation: The set {t : f(t) > 0} is the support of Y . Often the support
of Y is (0,∞) = t > 0, and the formulas will omit the t > 0.

Notation: Let the indicator variable Ia(Yi) = 1 if Yi ∈ A and Ia(Yi) = 0
otherwise. Often write I(t,∞)(Yi) as I(Yi > t).

Definition 16.3. If none of the survival times are censored, then the
empirical survival function ŜE(t) = (number of individual with survival
times > t)/(number of individuals) = a/n. So

ŜE(t) =
1

n

n∑
i=1

I(Yi > t) = p̂t =

sample proportion of lifetimes > t.

Assume Y1, ..., Yn are iid with Yi ≥ 0. Fix t > 0. Then I(Yi > t) are iid
binomial(1,p = P (Yi > t)). So nŜE(t) ∼ binomial(n,p = P (Yi > t)). Hence
E[nŜE(t)] = nP (Y > t) and V [nŜE(t)] = nS(t)F (t). Thus E[ŜE(t)] = S(t)
and V [ŜE(t)] = S(t)F (t)/n = [S(t)(1−S(t))]/n ≤ 0.25/n. Thus SD[ŜE(t)] =√

V [ŜE(t)] ≤ 0.5/
√

n. So need n ≈ 100 for SD[ŜE(t)] < 0.05.
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Let t(1) ≤ t(2) ≤ · · · ≤ t(n) be the observed ordered survival times (=
lifetimes = death times). Let t0 = 0 and let 0 < t1 < t2 < · · · < tm be the
distinct survival times. Let di = number of deaths at time ti. If m = n and
di = 1 for i = 1, ..., n then there are no ties. If m < n and some di ≥ 2,
then there are ties.

Then ŜE(t) is a step function with ŜE(0) = 1 and ŜE(t) = ŜE(ti−1) for
ti−1 ≤ t < ti. Note that

∑m
i=1 di = n. Know how to compute and plot ŜE(t)

given the t(i) or given the ti and di. Use a table like the one below. Let
a0 = n and ai =

∑n
k=1 I(Ti > ti) = # of cases t(j) > ti for i = 1, ..., m. Then

ŜE(ti) = ai/n =
∑n

k=1 I(Ti > ti)/n = ŜE(ti−1) − di

n
.

ti di ŜE(ti) = ŜE(ti−1) − di

n

t0 = 0 ŜE(0) = 1 =
n

n
=

a0

n

t1 d1 ŜE(t1) = ŜE(t0) − d1

n
=

a0 − d1

n
=

a1

n

t2 d2 ŜE(t2) = ŜE(t1) − d2

n
=

a1 − d2

n
=

a2

n

...
...

...

tj dj ŜE(tj) = ŜE(tj−1) − dj

n
=

aj−1 − dj

n
=

aj

n

...
...

...

tm−1 dm−1 ŜE(tm−1) = ŜE(tm−2) − dm−1

n
=

am−2 − dm−1

n
=

am−1

n

tm dm ŜE(tm) = 0 = ŜE(tm−1) − dm

n
=

am−1 − dm

n
=

am

n

Let Ŝ(t) be the estimated survival function. Let t(p) be the pth percentile
of Y : P (Y ≤ t(p)) = F (t(p)) = p so 1 − p = S(t(p)) = P (Y > t(p)). Then
t̂(p), the estimated time when 100 p % have died, can be estimated from a
graph of Ŝ(t) with “over” and “down” lines. a) Find 1−p on the vertical axis
and draw a horizontal “over” line to Ŝ(t). Draw a vertical “down” line until
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it intersects the horizontal axis at t̂(p). Usually want p = 0.5 but sometimes
p = 0.25 and p = 0.75 are used.

Example 16.3. Smith (2002, p. 68) gives steroid induced remission
times for leukemia patients. The t(j), t − i and di are given in the following

table. The ai and ŜE(t) needed to be computed. Note that ai = # of cases
with t(j) > ti.

ai t(j) ti di ŜE(ti) = ŜE(ti−1) − di

n
21 t0 = 0 ŜE(0) = 1 = 21/21

1

19 1 t1 = 1 2 ŜE(1) = (21 − 2)/21 = 19/21
2

17 2 t2 = 2 2 ŜE(2) = (19 − 2)/21 = 17/21

16 3 t3 = 3 1 ŜE(3) = (17 − 1)/21 = 16/21
4

14 4 t4 = 4 2 ŜE(4) = (16 − 2)/21 = 14/21
5

12 5 t5 = 5 2 ŜE(5) = (14 − 2)/21 = 12/21
8
8
8

8 8 t6 = 8 4 ŜE(8) = (12 − 4)/21 = 8/21
11

6 11 t7 = 11 2 ŜE(11) = (8 − 2)/21 = 6/21
12

4 12 t8 = 12 2 ŜE(12) = (6 − 2)/21 = 4/21

3 15 t9 = 15 1 ŜE(15) = (4 − 1)/21 = 3/21

2 17 t10 = 17 1 ŜE(17) = (3 − 1)/21 = 2/21

1 22 t11 = 22 1 ŜE(22) = (2 − 1)/21 = 1/21

0 23 t12 = 23 1 ŜE(23) = (1 − 1)/21 = 0

The 2nd column t(j) gives the 21 ordered survival times. The 3rd column
ti gives the distinct ordered survival times. Often just the number is given,
so t1 = 1 would be replaced by 1. The 4th column di tells how many events
(remissions) occurred at time ti and the last column computes ŜE(ti). A good
check is that the 1st column entry divided by n is equal to ai/n = ŜE(ti) =
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last column entry. A graph of the estimated survival function would be a
step function with times 0, 1, ..., 23 on the horizontal axis and ŜE(t) on the
vertical axis. A convention is to draw vertical lines at the jumps (at the ti).
So the step function would be 1 on (0,1), 19/21 on (1,2), ..., 1/21 on (22,23)
and 0 for t > 23. The vertical lines connecting the steps are at t = 1, 2, ..., 23.

Example 16.4. If di = 1, 1, 1, 1 and if ti = 1, 3, 5, 7, then a1 = 3, a2 = 2
and a3 = 1. Hence ŜE(1) = 0.75, ŜE(3) = 0.5, ŜE(5) = 0.25, and ŜE(7) = 0,
and the estimated survival function is graphed as below.

^

S_E(t)

___

| |____

| |_____

| |_____

|____________________|_ t

1 2 3 4 5 6 7

Let t1 ≤ t < tm. Then the classical large sample 95% CI for S(tc)
based on ŜE(t) is

ŜE(tc) ± 1.96

√
ŜE(tc)[1 − ŜE(tc)]

n
= ŜE(tc) ± 1.96SE[ŜE(tc)].

Let 0 < t. Let

p̃tc =
nŜE(tc) + 2

n + 4
.

Then the plus four 95% CI for S(tc) based on ŜE(t) is

p̃tc ± 1.96

√
p̃tc [1 − p̃tc ]

n + 4
= p̃tc ± 1.96SE[p̃tc ].

The 95% large sample CI ŜE(tc) ± 1.96SE[p̃tc ] is also interesting.

Example 16.5. Let n = 21 and ŜE(12) = 4/21.
a) Find the 95% classical CI for ŜE(12).
b) Find the 95% plus four CI for ŜE(12).
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Solution: a)

4

21
+ 1.96

√
4
21

(1 − 4
21

)

21
=

4

21
± 0.16795 = (0.0225, 0.3584).

b)

p̃12 =
21 4

21
+ 2

21 + 4
=

6

25
.

So the 95% CI is

6

25
+ 1.96

√
6
25

(1 − 6
25

)

25
=

6

25
± 0.16742 = (0.0726, 0.4074).

Note that the CIs are not very short since n = 21 is small.

Let Yi = time to event for ith person. Ti = min(Yi, Zi) where Zi is the
censoring time for the ith person (the time the ith person is lost to the study
for any reason other than the time to event under study). The censored data
is y1, y2+, y3, ..., yn−1, yn+ where yi means the time was uncensored and yi+
means the time was censored. t(1) ≤ t(2) ≤ · · · ≤ t(n) are the ordered survival
times (so if y4+ is the smallest survival time, then t(1) = y4+). A status
variable will be 1 if the time was uncensored and 0 if censored.

Let [0,∞) = I1 ∪ I2 ∪ · · · ∪ Im = [t0, t1) ∪ [t1, t2) · · · ∪ [tm−1, tm) where
to = 0 and tm = ∞. It is possible that the 1st interval will have left endpoint
> 0 (t0 > 0) and the last interval will have finite right endpoint (tm < ∞).
Suppose that the following quantities are known: dj = # deaths in Ij,
cj = # of censored survival times in Ij, and
nj = # at risk in Ij = # who were alive and not yet censored at the start
of Ij (at time tj−1). Note that n1 = n and nj = nj−1 − dj−1 − cj−1 for j > 1.
This equation shows how those at risk in th (j − 1)th interval propagate to
the jth interval.

Let n′
j = nj − cj

2
= average number at risk in Ij.

Definition 16.4. The lifetable estimator or actuarial method estima-
tor of SY (t) takes ŜL(0) = 1 and

ŜL(tk) =
k∏

j=1

n′
j − dj

n′
j

=
k∏

j=1

p̃j
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for k = 1, ..., m − 1. If tm = ∞, ŜL(t) is undefined for t > tm−1. Suppose
tm 	= ∞. Then take ŜL(t) = 0 for t ≥ tm if cm = 0. If cm > 0, then ŜL(t) is
undefined for t ≥ tm. (Some programs use ŜL(t) = 0 for t ≥ tm if tm 	= ∞.)

To graph ŜL(t), use linear interpolation (connect the dots). If n′
j = 0,

take p̃j = 0. Note that

ŜL(tk) = ŜL(tk−1)
n′

k − dk

n′
k

for k = 1, ..., m− 1.

The lifetable estimator is used to estimate SY (t) = P (Y > t) when
there is censoring. Also, the actual event or censoring times are unknown,
but the number of event and censoring times in each interval Ij is known
for j = 1, ..., m. Let pj = P(surviving through Ij| alive at the start of

Ij) = P (Y > tj|Y > tj−1) =
P (Y > tj, Y > tj−1)

P (Y > tj−1)
=

S(tj)

S(tj−1)
. Now p1 =

S(t1)/S(t0) = S(t1) since S(0) = S(t0) = 1. Writing S(tk) as a telescoping
product gives

S(tk) = S(t1)
S(t2)

S(t1)

S(t3)

S(t2)
· · · S(tk−1)

S(tk−2)

S(tk)

S(tk−1)
= p1p2 · · · pk =

k∏
j=1

pj .

Let p̂j = 1− (number dying in Ij)/(number with potential to die in Ij). Then
p̃j = 1− dj/n

′
j is the estimate of pj used by the lifetable estimator, assuming

that the censoring is roughly uniform over each interval.

Know how to get the lifetable estimator and SE(ŜL(ti)) from output.

(left output) (right output)

interval survival survival SE or interval survival survival SE

0 50 1.00 0 0 50 0.7594 0.0524

50 100 0.7594 0.0524 50 100 0.5889 0.0608

100 200 0.5889 0.0608 100 200 0.5253 0.0602

Since ŜL(0) = 1, ŜL(t) is for the left endpoint for the “left output”, and
for the right endpoint for the “right output.” For both cases, ŜL(50) = 0.7594
and SE(ŜL(50)) = 0.0524.

A 95% CI for SY (ti) based on the lifetable estimator is

ŜL(ti) ± 1.96 SE[ŜL(ti)].
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Know how to compute ŜL(t) with a table like the one below. The first 4
entries need to be given but the last 3 columns may need to be filled in. On
an exam you may be given a table with all but a few entries filled.

Ij, dj, cj, nj n′
j

n′
j−dj

n′
j

ŜL(t)

[t0 = 0, t1), d1, c1, n1 n1 − c1
2

n′
1−d1

n′
1

ŜL(to) = ŜL(0) = 1

[t1, t2), d2, c2, n2 n2 − c2
2

n′
2−d2

n′
2

ŜL(t1) = ŜL(t0)
n′

1−d1

n′
1

[t2, t3), d3, c3, n3 n3 − c3
2

n′
3−d3

n′
3

ŜL(t2) = ŜL(t1)
n′

2−d2

n′
2

...
...

...
...

[tk−1, tk), dk, ck, nk nk − ck

2

n′
k−dk

n′
k

ŜL(tk−1) =

ŜL(tk−2)
n′

k−1−dk−1

n′
k−1

...
...

...
...

[tm−2, tm−1), dm−1, cm−1, nm−1 nm−1 − cm−1

2

n′
m−1−dm−1

n′
m−1

ŜL(tm−2) =

ŜL(tm−3)
n′

m−2−dm−2

n′
m−2

[tm−1, tm = ∞), dm, cm, nm nm − cm

2
n′

m−dm

n′
m

ŜL(tm−1) =

ŜL(tm−2)
n′

m−1−dm−1

n′
m−1

Also get a 95% CI from output like that below. So the 95% CI for S(50)
is (0.65666,0.86213).

time survival SDF_LCL SDF_UCL

0 1.0 1.0 1.0

50 0.7594 0.65666 0.86213

Example 16.6. Allison (1995, p. 49-51) gives time until death after
heart transplant for 68 patients. The 1st 5 columns are given, but the last 3
columns need to be computed. Use 4 digits in the computations.
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n′
j = p̃j = ŜL(tj) =

Ij tj dj cj nj nj − cj/2
n′

j−dj

n′
j

ŜL(tj−1)p̃j

[0,50) 0 16 3 68 66.5 0.7594 Ŝ(0) = 1

[50,100) 50 11 0 49 49 0.7755 Ŝ(50) = 0.7594

[100,200) 100 14 2 38 37 0.8919 Ŝ(100) = 0.5889

[200,400) 200 5 4 32 30 0.8333 Ŝ(0) = 0.5252

[400,700) 400 2 6 23 20 0.90 Ŝ(400) = 0.4376

[700,1000) 700 4 3 15 13.5 0.7037 Ŝ(700) = 0.7037

[1000,1300) 1000 1 2 8 7 0.8571 Ŝ(1000) = 0.2771

[1300,1600) 1300 1 3 5 3.5 0.7143 Ŝ(1300) = 0.2375

[1600,∞) 1600 0 1 1 0.5 1.0 Ŝ(1600) = 0.1696

Greenwood’s formula is

SE[ŜL(tj)] = ŜL(tj)

√√√√ j∑
i=1

1 − p̃i

p̃in′
i

where j = 1, ..., m− 1. The formula is best computed using software.

Now suppose the data is censored but the event and censoring times are
known. Let Y ∗

i = Ti = min(Yi, Zi) where Yi and Zi are independent. Let
δi = I(Yi ≤ Zi) so δi = 1 if Ti is uncensored and δi = 0 if Ti is censored. Let
t(1) ≤ t(2) ≤ · · · ≤ t(n) be the observed ordered survival times. Let γj = 1 if
t(j) is uncensored and 0, otherwise. Let t0 = 0 and let 0 < t1 < t2 < · · · < tm

be the distinct survival times corresponding to the t(j) with γj = 1. Let di =
number of events (deaths) at time ti. If m = n and di = 1 for i = 1, ..., n
then there are no ties. If m < n and some di ≥ 2, then there are ties. Let
ni =

∑n
j=1 I(t(j) ≥ ti) = # at risk at ti = # alive and not yet censored just

before ti.

Definition 16.5. The Kaplan Meier estimator = product limit
estimator of SY (ti) = P (Y > ti) is ŜK(0) = 1 and

ŜK(ti) =
i∏

k=1

(1 − dk

nk
) = ŜK(ti−1)(1 − di

ni
).

ŜK(t) is a step function with ŜK(t) = ŜK(ti−1) for ti−1 ≤ t < ti and i =
1, ..., m. If t(n) is uncensored then tm = t(n) and ŜK(t) = 0 for t > tm. If t(n)
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is censored, then ŜK(t) = ŜK(tm) for tm ≤ t ≤ t(n), but ŜK(t) is undefined
for t > t(n).

Know how to compute and plot Ŝk(ti) given the t(j) and γj or given
the ti, ni and di. Use a table like the one below. Let n0 = n. If fi−1 =
number of events (deaths) and number censored in time interval [ti−1, ti),
then ni = ni−1 − fi−1 = number of t(j) ≥ ti.

ti ni di ŜK(t)

t0 = 0 ŜK(0) = 1

t1 n1 d1 ŜK(t1) = ŜK(t0)[1 − d1

n1
]

t2 n2 d2 ŜK(t2) = ŜK(t1)[1 − d2

n2
]

...
...

...
...

tj nj dj ŜK(tj) = ŜK(tj−1)[1 − dj

nj
]

...
...

...
...

tm−1 nm−1 dm−1 ŜK(tm−1) = ŜK(tm−2)[1 − dm−1

nm−1
]

tm nm dm ŜK(tm) = 0 = ŜK(tm−1)[1 − dm

nm

]

Example 16.7. Modifying Smith (2002, p. 113) slightly, suppose that
the ordered censored survival times in days until repair of n = 13 street lights
is 36, 38, 38, 38+, 78 112, 112, 114+, 162+, 189, 198, 237, 487+.
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fj t(j) γj ti ni di Ŝ(t)

Ŝ(0) = 1

1 36 1 36 13 1 Ŝ(36) = 0.9231

3 38 1 38 12 2 Ŝ(38) = 0.7692
38 1
38 0

1 78 1 78 9 1 Ŝ(78) = 0.6837

4 112 1 112 8 2 Ŝ(112) = 0.5128
112 1
114 0
162 0

1 189 1 189 4 1 Ŝ(189) = 0.3846

1 198 1 198 3 1 Ŝ(198) = 0.2564

1 237 1 237 2 1 Ŝ(36) = 0.1282
489 0

Know how to find a 95% CI for SY (ti) based on ŜK(ti) using output: the
95% CI is ŜK(ti)±1.96 SE[ŜK(ti)]. The R output below gives ti, ni, di, ŜK(ti),
SE(ŜK(ti)) and the 95% CI for SY (36) is (0.7782, 1).

time n.risk n.event survival std.err lower 95% CI upper 95% CI

36 13 1 0.923 0.0739 0.7782 1.000

In general, a 95% CI for SY (ti) is Ŝ(ti) ± 1.96 SE[Ŝ(ti)]. If the lower
endpoint of the CI is negative, round it up to 0. If the upper endpoint of the
CI is greater than 1, round it down to 1. Do not use impossible values
of SY (t).

Let P (Y ≤ t(p)) = p for 0 < p < 1. Be able to get t(p) and 95% CIs for
t(p) from SAS output for p = 0.25, 0.5, 0.75. For the output below, the CI
for t(0.75) is not given. The 95% CI for t(0.50) ≈ 210 is (63,1296). The 95%
CI for t(0.25) ≈ 63 is (18,195).

Quartile estimates

Percent point estimate lower upper

75 . 220.0 .

50 210.00 63.00 1296.00

25 63.00 18.00 195.00
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R plots the KM survival estimator along with the pointwise 95% CIs
for SY (t). If we guess a distribution for Y , say Y ∼ W, with a formula for
SW (t), then the guessed SW (ti) can be added to the plot. If roughly 95%
of the SW (ti) fall within the bands, then Y ∼ W may be reasonable. For
example, if W ∼ EXP (1), use SW (t) = exp(−t). If W ∼ EXP (λ), then
SW (t) = exp(−λt). Recall that E(W ) = 1/λ.

If limt→∞ tSY (t) → 0, then E(Y ) =
∫∞

0
tfY (t)dt =

∫∞
0

SY (t)dt. Hence an

estimate of the mean Ê(Y ) can be obtained from the area under Ŝ(t).
Greenwood’s formula is

SE[ŜK(tj)] = ŜK(tj)

√√√√ j∑
i=1

dj

nj(nj − dj)

where j = 1, ..., m− 1. The formula is best computed using software.

16.2 Proportional Hazards Regression

Definition 16.6. The Cox proportional hazards regression (PH)
model is

hi(t) = hYi|xi
(t) = h

Yi|β
T
xi

(t) = exp(βTxi)h0(t)

where h0(t) is the unknown baseline function and exp(βT xi) is the haz-
ard ratio. The sufficient predictor SP = βTxi =

∑p
j=1 βjxij.

The Cox PH model is a 1D regression model since the conditional distri-
bution Y |x is completely determined by the hazard function, and the hazard
function only depends on x through βTx. Inference for the PH model uses
computer output that is used almost exactly as the output for generalized
linear models such as the logistic and Poisson regression models. The Cox
PH model is semiparametric: the conditional distribution Y |x depends on
the sufficient predictor βT x, but the parametric form of the hazard function
hY |x(t) is not specified. The Cox PH model is the most widely used survival
regression in survival analysis.

Regression models are used to study the conditional distribution Y |x
given the p×1 vector of nontrivial predictors x. In survival regression, Y is the
time until an event such as death. For many of the most important survival
regression models, the nonnegative response variable Y is independent of x
given βT x, written Y x|βT x. Let the sufficient predictor SP = βTx, and
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the estimated sufficient predictor ESP = β̂
T
x. The ESP is sometimes called

the estimated risk score.
The conditional distribution Y |x is completely determined by the prob-

ability density function fx(t), the distribution function Fx(t), the survival
function

Sx(t) ≡ SY |SP (t) = P (Y > t|SP = βTx),

the cumulative hazard function Hx(t) = − log(Sx(t)) for t > 0, or the hazard
function hx(t) = d

dt
Hx(t) = fx(t)/Sx(t) for t > 0. High hazard implies low

survival times while low hazard implies long survival times.
Survival data is usually right censored so Y is not observed. Instead, the

survival time Ti = min(Yi, Zi) where Yi Zi and Zi is the censoring time.
Also δi = 0 if Ti = Zi is censored and δi = 1 if Ti = Yi is uncensored. Hence
the data is (Ti, δi, xi) for i = 1, ..., n.

The Cox proportional hazards regression model (Cox 1972) is a semipara-
metric model with SP = βT

Cx and

hx(t) ≡ hY |SP (t) = exp(βT
Cx)h0(t) = exp(SP )h0(t)

where the baseline hazard function h0(t) is left unspecified. The survival
function is

Sx(t) ≡ SY |SP (t) = [S0(t)]
exp(βT

Cx) = [S0(t)]
exp(SP ). (16.1)

If x = 0 is within the range of the predictors, then the baseline survival and
hazard functions correspond to the survival and hazard functions of x = 0.
First βC is estimated by the maximum partial likelihood estimator β̂C, then
estimators ĥ0(t) and Ŝ0(t) can be found (see Breslow 1974), and

Ŝx(t) = [Ŝ0(t)]
exp(

ˆβ
T

Cx) = [Ŝ0(t)]
exp(ESP ). (16.2)

16.2.1 Visualizing the Cox PH Regression Model

Grambsch and Therneau (1994) give a useful graphical check for whether the
PH model is a reasonable approximation for the data. Suppose the ith case
had an uncensored survival time ti. Let the scaled Schoenfeld residual for
the ith observation and jth variable xj be r∗P,j(ti). For each variable, plot

the ti versus the r∗P,j(ti) + β̂j and add the loess curve. If the loess curve
is approximately horizontal for each of the p plots, then the proportional
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hazards assumption is reasonable. Alternatively, fit a line to each plot and
test that each of the p slopes is equal to 0. The R/Splus function cox.zph

makes both the plots and tests. See MathSoft (1999, pp. 267, 275). Hosmer
and Lemeshow (1999, p. 211) suggest also testing whether the interactions
xi log(t) are significant for i = 1, ..., p.

Definition 16.7. The slice survival plot divides the ESP into J groups
of roughly the same size. For each group j, Ŝj(t) is computed using an x
corresponding to the middle ESP of the group. (The “middle ESP” is the
kth order statistic of the ESP in group j, where k = 1 + floor[(nj − 1)/2]

and nj is the number of cases in group j.) Let ŜKMj(t) be the Kaplan Meier
estimator computed from the survival times (Yi, δi) in the jth group. For
each group, Ŝj(t) is plotted and ŜKMj(ti) as circles at the uncensored event
times ti. The survival regression model is reasonable if the circles “track the
curve well” in each of the J plots.

If the slice widths go to zero, but the number of cases per slice increases
to ∞ as n → ∞, then the Kaplan Meier estimator and the model estimator
converge to SY |SP (t) if the model holds. Simulations suggest that the two
curves are “close” for moderate n and nine slices. For small n and skewed
predictors, some slices may be too wide in that the model is correct but
ŜKMj(t) is not a good approximation of SY |SP (t) where SP corresponds to

the x used to compute Ŝj(t).
For the Cox model, if pointwise confidence interval (CI) bands are added

to the plot, then ŜKMj “tracks Ŝj well” if most of the plotted circles do not
fall very far outside the pointwise CI bands since these pointwise bands are
not as wide as simultaneous bands. Collett (2003, pp. 241-243) places several
observed Kaplan Meier curves with fitted curves on the same plot.

Survival regression is the study of the conditional survival SY |SP (t), and
the slice survival plot is a crucial tool for visualizing SY |SP (t) in the back-
ground of the data. Suppose the jth slice is narrow so that ESP ≈ wj. If
the model is reasonable, ESP ≈ SP , and the number of uncensored cases in
the jth slice is not too small, then SY |SP=wj

(t) ≈ Ŝj(t) ≈ ŜKMj(t). (These

quantities approximate [Ŝ0(t)]
exp(wj) for the Cox model.) Thus the nonpara-

metric Kaplan Meier estimator is used to check the model estimator Ŝj(t) in
each slice.

The slice survival plot tailored to the Cox model is closely related to the
May and Hosmer (1998) test, and the plot has been suggested by several
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Figure 16.1: Censored Response Plot for R Lung Cancer Data

authors with x divided into J groups instead of the ESP. For example, see
Miller (1981, p. 168). Hosmer and Lemeshow (1999, pp. 141–145) suggests
making plots based on the quartiles of the ith predictor xi, and note that a
problem with Cox survival curves (16.2) is that they may use inappropriate
extrapolation. Using the ESP results in narrow slices with many cases, and
adding Kaplan Meier curves shows if there is extrapolation. The main use
of the next plot is to check for cases with unusual survival times.

Definition 16.7. A censored response plot is a plot of the ESP
versus T with plotting symbol 0 for censored cases and + for uncensored
cases. Slices in this plot correspond to the slices used in the slice survival
plot.

Suppose the ESP is a good estimator of the SP. Consider a narrow vertical
slice taken in the censored response plot about ESP = w. The points in
the slice are a censored sample with SY |SP (t) ≈ SY |w(t). For proportional
hazards models, hY |SP (t) ≈ exp(ESP )h0(t), and the hazard increases while
the survival decreases as the ESP increases.
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Figure 16.2: Slice Survival Plots for R Lung Cancer Data

Example 16.8 R and Splus contain a data set lung where the response
variable Y is the time until death for patients with lung cancer. See MathSoft
(1999, p. 268). Consider the data set for males with predictors ph.ecog =
Ecog performance score 0-4, ph.karno = a competitor to ph.ecog, pat.karno
= patient’s assessment of their karno score and wt.loss = weight loss in last 6
months. Figure 16.1 shows the censored response plot. Notice that the sur-
vival times decrease rapidly as the ESP increases and that there is one time
that is unusually large for ESP ≈ 1.8. If the Cox regression model is a good
approximation to the data, then the response variables corresponding to the
cases in a narrow vertical strip centered at ESP = w are approximately a cen-
sored sample from a distribution with hazard function hx(t) ≈ exp(w)h0(t).
Figure 16.2 shows the slice survival plots. The ESP was divided into 4
groups and correspond to the upper left, upper right, lower right and lower
left corners of the plot where Ŝ(400) ≈ (0.70, 0.60, 0.55, 0.30). The circles
corresponding to the Kaplan Meier estimator are “close” to the Cox survival
curves in that the circles do not fall very far outside the pointwise CI bands.
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Figure 16.3: Grambsch and Therneau Plots for NWTCO Data

Example 16.9. R contains a data set nwtco where the response variable
Y is the time until relapse with n = 4028. The model used predictors histol
= tumor histology from central lab, instit = tumor histology from local
institution, age in months, and stage of disease from 1 to 4 (treated as an
continuous variable). Figure 16.3 shows the Grambsch and Therneau (1994)
plots which look fairly flat, but with such a large sample, all slopes are
significantly different from zero, and the global test has p-value ≈ 5.66 ×
10−11. The slice survival plot in Figure 16.4 shows that the Cox survival
estimators and Kaplan Meier estimators are nearly identical in the six slices,
suggesting that the Cox model is a reasonable approximation to the data.

500



0 2000 4000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

0 2000 4000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

0 2000 4000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

0 2000 4000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

0 2000 4000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

0 2000 4000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

Figure 16.4: Slice Survival Plot for NWTCO Data: Horizontal Axis is the
Estimated Survival Function S(t)
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16.2.2 Testing and Variable Selection

variable Est. SE Est./SE or (Est/SE)2 pvalue for

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) X2
o,1 = z2

o,1 Ho β1 = 0
...

...
...

...
...

...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) X2
o,p = z2

o,p Ho βp = 0

SAS Wald pr >

variable df Estimate SE chi square chisqu

age 1 0.1615 0.0499 10.4652 0.0012

ecog.ps 1 0.0187 0.5991 0.00097 0.9800

R coef exp(coef) se(coef) z p

age 0.1615 1.18 0.0499 3.2350 0.0012

ecog.ps 0.0187 1.02 0.5991 0.0312 0.9800

Likelihood ratio test=14.3 on 2 df, p=0.000787 n= 26

Shown above is output in symbols from and SAS and R . The estimated
coefficient is β̂j. The Wald chi square = X2

o,j while p and “pr > chisqu” are
both p-values. Sometimes “Std. Err.” replaces “SE.”

The estimated sufficient predictor ESP = β̂
′
xj =

∑p
i=1 β̂ixij. Given β̂

from output and given x, be able to find ESP and ĥi(t) = exp(ESP )ĥ0(t) =

exp(β̂
′
x)ĥo(t) where exp(β̂

′
x) is the estimated hazard ratio.

For tests, the p–value is an important quantity. Recall that Ho is rejected
if the p–value < δ. A p–value between 0.07 and 1.0 provides little evidence
that Ho should be rejected, a p–value between 0.01 and 0.07 provides moder-
ate evidence and a p–value less than 0.01 provides strong statistical evidence
that Ho should be rejected. Statistical evidence is not necessarily practical
evidence, and reporting the p–value along with a statement of the strength
of the evidence is more informative than stating that the p–value is less
than some chosen value such as δ = 0.05. Nevertheless, as a homework
convention, use δ = 0.05 if δ is not given.
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The Wald confidence interval (CI) for βj can also be obtained from the
output: the large sample 95% CI for βj is

β̂j ± 1.96 se(β̂j).

Investigators also sometimes test whether a predictor Xj is needed in the
model given that the other k − 1 nontrivial predictors are in the model with
a 4 step Wald test of hypotheses:
i) State the hypotheses Ho: βj = 0 Ha: βj 	= 0.

ii) Find the test statistic zo,j = β̂j/se(β̂j) or X2
o,j = z2

o,j or obtain it from
output.

iii) The p–value = 2P (Z < −|zoj|) = P (χ2
1 > X2

o,j). Find the p–value from
output or use the standard normal table.
iv) State whether you reject Ho or fail to reject Ho and give a nontechnical
sentence restating your conclusion in terms of the story problem.

If Ho is rejected, then conclude that Xj is needed in the PH survival
model given that the other p − 1 predictors are in the model. If you fail
to reject Ho, then conclude that Xj is not needed in the PH survival model
given that the other p−1 predictors are in the model. Note that Xj could be
a very useful PH survival predictor, but may not be needed if other predictors
are added to the model.

For a PH, often 3 models are of interest: the full model that uses all p of
the predictors xT = (xT

R, xT
O), the reduced model that uses the r predictors

xR, and the null model that uses none of the predictors.
The partial likelihood ratio test (PLRT) is used to test whether β = 0.

If this is the case, then the predictors are not needed in the PH model (so
survival times Y x). If Ho : β = 0 is not rejected, then the Kaplan Meier
estimator should be used. If Ho is rejected, use the PH model.

Know that the 4 step PLRT is
i) Ho : β = 0 HA : β 	= 0
ii) test statistic X2(N |F ) = [−2 log L(none)] − [−2 log L(full)] is often

obtained from output
iii) The p–value = P (χ2

p > X2(N |F )) where χ2
p has a chi–square distribu-

tion with p degrees of freedom. The p–value is often obtained from output.
iv) Reject Ho if the p–value < δ and conclude that there is a PH survival

relationship between Y and the predictors x. If p–value ≥ δ, then fail to

503



reject Ho and conclude that there is not a PH survival relationship between
Y and the predictors x.

R output for the PLRT uses a line like
Likelihood ratio test=14.3 on 2 df, p=0.000787.
Some SAS output for the PLRT is shown next.

SAS Testing Global Null Hypotheses: BETA = 0

without with

criterion covariates covariates model Chi-square

-2 LOG L 596.651 551.1888 45.463 with 3 DF (p=0.0001)

Let the full model be

SP = β1x1 + · · · + βpxp = βT x = α + βT
RxR + βT

OxO.

let the reduced model

SP = βR1xR1 + · · · + βRrxRr = βT
RxR

where the reduced model uses r of the predictors used by the full model and
xO denotes the vector of p − r predictors that are in the full model but not
the reduced model.

Assume that the full model is useful. Then we want to test Ho: the
reduced model is good (can be used instead of the full model, so xO is not
needed in the model given xR is in the model) versus HA: use the full model
(the full model is significantly better than the reduced model). Fit the full
model and the reduced model to get X2(N |F ) and X2(N |R) where X2(N |F )
is used in the PLRT to test whether β = 0 and X2(N |R) is used in the
PLRT to test whether βR = 0 (treating the reduced model as the model in
the PLRT).

Shown below in symbols is output for the full model and output for the
reduced model. The output shown on can be used to perform the change
in PLR test. For simplicity, the reduced model used in the output is xR =
(x1, ..., xr)

T .

Notice that X2(R|F ) ≡ X2(N |F ) −X2(N |R) =

[−2 log L(none)] − [−2 log L(full)] − ([−2 log L(none)] − [−2 log L(red)]) =

[−2 log L(red)] − [−2 log L(full)] = −2 log

(
L(red)

L(full)

)
.
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variable Est. SE Est/SE or (Est/SE)2 pvalue for

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) X2
o,1 = z2

o,1 Ho β1 = 0
...

...
...

...
...

...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) X2
o,p = z2

o,p Ho βp = 0

R: Likelihood ratio test = X2(N |F ) on p df

SAS: Testing Global Null Hypotheses: BETA = 0

Test Chi-Square DF Pr > Chisq

Likelihood ratio X2(N |F ) p pval for Ho: β = 0

variable Est. SE Est/SE or (Est/SE)2 pvalue for

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) X2
o,1 = z2

o,1 Ho: β1 = 0
...

...
...

...
...

...

xr β̂r se(β̂r) zo,r = β̂r/se(β̂r) X2
o,r = z2

o,r Ho: βr = 0

R: Likelihood ratio test = X2(N |R) on r df

SAS: Testing Global Null Hypotheses: BETA = 0

Test Chi-Square DF Pr > Chisq

Likelihood ratio X2(N |R) r pval for Ho: βR = 0

Know that the 4 step change in PLR test is
i) Ho: the reduced model is good HA: use the full model
ii) test statistic X2(R|F ) = X2(N |F ) − X2(N |R) = [−2 log L(red)] −

[−2 log L(full)]
iii) The p–value = P (χ2

p−r > X2(R|F )) where χ2
p−r has a chi–square

distribution with p − r degrees of freedom.
iv) Reject Ho if the p–value < δ and conclude that the full model should

be used. If p–value ≥ δ, then fail to reject Ho and conclude that the reduced
model is good.

If the reduced model leaves out a single variable xi, then the change in
PLR test becomes Ho : βi = 0 versus HA : βi 	= 0. This change in partial
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likelihood ratio test is a competitor of the Wald test. The change in PLRT
is usually better than the Wald test if the sample size n is not large, but
the Wald test is currently easier for software to produce. For large n the
test statistics from the two tests tend to be very similar (asymptotically
equivalent tests).

If the reduced model is good, then the EE plot of ESP (R) = β̂
T

RxRi

versus ESP = β̂
T
xi should be highly correlated with the identity line with

unit slope and zero intercept.

A factor A is a variable that takes on a categories called levels. Suppose
A has a categories c1, ..., ca. Then the factor is incorporated into the PH
model by using a − 1 indicator variables xjA = 1 if A = cj and xAj = 0
otherwise, where the 1st indicator variable is omitted, eg, use x2A, ..., xaA.
Each indicator has 1 degree of freedom. Hence the degrees of freedom of the
a − 1 indicator variables associated with the factor is a − 1.

The xj corresponding to variates (variables that take on numerical values)
or to indicator variables from a factor are called main effects.

An interaction is a product of two or more main effects, but for a factor
include products for all indicator variables of the factor.

If an interaction is in the model, also include the corresponding main
effects. For example, if x1x3 is in the model, also include the main effects x1

and x2.
A scatterplot is a plot of xi versus xj. A scatterplot matrix is an

array of scatterplots. It is used to examine the marginal relationships of the
predictors. Variables with outliers, missing values or strong nonlinearities
may be so bad that they should not be included in the full model.

Suppose that all values of the variable x are positive. The log rule says
add log(x) to the full model if max(xi)/min(xi) > 10.

Variable selection is closely related to the change in PLR test for a
reduced model. You are seeking a subset I of the variables to keep in the
model. The AIC(I) statistic is used as an aid in backward elimination and
forward selection. The full model and the model with the smallest AIC are
always of interest. Create a full model. The full model has a −2 log(L) at
least as small as that of any submodel. The full model is a submodel.

Backward elimination starts with the full model with p variables and

506



the predictor that optimizes some criterion is deleted. Then there are p − 1
variables left and the predictor that optimizes some criterion is deleted. This
process continues for models with p − 2, p − 3, ..., 3 and 2 predictors.

Forward selection starts with the model with 0 variables and the pre-
dictor that optimizes some criterion is added. Then there is p variable in
the model and the predictor that optimizes some criterion is added. This
process continues for models with 2, 3, ..., p − 2 and p − 1 predictors. Both
forward selection and backward elimination result in a sequence of p models
{x∗

1}, {x∗
1, x

∗
2}, ..., {x∗

1, x
∗
2, ..., x

∗
p−1}, {x∗

1, x
∗
2, ..., x

∗
p} = full model.

Consider models I with rI predictors. Often the criterion is the minimum
value of −2 log(L(β̂I)) or the minimum AIC(I) = −2 log(L(β̂I)) + 2rI .

Heuristically, backward elimination tries to delete the variable that will
increase the −2 log(L) the least. An increase in −2 log(L) greater than 4
(if the predictor has 1 degree of freedom) may be troubling in that a good
predictor may have been deleted. In practice, the backward elimination
program may delete the variable such that the submodel I with k predictors
has 1) the smallest AIC(I), 2) the smallest −2 log(L(β̂I)) or 3) the biggest
p–value (preferably from a change in PLR test but possibly from a Wald
test) in the test Ho βi = 0 versus HA βi 	= 0 where the current model with
k + 1 variables is treated as the full model.

Heuristically, forward selection tries to add the variable that will decrease
the −2 log(L) the most. An decrease in −2 log(L) less than 4 (if the predictor
has 1 degree of freedom) may be troubling in that a bad predictor may have
been added. In practice, the forward selection program may add the variable
such that the submodel I with k predictors has 1) the smallest AIC(I), 2) the
smallest −2 log(L(β̂I)) or 3) the smallest p–value (preferably from a change
in PLR test but possibly from a Wald test) in the test Ho βi = 0 versus
HAβi 	= 0 where the current model with k − 1 terms plus the predictor xi is
treated as the full model (for all variables xi not yet in the model).

If an interaction (eg x3x7x9) is in the submodel, then the main effects
(x3, x7, and x9) should be in the submodel.

If xi+1, xi+2, ..., xi+a−1 are the a − 1 indictor variables corresponding to
factor A, submodel I should either contain none or all of the a − 1 indictor
variables.
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Given a list of submodels along with the number of predictors and AIC,
be able to find the “best starting submodel” Io. Let Imin be the minimum
AIC model. Then Io is the submodel with the fewest predictors such that
AIC(Io) ≤ AIC(Imin)+2 (for a given number of predictors rI , only consider
the submodel with the smallest AIC). Also look at models Ij with fewer
predictors than Io such that AIC(Ij) ≤ AIC(Imin) + 7.

Submodels I with more predictors than Imin should not be used.

Submodels I with AIC(I) > AIC(Imin) + 7 should not be used.

Assume n > 5p, that the full PH model is reasonable and all predictors
are equally important. The following rules of thumb for a good PH submodel
I are in roughly decreasing order of importance.
i) Do not use more predictors than the min AIC model Imin.
ii) The slice survival plots for I looks like the slice survival plot for the full
model.
iii) corr(ESP,ESP(I))≥ 0.95.
iv) The plotted points in the EE plot of ESP(I) vs ESP cluster tightly about
the identity line.
v) Want pvalue ≥ 0.01 for the change in PLR test that uses I as the reduced
model. (So for variable selection use δ = 0.01 instead of δ = 0.05.)
vi) Want the number of predictors rI ≤ n/10.
vii) Want −2 log(L(β̂I)) ≥ −2 log(L(β̂full)) but close.
viii) Want AIC(I) ≤ AIC(Imin) + 7.
ix) Want hardly any predictors with pvalues > 0.05.
x) Want few predictors with pvalues between 0.01 and 0.05.

But for factors with a − 1 indicators, modify ix) and x) so that the indi-
cator with the smallest pvalue is examined.

Suppose that the full model is good and is stored in M1. Let M2, M3,
M4, and M5 be candidate submodels found after forward selection, backward
elimination, etc. Typically one of the submodels is the min(AIC) model.
Given a list of properties of each submodel, be able to pick out the “best
starting submodel.”
Tips: i) submodels with more predictors then the min(AIC) submodel have
too many predictors.
ii) The best starting submodel Io has AIC(Io) ≤ AIC(Imin) + 2.
iii) Submodels I with AIC(I) > AIC(Imin) + 2 are not the best starting
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submodel.
iv) Submodels I with a pvalue < 0.01 for the change in PLR test have too
few predictors.
v) The full model may be the best starting submodel if it is the min(AIC)
model and M2–M5 satisfy iii). Similarly, then min(AIC) model may be the
best starting submodel.

In addition to the best starting submodel Io, submodels I with fewer
predictors than Io and AIC(I) ≤ AIC(Imin) + 7 are worth considering.

If there are important predictors such as treatment that must be in the
submodel, either force the variable selection procedures to contain the im-
portant predictors or do variable selection on the less important predictors
and then add the important predictors to the submodel.

Suppose the PH model contains x1, ..., xp. Leave out xj, find the martin-
gale residuals rm(j), plot xj vs rm(j) and add the lowess or loess curve. If the
curve is linear then xj has the correct functional form. If the curve looks like
t(xj) (eg (xj)

2), then replace xj by t(xj), find the martingale residuals, plot
t(xj) vs the residuals and check that the loess curve is linear.

16.3 Weibull and Exponential Regression

Definition 16.8. For parametric proportional hazards regression mod-
els, the baseline function is parametric and the parameters are estimated via
maximum likelihood. Then as a 1D regression model, SP = βT

Px, and

hY |SP (t) ≡ hx(t) = exp(βT
P x)h0,P (t) = exp(SP )h0,P (t)

where the parametric baseline function depends on k unknown parameters
but does not depend on the predictors x. The survival function is

Sx(t) ≡ SY |SP (t) = [S0,P (t)]exp(βT

Px) = [S0,P(t)]exp(SP ), (16.3)

and

Ŝx(t) = [Ŝ0,P (t)]exp(
ˆβ

T

Px) = [Ŝ0,P(t)]exp(ESP ). (16.4)

The following univariate results will be useful for Exponential and Weibull
regression. If Y has a Weibull distribution, Y ∼ W (γ, λ), then SY (t) =
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exp(−λtγ) where t, λ and γ are positive. If γ = 1, then Y has an Exponen-
tial distribution, Y ∼ EXP (λ) where E(Y ) = 1/λ. Now V has a smallest
extreme value distribution, V ∼ SEV (θ, σ), if

SV (v) = P (V > t) = exp

(
− exp

(
v − θ

σ

))

where σ > 0 while v and θ are real. If Z ∼ SEV (0, 1), then V = θ +
σZ ∼ SEV (θ, σ) since the SEV distribution is a location scale family. Also,
V = log(Y ) ∼ SEV (θ = −σ log(λ), σ = 1/γ), and Y = eV ∼ W (γ =
1/σ, λ = e−θ/σ).

If Yi follows a Weibull regression model, then log(Yi) follows an accel-
erated failure time model: log(Yi) = α + βT

Axi + σei where the ei are iid
SEV (0, 1), and log(Y |x) ∼ SEV (α + βT

Ax, σ). See Section 16.3.

Definition 16.9. The Weibull proportional hazards regression
(WPH) model or Weibull regression model is a parametric proportional
hazards model with Y ∼ W (γ = 1/σ, λx) where

λx = exp

[
−
(

α

σ
+

βT
Ax

σ

)]
= λ0 exp(βT

Px)

with λ0 = exp(−α/σ) and βP = −βA/σ. Thus for t > 0, P (Y > t|x) =

Sx(t) = exp(−λxtγ) = exp(−λ0 exp(βT
Px)tγ) = [exp(−λ0t

γ)]exp(βT

Px) =

[S0,P(t)]exp(βT

P x).

As a 1D regression model, Y |SP ∼ W (γ, λ0 exp(SP )). Also,

hi(t) = hYi|xi
(t) = h

Yi|β
T

Pxi
(t) = exp(βT

Pxi)h0(t)

where h0(t) = h0(t|θ) = λ0γtγ−1 is the Weibull baseline function. Expo-
nential regression is the special case of Weibull regression where σ = 1.
Hence Y |x ∼ W (1, λx) ∼ EXP (λx).

Definition 16.10. Let Ti = min(Yi, Zi) be the censored survival times,

and let log(Ti) = α̂ + β̂
T

Axi + ri. For accelerated failure time models, a

log censored response (LCR) plot is a plot of α̂ + β̂
T

Axi versus log(Ti)
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with plotting symbol 0 for censored cases and + for uncensored cases. The
identity line with unit slope and zero intercept is added to the plot, and the
vertical deviations from the identity line = ri. Collett (2003, p. 231) defines
a standardized residual rSi = ri/σ̂.

The least squares line based on the +’s could be added to the plot and
should have slope not too far from 1, especially if γ ≥ 1 for the Weibull
AFT. The plotted points should be linear with roughly constant variance.
The censoring and long left tails of the smallest extreme value distribution
make judging linearity and detecting outliers from the left tail difficult. Try
to ignore the bottom of the plot where there are few cases when assessing
linearity.

Definition 16.11. For parametric proportional hazards models, an EE

plot is a plot of the parametric ESP β̂
T

Px versus the Cox semiparametric

ESP β̂
T

Cx.

If the parametric proportional hazards model is good, then the plotted
points in the EE plot should track the identity line with unit slope and zero
intercept. As n → ∞, the correlation of the plotted points goes to 1 in
probability for any finite interval, e.g., from the 1st percentile to the 99th

percentile of β̂
T

Cx. Lack of fit is suggested if the plotted points do not cluster
tightly about the identity line.

Software typically fits Exponential and Weibull regression models as ac-
celerated failure time models: log(Yi) = α+βT

Axi +σei. For the Exponential
regression model, σ = 1 and βC = −βA, and the Exponential EE plot is a
plot of

ESPE = −β̂
T

Ax versus ESPC = β̂
T

Cx.

For the Weibull regression model, βC = −βA/σ, and the Weibull EE plot is
a plot of

ESPW =
−1

σ̂
β̂

T

Ax versus ESPC = β̂
T

Cx.

Suppose the plotted points cluster tightly about the identity line in the

EE plot with corr(β̂
T

Cxi, β̂
T

P xi) > 0.99. Thus β̂
T

Cx ≈ β̂
T

P x for the observed
xi, and slicing on the Cox ESP is nearly the same as slicing on the parametric
ESP. Make the slice survival plot for the Cox model and add the estimated
parametric survival function (16.4) as crosses. If the parametric proportional
hazards model holds, then (16.1) = (16.3). Thus if (16.2) ≈ (16.4) for any
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Figure 16.5: LCR Plot for Ovarian Cancer Data

xi, then S0,P (t) ≈ S0(t), (16.2) ≈ (16.4) for all xi, and the parametric
proportional hazards model is reasonable.

Thus checking parametric proportional hazards models has 3 steps: i)
check that the proportional hazards assumption is reasonable with the slice
survival plot for the Cox model, ii) check that the parametric and semipara-

metric ESPs are approximately the same, β̂
T

Px ≈ β̂
T

Cx with the EE plot, and
iii) using the slice survival plot, check that (16.2) ≈ (16.4) for the x used in
each of the J slices.

This technique avoids the mistake of comparing quantities from the semi-
parametric and parametric proportional hazards models without checking
that the proportional hazards assumption is reasonable. The slice survival
plot for the Cox model is used because of the ease of making pointwise CI
bands.

Example 16.10. The ovarian cancer data is from Collett (2003, p. 187-
190) and Edmunson et al. (1979). The response variable is the survival
time of n = 26 patients in days with predictors age in years and treat (1 for
cyclophosphamide alone and 2 for cyclophosphamide combined with adri-
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Figure 16.6: EE Plots for Ovarian Cancer Data

amycin). Figure 16.5 shows that most of the plotted points in the LCR plot
for the ovarian cancer data are below the identity line. If a Weibull regres-
sion model is a good approximation to the data, then the plotted points in a

narrow vertical slice centered at α̂ + β̂
T
x = w are approximately a censored

sample from an SEV (w, σ̂) distribution. Figure 16.6 shows the Weibull and
Exponential regression EE plots. Notice that the estimated risk scores from
the Cox regression and Weibull regression are nearly the same with corre-
lation = 0.997. The points from the Exponential regression do not cluster
about the identity line. Hence Exponential regression should not be used.
Figure 16.7 gives the slice survival plot for the Cox model with the Weibull

survival function Ŝx(t) = exp[− exp(−γ̂β̂
T

Ax) exp(−γ̂α̂) tγ̂ ] represented by
crosses where γ̂ = 1/σ̂. Notice that the Weibull and Cox estimated survival
functions are close and thus similar. Again the circles corresponding to the
Kaplan Meier estimator are “close” to the Cox survival curves in that the
circles do not fall very far outside the pointwise CI bands.

Output for the Weibull and Exponential regression models is shown be-
low. The output is often from software for accelerated failure time models.
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Figure 16.7: Slice Survival Plots for Ovarian Cancer Data

For SAS or R

variable Est. SE Est/SE or (Est/SE)2 pvalue for
intercept

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) X2
o,1 = z2

o,1 Ho: β1 = 0
...

...
...

...
...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) X2
o,p = z2

o,p Ho: βp = 0
scale or log scale

Weibull shape or scale
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For SAS only.
log likelihood log L(none)

variable Est. SE Est/SE or (Est/SE)2 pvalue
intercept

scale
Weibull shape

For the full model, SAS will have Log Likelihood = log L(full).
For the full model, R will have log L(full), log L (none) and

chisq = [-2 log L(none)] - [-2 log L(full)] on p degrees of freedom with pvalue

Replace full by reduced for the reduced model.

The SAS and R log likelihood, log L, differ by a constant.

SAS Log Likelihood = -29.7672 null model

variable df Estimate SE chi square pr > chisqu

intercept 1 7.1110 0.2927 590.12 < 0.0001

Weibull Scale 1 1225.4 358.7

Weibull Shape 1 1.1081 0.2810

SAS Log Likelihood = -29.1775 reduced model

variable df Estimate SE chi square pr > chisqu

intercept 1 7.3838 0.4370 285.45 < 0.0001

treat 1 -0.5593 0.5292 1.12 0.2906

Scale 1 0.8857 0.2227

Weibull Shape 1 1.1291 0.2840

SAS Log Likelihood = -20.5631 full model

variable df Estimate SE chi square pr > chisqu

intercept 1 11.5483 1.1970 93.07 < 0.0001

age 1 -0.0790 0.0198 15.97 < 0.0001

treat 1 -0.5615 0.3399 2.73 0.0986

Scale 1 0.5489 0.1291

Weibull Shape 1 1.8218 0.4286
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R reduced model Value Std. Error z p

(Intercept) 7.384 0.437 16.895 4.87e-64

treat -0.559 0.529 -1.057 2.91e-01

Log(scale) -0.121 0.251 -0.483 6.29e-01

Scale= 0.886

Loglik(model)= -97.4 Loglik(intercept only)= -98

Chisq= 1.18 on 1 degrees of freedom, p= 0.28

R full model Value Std. Error z p

(Intercept) 11.548 1.1970 9.65 5.04e-22

treat -0.561 0.3399 -1.65 9.86e-02

age -0.079 0.0198 -4.00 6.43e-05

Log(scale) -0.600 0.2353 -2.55 1.08e-02

Scale= 0.549

Loglik(model)= -88.7 Loglik(intercept only)= -98

Chisq= 18.41 on 2 degrees of freedom, p= 1e-04

Shown above is output in symbols from and SAS and R . The estimated
coefficient is β̂j. The Wald chi square = X2

o,j while p and “pr > chisqu” are
both p-values.

16.4 Accelerated Failure Time Models

Definition 16.12. For a parametric accelerated failure time model,

log(Yi) = α + βT
Axi + σei (16.5)

where the ei are iid from a location scale family. Let SP = βT
Ax. Then as

a 1D regression model, log(Y )|SP = α + SP + e. The parameters are again
estimated by maximum likelihood and the survival function is

Sx(t) ≡ SY |x(t) = S0

(
t

exp(βT
Ax)

)
,

and

Ŝx(t) = Ŝ0

(
t

exp(β̂
T

Ax)

)

where Ŝ0(t) depends on α̂ and σ̂.
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For the AFT model, hi(t) = e−SPho(t/e
SP ) and Si(t) = S0(t/ exp(SP )).

If Sx(tx(ρ)) = 1− ρ for 0 < ρ < 1, then tx(ρ) is the ρth percentile. For the
accelerated failure time model,

tx(ρ) = t0(ρ) exp(βT
Ax)

where t0(ρ) = exp(σei(ρ) + α) and Sei(ei(ρ)) = P (ei > ei(ρ)) = 1 − ρ. Note
that the estimated percentile ratio is free of ρ, σ̂ and α̂

t̂x1(ρ)

t̂x2(ρ)
= exp(β̂

T

A(x1 − x2)).

The LCR plot of Definition 16.10 is still useful for finding influential
cases for AFT models. If the Weibull PH regression model holds for Yi, then
log(Yi) = α + βT

Axi + ei where ei ∼ SEV (0, 1). Thus log(Y )|x ∼ SEV (α +
βT

Ax, σ), and the log(Yi) follows a parametric accelerated failure time model.
Thus the Weibull AFT satisfies log(Y )|(α+βT

Ax) ∼ SEV (α+βT
Ax, σ). Thus

points in a narrow vertical slice about α̂ + β̂
T

Ax = w are approximately a
censored sample from an SEV (w, σ̂) distribution if the fitted model is a good
approximation to the data.

Censoring causes the bulk of the data to be below the identity line in the
LCR plot. For example, Hosmer and Lemeshow (1998, p. 226) state that for
the Exponential regression model, α̂ forces

n∑
i=1

δi =
n∑

i=1

Ti

exp(α̂ + β̂
T

Axi)
.

Hence T̂i = exp(α̂ + β̂
T

Axi) ≈ (n/
∑n

i=1 δi)Ti (roughly). With no censoring,
the bulk of the data will still be lower than the identity line if the ei are left
skewed as for the Weibull regression model where the ei ∼ SEV (0, 1).

For Weibull and Exponential regression, instead of fitting a PH model, R
and SAS fit an accelerated failure time model log(Yi) = α+βT

Axi +σei where
the ei are iid from a smallest extreme value distribution. The Exponential
AFT is the special case of the Weibull AFT with σ = 1. As in Definition 16.9,
λ0 = exp(−α/σ) and βP = −βA/σ where βP is the vector of coefficients for
the WPH model and βA is the vector of coefficients for the Weibull AFT
model. Since the AFT is parametric, α̂ and β̂A are MLEs found from the
censored data (Ti, δi, xi) not from (Yi, xi).
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If the Yi|xi are Weibull, the ei are from a smallest extreme value distribu-
tion. The statement that “the Weibull regression model is both a proportional
hazards model and an accelerated failure time model” means that the Yi|xi

follow a Weibull PH model while the log(Yi)|bxi follow a Weibull AFT (al-
though the log(Yi) are actually from a smallest extreme value distribution.
If a Weibull or Exponential AFT is a useful model for the log(Yi)|xi, then
the Weibull or Exponential PH model is a good approximation for the Yi|xi.
Hence to check the goodness of fit for the Weibull AFT, transform the Weibull
AFT into the Weibull PH model. Then use the LCR, EE and slice survival
plots as in Example 16.10.

Similarly, R and SAS Weibull AFT programs do not have a variable
selection option, but the WPH model is a PH model, so use SAS Cox PH
variable selection to suggest good submodels. Then fit each candidate with
WPH software and check the WPH assumptions. Then transform the PH
model to a Weibull AFT.

In addition to the Weibull and Exponential AFTs, there are lognormal
and loglogistic AFT models. If the Yi|xi are lognormal, the ei are normal.
If the Yi|xi are loglogistic, the ei are logistic. The loglogistic and lognormal
AFT models are not PH models. The loglogistic AFT is a proportional odds
model.

Inference for the AFT model is performed exactly in the same way as
for the WPH = Weibull AFT. See points Section 16.2. But the conclusions
change slightly if the AFT is not the Weibull AFT. Change (if necessary)
“Weibull survival model” to the appropriate model, eg “lognormal survival
model”. Change (if necessary) “WPH” to the appropriate model, eg “log-
normal AFT”. Given β̂ ≡ β̂A from output and given x, know how to find

ESP = β̂
T
x =

∑p
i=1 β̂ixi = β̂1x1 + · · · + β̂pxp.

A large sample 95% CI for βj is β̂j ± 1.96 se(β̂j).

Know how to do the 4 step Wald test of hypotheses:
i) State the hypotheses Ho: βj = 0 Ha: βj 	= 0.

ii) Find the test statistic zo,j = β̂j/se(β̂j) or X2
o,j = z2

o,j or obtain it from
output.

iii) The p–value = 2P (Z < −|zoj|) = P (χ2
1 > X2

o,j). Find the p–value from
output or use the standard normal table.
iv) If pval < δ, reject Ho and conclude that Xj is needed in the Weibull
survival model given that the other p − 1 predictors are in the model. If
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pval ≥ δ, fail to reject Ho and conclude that Xj is not needed in the Weibull
survival model given that the other p − 1 predictors are in the model.

Know how to do the 4 step likelihood ratio test LRT:
i) Ho : β = 0 HA : β 	= 0
ii) test statistic X2(N |F ) = [−2 log L(none)] − [−2 log L(full)] is often

obtained from output
iii) The p–value = P (χ2

p > X2(N |F )) where χ2
p has a chi–square distribu-

tion with p degrees of freedom. The p–value is often obtained from output.
iv) Reject Ho if the p–value < δ and conclude that there is a WPH

survival relationship between Y and the predictors x. If p–value ≥ δ, then
fail to reject Ho and conclude that there is not a WPH survival relationship
between Y and the predictors x.

Know how to do the 4 step change in LR test:
i) Ho: the reduced model is good HA: use the full model
ii) test statistic X2(R|F ) = X2(N |F ) − X2(N |R) = [−2 log L(red)] −

[−2 log L(full)]
iii) The p–value = P (χ2

p−r > X2(R|F )) where χ2
p−r has a chi–square

distribution with p − r degrees of freedom.
iv) Reject Ho if the p–value < δ and conclude that the full model should

be used. If p–value ≥ δ, then fail to reject Ho and conclude that the reduced
model is good.

16.5 Stratified Proportional Hazards Regres-

sion

Definition 16.12. The stratified proportional hazards regression
(SPH) model is

hx,j(t) = hYi|x,j(t) = h
Yi|β

′xi
(t) = exp(β′xi)h0,j(t)

where h0,j(t) is the unknown baseline function for the jth stratum, j =
1, ..., J where J ≥ 2.

A SPH model is not a PH model, but a PH model is fit to each of the
J strata. The same β is used for each group = stratum, but the baseline
hazard functions differ. Stratification can be useful if there are clusters of
cases such that the observations within the clusters are not independent. A
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common example is the variable study sites and the stratification should be
on site. Sometimes stratification is done on a categorical variable such as
gender.

Inference is done almost exactly as done for the PH model. Except the
conclusion is changed slightly: replace “PH” by “SPH”.

16.6 Summary

Let Y ≥ 0 be a nonnegative random variable.
Then the distribution function (df) F (t) = P (Y ≤ t). Since Y ≥ 0,

F (0) = 0, F (∞) = 1, and F (t) is nondecreasing.
The probability density function (pdf) f(t) = F ′(t).
The survival function S(t) = P (Y > t). S(0) = 1, S(∞) = 0 and S(t)

is nonincreasing.

The hazard function h(t) =
f(t)

1 − F (t)
for t > 0 and F (t) < 1. Note that

h(t) ≥ 0 if F (t) < 1.
The cumulative hazard function H(t) =

∫ t

0
h(u)du for t > 0. It is true

that H(0) = 0, H(∞) = ∞, and H(t) is nondecreasing.

1) Given one of F (t), f(t), S(t), h(t) or H(t), be able to find the other 4
quantities for t > 0.

A) F (t) =
∫ t

0
f(u)du = 1−S(t) = 1−exp[−H(t)] = 1−exp[− ∫ t

0
h(u)du].

B) f(t) = F ′(t) = −S ′(t) = h(t)[1−F (t)] = h(t)S(t) = h(t) exp[−H(t)] =
H ′(t) exp[−H(t)].

C) S(t) = 1 − F (t) = 1 − ∫ t

0
f(u)du =

∫∞
t

f(u)du = exp[−H(t)] =

exp[− ∫ t

0
h(u)du].

D)

h(t) =
f(t)

1 − F (t)
=

f(t)

S(t)
=

F ′(t)
1 − F (t)

=
−S ′(t)
S(t)

= − d

dt
log[S(t)] = H ′(t).

E) H(t) =
∫ t

0
h(u)du = − log[S(t)] = − log[1 − F (t)].
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Tip: if F (t) = 1 − exp[G(t)] for t > 0, then H(t) = −G(t) and S(t) =
exp[G(t)].

Tip: For S(t) > 0, note that S(t) = exp[log(S(t))] = exp[−H(t)]. Finding
exp[log(S(t))] and setting H(t) = − log[S(t)]is easier than integrating h(t).

Know that if Y ∼ EXP (λ) where λ > 0, then h(t) = λ for t > 0,
f(t) = λe−λt for t > 0, F (t) = 1 − e−λt for t > 0, S(t) = e−λt for t > 0,
H(t) = λt for t > 0 and E(T ) = 1/λ. The exponential distribution can
be a good model if failures are due to random shocks that follow a Poisson
process, but constant hazard means that a used product is as good as a new
product.

2) Suppose the observed survival times T1, ..., Tn are a censored data set
from an exponential (λ) distribution. Let Ti = Y ∗

i . Let δi = 0 if the case
is censored and let δi = 1, otherwise. Let r =

∑n
i=1 δi = the number of

uncensored cases. Then the MLE λ̂ = r/
∑n

i=1 Ti. So λ̂ = r/
∑n

i=1 Y ∗
i . A 95%

CI for λ is λ̂ ± 1.96λ̂/
√

r.

Know that if Y ∼ Weibull(λ, γ) where λ > 0 and γ > 0, then h(t) =
λγtγ−1 for t > 0, f(t) = λγtγ−1 exp(−λtγ) for t > 0, F (t) = 1 − exp(−λtγ)
for t > 0, S(t) = exp(−λtγ) for t > 0, H(t) = λtγ for t > 0. The
Weibull(λ, γ = 1) distribution is the EXP(λ) distribution. The hazard func-
tion can be increasing, decreasing or constant. Hence the Weibull distri-
bution often fits reliability data well, and the Weibull distribution is the
most important distribution in reliability analysis.

3) Let Ŝ(t) be the estimated survival function. Let t(p) be the pth per-
centile of Y : P (Y ≤ t(p)) = F (t(p)) = p so 1 − p = S(t(p)) = P (Y > t(p)).
Then t̂(p), the estimated time when 100 p % have died, can be estimated
from a graph of Ŝ(t) with “over” and “down” lines. a) Find 1−p on the ver-
tical axis and draw a horizontal “over” line to Ŝ(t). Draw a vertical “down”
line until it intersects the horizontal axis at t̂(p). Usually want p = 0.5 but
sometimes p = 0.25 and p = 0.75 are used.

The indicator function IA(x) ≡ I(x ∈ A) = 1 if x ∈ A and 0, otherwise.
Sometimes an indicator function such as I(0,∞)(y) will be denoted by I(y > 0).

If none of the survival times are censored, then the empirical survival
function = (number of individual with survival times > t)/(number of in-
dividuals) = a/n =
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ŜE(t) =
1

n

n∑
i=1

I(Ti > t) = p̂t = sample proportion of lifetimes > t.

Let t(1) ≤ t(2) ≤ · · · ≤ t(n) be the observed ordered survival times (=
lifetimes = death times). Let t0 = 0 and let 0 < t1 < t2 < · · · < tm be the
distinct survival times. Let di = number of deaths at time ti. If m = n and
di = 1 for i = 1, ..., n then there are no ties. If m < n and some di ≥ 2,
then there are ties.

ŜE(t) is a step function with ŜE(0) = 1 and ŜE(t) = ŜE(ti−1) for ti−1 ≤
t < ti. Note that

∑m
i=1 di = n.

4) Know how to compute and plot ŜE(t) given the t(i) or given the ti and
di. Use a table like the one below. Let a0 = n and ai =

∑n
k=1 I(Ti > ti) = #

of cases t(j) > ti for i = 1, ..., m. Then ŜE(ti) = ai/n =
∑n

k=1 I(Ti > ti)/n =

ŜE(ti−1) − di

n
.

ti di ŜE(ti) = ŜE(ti−1) − di

n

t0 = 0 ŜE(0) = 1 = n
n

= a0

n

t1 d1 ŜE(t1) = ŜE(t0) − d1

n
= a0−d1

n
= a1

n

t2 d2 ŜE(t2) = ŜE(t1) − d2

n
= a1−d2

n
= a2

n

...
...

...

tj dj ŜE(tj) = ŜE(tj−1) − dj

n
=

aj−1−dj

n
=

aj

n

...
...

...

tm−1 dm−1 ŜE(tm−1) = ŜE(tm−2) − dm−1

n
= am−2−dm−1

n
= am−1

n

tm dm ŜE(tm) = 0 = ŜE(tm−1) − dm

n
= am−1−dm

n
= am

n

5) Let t1 ≤ t < tm. Then the classical large sample 95% CI for S(tc)
based on ŜE(t) is

ŜE(tc) ± 1.96

√
ŜE(tc)[1 − ŜE(tc)]

n
= ŜE(tc) ± 1.96SE[ŜE(tc)].
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6) Let 0 < t. Let

p̃tc =
nŜE(tc) + 2

n + 4
.

Then the plus four 95% CI for S(tc) based on ŜE(t) is

p̃tc ± 1.96

√
p̃tc [1 − p̃tc ]

n + 4
= p̃tc ± 1.96SE[p̃tc ].

Let Yi = time to event for ith person. Ti = min(Yi, Zi) where Zi is the
censoring time for the ith person (the time the ith person is lost to the study
for any reason other than the time to event under study). The censored data
is y1, y2+, y3, ..., yn−1, yn+ where yi means the time was uncensored and yi+
means the time was censored. t(1) ≤ t(2) ≤ · · · ≤ t(n) are the ordered survival
times (so if y4+ is the smallest survival time, then t(1) = y4+). A status
variable will be 1 if the time was uncensored and 0 if censored.

Let [0,∞) = I1 ∪ I2 ∪ · · · ∪ Im = [t0, t1) ∪ [t1, t2) · · · ∪ [tm−1, tm) where
to = 0 and tm = ∞. It is possible that the 1st interval will have left endpoint
> 0 (t0 > 0) and the last interval will have finite right endpoint (tm < ∞).
Suppose that the following quantities are known: dj = # deaths in Ij,
cj = # of censored survival times in Ij,
nj = # at risk in Ij = # who were alive and not yet censored at the start of
Ij (at time tj−1).
Let n′

j = nj − cj

2
= average number at risk in Ij.

7) The lifetable estimator or actuarial method estimator of SY (t) takes
ŜL(0) = 1 and

ŜL(tk) =
k∏

j=1

n′
j − dj

n′
j

=
k∏

j=1

p̃j

for k = 1, ..., m − 1. If tm = ∞, ŜL(t) is undefined for t > tm−1. Suppose
tm 	= ∞. Then take ŜL(t) = 0 for t ≥ tm if cm = 0. If cm > 0, then ŜL(t) is
undefined for t ≥ tm. To graph ŜL(t), use linear interpolation (connect the
dots). If n′

j = 0, take p̃j = 0. Note that

ŜL(tk) = ŜL(tk−1)
n′

k − dk

n′
k

for k = 1, ..., m− 1.

8) Know how to get the lifetable estimator and SE(ŜL(ti)) from output.
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(left output) (right output)

interval survival survival SE or interval survival survival SE

0 50 1.00 0 0 50 0.7594 0.0524

50 100 0.7594 0.0524 50 100 0.5889 0.0608

100 200 0.5889 0.0608 100 200 0.5253 0.0602

Since ŜL(0) = 1, ŜL(t) is for the left endpoint for the “left output,” and
for the right endpoint for the “right output.” For both cases, ŜL(50) = 0.7594
and SE(ŜL(50)) = 0.0524.

9) A 95% CI for SY (ti) based on the lifetable estimator is

ŜL(ti) ± 1.96 SE[ŜL(ti)].

10) Know how to compute ŜL(t) with a table like the one below. The
first 4 columns need to be given but the last 3 columns may need to be filled
in. On an exam you may be given a table with all but a few entries filled.

Ij, dj, cj, nj n′
j

n′
j−dj

n′
j

ŜL(t)

[t0 = 0, t1), d1, c1, n1 n1 − c1
2

n′
1−d1

n′
1

ŜL(to) = ŜL(0) = 1

[t1, t2), d2, c2, n2 n2 − c2
2

n′
2−d2

n′
2

ŜL(t1) = ŜL(t0)
n′

1−d1

n′
1

[t2, t3), d3, c3, n3 n3 − c3
2

n′
3−d3

n′
3

ŜL(t2) = ŜL(t1)
n′

2−d2

n′
2

...
...

...
...

[tk−1, tk), dk, ck, nk nk − ck

2

n′
k−dk

n′
k

ŜL(tk−1) =

ŜL(tk−2)
n′

k−1−dk−1

n′
k−1

...
...

...
...

[tm−2, tm−1), dm−1, cm−1, nm−1 nm−1 − cm−1

2

n′
m−1−dm−1

n′
m−1

ŜL(tm−2) =

ŜL(tm−3)
n′

m−2−dm−2

n′
m−2

[tm−1, tm = ∞), dm, cm, nm nm − cm

2
n′

m−dm

n′
m

ŜL(tm−1) =

ŜL(tm−2)
n′

m−1−dm−1

n′
m−1

11) Also get a 95% CI from output like that below. So the 95% CI for
S(50) is (0.65666,0.86213).
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time survival SDF_LCL SDF_UCL

0 1.0 1.0 1.0

50 0.7594 0.65666 0.86213

Let Y ∗
i = Ti = min(Yi, Zi) where Yi and Zi are independent. Let δi =

I(Yi ≤ Zi) so δi = 1 if Ti is uncensored and δi = 0 if Ti is censored. Let
t(1) ≤ t(2) ≤ · · · ≤ t(n) be the observed ordered survival times. Let γj = 1 if
t(j) is uncensored and 0, otherwise. Let t0 = 0 and let 0 < t1 < t2 < · · · < tm

be the distinct survival times corresponding to the t(j) with γj = 1. Let di =
number of deaths at time ti. If m = n and di = 1 for i = 1, ..., n then there
are no ties. If m < n and some di ≥ 2, then there are ties.

12) Let ni =
∑n

j=1 I(t(j) ≥ ti) = # at risk at ti = # alive and not yet
censored just before ti. Let di = # of events (deaths) at ti. The Kaplan
Meier estimator = product limit estimator of SY (ti) = P (Y > ti) is
ŜK(0) = 1 and ŜK(ti) =

∏i
k=1(1 − dk

nk
) = ŜK(ti−1)(1 − di

ni
). ŜK(t) is a step

function with ŜK(t) = ŜK(ti−1) for ti−1 ≤ t < ti and i = 1, ..., m. If t(n) is

uncensored then tm = t(n) and ŜK(t) = 0 for t > tm. If t(n) is censored, then

ŜK(t) = ŜK(tm) for tm ≤ t ≤ t(n), but ŜK(t) is undefined for t > t(n).

13) Know how to compute and plot Ŝk(ti) given the t(j) and γj or given
the ti, ni and di. Use a table like the one below.

ti ni di ŜK(t)

t0 = 0 ŜK(0) = 1

t1 n1 d1 ŜK(t1) = ŜK(t0)[1 − d1

n1
]

t2 n2 d2 ŜK(t2) = ŜK(t1)[1 − d2

n2
]

...
...

...
...

tj nj dj ŜK(tj) = ŜK(tj−1)[1 − dj

nj
]

...
...

...
...

tm−1 nm−1 dm−1 ŜK(tm−1) = ŜK(tm−2)[1 − dm−1

nm−1
]

tm nm dm ŜK(tm) = 0 = ŜK(tm−1)[1 − dm

nm
]
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14) Know how to find a 95% CI for SY (ti) based on ŜK(ti) using out-
put: the 95% CI is ŜK(ti) ± 1.96 SE[ŜK(ti)]. The R output below gives
ti, ni, di, ŜK(ti), SE(ŜK(ti)) and the 95% CI for SY (36) is (0.7782, 1).

time n.risk n.event survival std.err lower 95% CI upper 95% CI

36 13 1 0.923 0.0739 0.7782 1.000

15) In general, a 95% CI for SY (ti) is Ŝ(ti) ± 1.96 SE[Ŝ(ti)]. If the lower
endpoint of the CI is negative, round it up to 0. If the upper endpoint of the
CI is greater than 1, round it down to 1. Do not use impossible values
of SY (t).

16) Let P (Y ≤ t(p)) = p for 0 < p < 1. Be able to get t(p) and 95% CIs
for t(p) from SAS output for p = 0.25, 0.5, 0.75. For the output below, the
CI for t(0.75) is not given. The 95% CI for t(0.50) ≈ 210 is (63,1296). The
95% CI for t(0.25) ≈ 63 is (18,195).

Quartile estimates

Percent point estimate lower upper

75 . 220.0 .

50 210.00 63.00 1296.00

25 63.00 18.00 195.00

17) R plots the KM survival estimator along with the pointwise 95% CIs
for SY (t). If we guess a distribution for Y , say Y ∼ W, with a formula for
SW (t), then the guessed SW (ti) can be added to the plot. If roughly 95%
of the SW (ti) fall within the bands, then Y ∼ W may be reasonable. For
example, if W ∼ EXP (1), use SW (t) = exp(−t). If W ∼ EXP (λ), then
SW (t) = exp(−λt). Recall that E(W ) = 1/λ.

18) If limt→∞ tSY (t) → 0, then E(Y ) =
∫∞

0
tfY (t)dt =

∫∞
0

SY (t)dt. Hence

an estimate of the mean Ê(Y ) can be obtained from the area under Ŝ(t).

19) The Cox proportional hazards regression (PH) model is

hi(t) = hYi|xi
(t) = h

Yi|β
T xi

(t) = exp(βTxi)h0(t)

where h0(t) is the unknown baseline function and exp(βT xi) is the haz-
ard ratio.

For now, assume that the PH model is appropriate, although
this assumption should be checked before performing inference.
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20) The sufficient predictor SP = βT xj =
∑p

i=1 βixij.

variable Est. SE Est./SE or (Est/SE)2 pvalue for

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) X2
o,1 = z2

o,1 Ho β1 = 0
...

...
...

...
...

...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) X2
o,p = z2

o,p Ho βp = 0

SAS Wald pr >

variable df Estimate SE chi square chisqu

age 1 0.1615 0.0499 10.4652 0.0012

ecog.ps 1 0.0187 0.5991 0.00097 0.9800

R coef exp(coef) se(coef) z p

age 0.1615 1.18 0.0499 3.2350 0.0012

ecog.ps 0.0187 1.02 0.5991 0.0312 0.9800

Likelihood ratio test=14.3 on 2 df, p=0.000787 n= 26

Shown above is output in symbols from and SAS and R. The estimated
coefficient is β̂j. The Wald chi square = X2

o,j while p and “pr > chisqu” are
both p-values.

21) The estimated sufficient predictor ESP = β̂
T
xj =

∑p
i=1 β̂ixij. Given

β̂ from output and given x, be able to find ESP and ĥi(t) = exp(ESP )ĥ0(t) =

exp(β̂
T
x)ĥo(t) where exp(β̂

′
x) is the estimated hazard ratio.

For tests, the p–value is an important quantity. Recall that Ho is rejected
if the p–value < δ. A p–value between 0.07 and 1.0 provides little evidence
that Ho should be rejected, a p–value between 0.01 and 0.07 provides moder-
ate evidence and a p–value less than 0.01 provides strong statistical evidence
that Ho should be rejected. Statistical evidence is not necessarily practical
evidence, and reporting the p–value along with a statement of the strength
of the evidence is more informative than stating that the p–value is less
than some chosen value such as δ = 0.05. Nevertheless, as a homework
convention, use δ = 0.05 if δ is not given.

22) The Wald confidence interval (CI) for βj can also be obtained from
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the output: the large sample 95% CI for βj is

β̂j ± 1.96 se(β̂j).

23) Investigators also sometimes test whether a predictor Xj is needed in
the model given that the other k − 1 nontrivial predictors are in the model
with a 4 step Wald test of hypotheses:
i) State the hypotheses Ho: βj = 0 Ha: βj 	= 0.

ii) Find the test statistic zo,j = β̂j/se(β̂j) or X2
o,j = z2

o,j or obtain it from
output.

iii) The p–value = 2P (Z < −|zoj|) = P (χ2
1 > X2

o,j). Find the p–value from
output or use the standard normal table.
iv) State whether you reject Ho or fail to reject Ho and give a nontechnical
sentence restating your conclusion in terms of the story problem.

If Ho is rejected, then conclude that Xj is needed in the PH survival
model given that the other p − 1 predictors are in the model. If you fail
to reject Ho, then conclude that Xj is not needed in the PH survival model
given that the other p−1 predictors are in the model. Note that Xj could be
a very useful PH survival predictor, but may not be needed if other predictors
are added to the model.

For a PH, often 3 models are of interest: the full model that uses all p of
the predictors xT = (xT

R, xT
O), the reduced model that uses the r predictors

xR, and the null model that uses none of the predictors.
The partial likelihood ratio test (PLRT) is used to test whether β = 0.

If this is the case, then the predictors are not needed in the PH model (so
survival times Y x). If Ho : β = 0 is not rejected, then the Kaplan Meier
estimator should be used. If Ho is rejected, use the PH model.

24) The 4 step PLRT is
i) Ho : β = 0 HA : β 	= 0
ii) test statistic X2(N |F ) = [−2 log L(none)] − [−2 log L(full)] is often

obtained from output
iii) The p–value = P (χ2

p > X2(N |F )) where χ2
p has a chi–square distribu-

tion with p degrees of freedom. The p–value is often obtained from output.
iv) Reject Ho if the p–value < δ and conclude that there is a PH survival

relationship between Y and the predictors x. If p–value ≥ δ, then fail to
reject Ho and conclude that there is not a PH survival relationship between
Y and the predictors x.

528



Some SAS output for the PLRT is shown next. R output is above 20).

SAS Testing Global Null Hypotheses: BETA = 0

without with

criterion covariates covariates model Chi-square

-2 LOG L 596.651 551.1888 45.463 with 3 DF (p=0.0001)

Let the full model be

SP = β1x1 + · · · + βpxp = βT x = α + βT
RxR + βT

OxO.

let the reduced model

SP = βR1xR1 + · · · + βRrxRr = βT
RxR

where the reduced model uses r of the predictors used by the full model and
xO denotes the vector of p − r predictors that are in the full model but not
the reduced model.

Assume that the full model is useful. Then we want to test Ho: the
reduced model is good (can be used instead of the full model, so xO is not
needed in the model given xR is in the model) versus HA: use the full model
(the full model is significantly better than the reduced model). Fit the full
model and the reduced model to get X2(N |F ) and X2(N |R) where X2(N |F )
is used in the PLRT to test whether β = 0 and X2(N |R) is used in the
PLRT to test whether βR = 0 (treating the reduced model as the model in
the PLRT).

variable Est. SE Est/SE or (Est/SE)2 pvalue for

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) X2
o,1 = z2

o,1 Ho β1 = 0
...

...
...

...
...

...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) X2
o,p = z2

o,p Ho βp = 0

R: Likelihood ratio test = X2(N |F ) on p df

SAS: Testing Global Null Hypotheses: BETA = 0

Test Chi-Square DF Pr > Chisq
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Likelihood ratio X2(N |F ) p pval for Ho: β = 0

variable Est. SE Est/SE or (Est/SE)2 pvalue for

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) X2
o,1 = z2

o,1 Ho: β1 = 0
...

...
...

...
...

...

xr β̂r se(β̂r) zo,r = β̂r/se(β̂r) X2
o,r = z2

o,r Ho: βr = 0

R: Likelihood ratio test = X2(N |R) on r df

SAS: Testing Global Null Hypotheses: BETA = 0

Test Chi-Square DF Pr > Chisq

Likelihood ratio X2(N |R) r pval for Ho: βR = 0

The output shown above in symbols, can be used to perform the change
in PLR test. For simplicity, the reduced model used in the output is xR =
(x1, ..., xr)

T .

Notice that X2(R|F ) ≡ X2(N |F ) −X2(N |R) =

[−2 log L(none)] − [−2 log L(full)] − ([−2 log L(none)] − [−2 log L(red)]) =

[−2 log L(red)] − [−2 log L(full)] = −2 log

(
L(red)

L(full)

)
.

25) The 4 step change in PLR test is
i) Ho: the reduced model is good HA: use the full model
ii) test statistic X2(R|F ) = X2(N |F ) − X2(N |R) = [−2 log L(red)] −

[−2 log L(full)]
iii) The p–value = P (χ2

p−r > X2(R|F )) where χ2
p−r has a chi–square

distribution with p − r degrees of freedom.
iv) Reject Ho if the p–value < δ and conclude that the full model should

be used. If p–value ≥ δ, then fail to reject Ho and conclude that the reduced
model is good.

If the reduced model leaves out a single variable xi, then the change in
PLR test becomes Ho : βi = 0 versus HA : βi 	= 0. This change in partial
likelihood ratio test is a competitor of the Wald test. The change in PLRT
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is usually better than the Wald test if the sample size n is not large, but
the Wald test is currently easier for software to produce. For large n the
test statistics from the two tests tend to be very similar (asymptotically
equivalent tests).

26) If the reduced model is good, then the EE plot of ESP (R) = β̂
T

RxRi

versus ESP = β̂
T
xi should be highly correlated with the identity line with

unit slope and zero intercept.

A factor A is a variable that takes on a categories called levels. Suppose
A has a categories c1, ..., ca. Then the factor is incorporated into the PH
model by using a − 1 indicator variables xjA = 1 if A = cj and xAj = 0
otherwise, where the 1st indicator variable is omitted, eg, use x2A, ..., xaA.
Each indicator has 1 degree of freedom. Hence the degrees of freedom of the
a − 1 indicator variables associated with the factor is a − 1.

The xj corresponding to variates (variables that take on numerical values)
or to indicator variables from a factor are called main effects.

An interaction is a product of two or more main effects, but for a factor
include products for all indicator variables of the factor.

If an interaction is in the model, also include the corresponding main
effects. For example, if x1x3 is in the model, also include the main effects x1

and x2.
A scatterplot is a plot of xi vs. xj. A scatterplot matrix is an

array of scatterplots. It is used to examine the marginal relationships of the
predictors. Variables with outliers, missing values or strong nonlinearities
may be so bad that they should not be included in the full model.

27) Suppose that all values of the variable x are positive. The log rule
says add log(x) to the full model if max(xi)/min(xi) > 10.

Variable selection is closely related to the change in PLR test for a
reduced model. You are seeking a subset I of the variables to keep in the
model. The AIC(I) statistic is used as an aid in backward elimination and
forward selection. The full model and the model with the smallest AIC are
always of interest. Create a full model. The full model has a −2 log(L) at
least as small as that of any submodel. The full model is a submodel.

Backward elimination starts with the full model with p variables and
the predictor that optimizes some criterion is deleted. Then there are p − 1
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variables left and the predictor that optimizes some criterion is deleted. This
process continues for models with p − 2, p − 3, ..., 3 and 2 predictors.

Forward selection starts with the model with 0 variables and the pre-
dictor that optimizes some criterion is added. Then there is p variable in
the model and the predictor that optimizes some criterion is added. This
process continues for models with 2, 3, ..., p − 2 and p − 1 predictors. Both
forward selection and backward elimination result in a sequence of p models
{x∗

1}, {x∗
1, x

∗
2}, ..., {x∗

1, x
∗
2, ..., x

∗
p−1}, {x∗

1, x
∗
2, ..., x

∗
p} = full model.

Consider models I with rI predictors. Often the criterion is the minimum
value of −2 log(L(β̂I)) or the minimum AIC(I) = −2 log(L(β̂I)) + 2rI .

Heuristically, backward elimination tries to delete the variable that will
increase the −2 log(L) the least. An increase in −2 log(L) greater than 4
(if the predictor has 1 degree of freedom) may be troubling in that a good
predictor may have been deleted. In practice, the backward elimination
program may delete the variable such that the submodel I with k predictors
has 1) the smallest AIC(I), 2) the smallest −2 log(L(β̂I)) or 3) the biggest
p–value (preferably from a change in PLR test but possibly from a Wald
test) in the test Ho βi = 0 versus HA βi 	= 0 where the current model with
k + 1 variables is treated as the full model.

Heuristically, forward selection tries to add the variable that will decrease
the −2 log(L) the most. An decrease in −2 log(L) less than 4 (if the predictor
has 1 degree of freedom) may be troubling in that a bad predictor may have
been added. In practice, the forward selection program may add the variable
such that the submodel I with k predictors has 1) the smallest AIC(I), 2) the
smallest −2 log(L(β̂I)) or 3) the smallest p–value (preferably from a change
in PLR test but possibly from a Wald test) in the test Ho βi = 0 versus
HAβi 	= 0 where the current model with k − 1 terms plus the predictor xi is
treated as the full model (for all variables xi not yet in the model).

28) If an interaction (eg x3x7x9) is in the submodel, then the main effects
(x3, x7, and x9) should be in the submodel.

29) If xi+1, xi+2, ..., xi+a−1 are the a − 1 indictor variables corresponding
to factor A, submodel I should either contain none or all of the a−1 indictor
variables.
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30) Given a list of submodels along with the number of predictors and
AIC, be able to find the “best starting submodel” Io. Let Imin be the min-
imum AIC model. Then Io is the submodel with the fewest predictors such
that AIC(Io) ≤ AIC(Imin) + 2 (for a given number of predictors rI , only
consider the submodel with the smallest AIC). Also look at models Ij with
fewer predictors than Io such that AIC(Ij) ≤ AIC(Imin) + 7.

31) Submodels I with more predictors than Imin should not be used.

32) Submodels I with AIC(I) > AIC(Imin) + 7 should not be used.

33) Let the survival times Ti = min(Yi, Zi), and let γi = 1 if Ti = Yi

(uncensored) and γi = 0 if Ti = Zi (censored). For PH models, an censored
response plot is a plot of the ESP vs T with plotting symbol 0 for censored
cases and + for uncensored cases. If the ESP is a good estimator of the SP
and hSP (t) = exp(SP )h0(t), then the hazard increases and survival decreases
as the ESP increases.

34) The slice survival plot divides the ESP into J groups of roughly the
same size. For each group j, ŜPHj(t) is computed using the x corresponding
to the largest ESP in the 1st J − 1 groups and the x corresponding to the
smallest ESP in the Jth group. The Kaplan Meier estimator ŜKMj(t) is

computed from the survival times in the jth group. For each group, ŜPHj(t)

is plotted and ŜKMj(ti) as circles at the deaths ti. The proportional hazards
assumption is reasonable if the circles track the curve well in each of the J
plots. If pointwise CI bands are added to the plot, then ŜKMj tracks ŜPHj

well if most of the plotted circles do not fall very far outside the pointwise
CI bands.

35) Assume n > 5p, that the full PH model is reasonable and all predictors
are equally important. The following rules of thumb for a good PH submodel
I are in roughly decreasing order of importance.
i) Do not use more predictors than the min AIC model Imin.
ii) The slice survival plots for I looks like the slice survival plot for the full
model.
iii) corr(ESP,ESP(I))≥ 0.95.
iv) The plotted points in the EE plot of ESP(I) vs ESP cluster tightly about
the identity line.
v) Want pvalue ≥ 0.01 for the change in PLR test that uses I as the reduced
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model. (So for variable selection use δ = 0.01 instead of δ = 0.05.)
vi) Want the number of predictors rI ≤ n/10.
vii) Want −2 log(L(β̂I)) ≥ −2 log(L(β̂full)) but close.
viii) Want AIC(I) ≤ AIC(Imin) + 7.
ix) Want hardly any predictors with pvalues > 0.05.
x) Want few predictors with pvalues between 0.01 and 0.05.

But for factors with a − 1 indicators, modify ix) and x) so that the indi-
cator with the smallest pvalue is examined.

36) Suppose that the full model is good and is stored in M1. Let M2, M3,
M4, and M5 be candidate submodels found after forward selection, backward
elimination, etc. Typically one of the submodels is the min(AIC) model.
Given a list of properties of each submodel, be able to pick out the “best
starting submodel.”
Tips: i) submodels with more predictors then the min(AIC) submodel have
too many predictors.
ii) The best starting submodel Io has AIC(Io) ≤ AIC(Imin) + 2.
iii) Submodels I with AIC(I) > AIC(Imin) + 2 are not the best starting
submodel.
iv) Submodels I with a pvalue < 0.01 for the change in PLR test have too
few predictors.
v) The full model may be the best starting submodel if it is the min(AIC)
model and M2–M5 satisfy iii). Similarly, then min(AIC) model may be the
best starting submodel.

37) In addition to the best starting submodel Io, submodels I with fewer
predictors than Io and AIC(I) ≤ AIC(Imin) + 7 are worth considering.

If there are important predictors such as treatment that must be in the
submodel, either force the variable selection procedures to contain the im-
portant predictors or do variable selection on the less important predictors
and then add the important predictors to the submodel.

38) Suppose the PH model contains x1, ..., xp. Leave out xj, find the
martingale residuals rm(j), plot xj vs rm(j) and add the lowess or loess curve.
If the curve is linear then xj has the correct functional form. If the curve looks
like t(xj) (eg (xj)

2), then replace xj by t(xj), find the martingale residuals,
plot t(xj) vs the residuals and check that the loess curve is linear.
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39) Let the scaled Schoenfeld residual for the jth variable xj be r∗pj + β̂j.
Plot the death times ti vs the scaled residuals and add the loess curve. If the
loess curve is approximately horizontal for each of the p plots, then the PH
assumption is reasonable. Alternatively, fit a line to each plot and test that
each of the p slopes is equal to 0. The R function cox.zph makes both the
plots and tests.

40) The Weibull proportional hazards regression (WPH) model
is

hi(t) = hYi|xi
(t) = h

Yi|β
T

Pxi
(t) = exp(βT

Pxi)h0(t)

where h0(t) = h0(t|θ) = λγtγ−1 is the baseline function. So Y |SP ∼
W (γ, λ0 exp(SP ), ).

Assume that the WPH model is appropriate.

For SAS only.
log likelihood log L(none)

variable Est. SE Est/SE or (Est/SE)2 pvalue
intercept

scale
Weibull shape

For SAS or R

variable Est. SE Est/SE or (Est/SE)2 pvalue for
intercept

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) X2
o,1 = z2

o,1 Ho: β1 = 0
...

...
...

...
...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) X2
o,p = z2

o,p Ho: βp = 0
scale or log scale

Weibull shape or scale
For the full model, SAS will have Log Likelihood = log L(full).
For the full model, R will have log L(full), log L (none) and

chisq = [-2 log L(none)] - [-2 log L(full)] on p degrees of freedom with pvalue

Replace full by reduced for the reduced model.
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The SAS and R log likelihood, log L, differ by a constant.

SAS Log Likelihood = -29.7672 null model

variable df Estimate SE chi square pr > chisqu

intercept 1 7.1110 0.2927 590.12 < 0.0001

Weibull Scale 1 1225.4 358.7

Weibull Shape 1 1.1081 0.2810

SAS Log Likelihood = -29.1775 reduced model

variable df Estimate SE chi square pr > chisqu

intercept 1 7.3838 0.4370 285.45 < 0.0001

treat 1 -0.5593 0.5292 1.12 0.2906

Scale 1 0.8857 0.2227

Weibull Shape 1 1.1291 0.2840

SAS Log Likelihood = -20.5631 full model

variable df Estimate SE chi square pr > chisqu

intercept 1 11.5483 1.1970 93.07 < 0.0001

age 1 -0.0790 0.0198 15.97 < 0.0001

treat 1 -0.5615 0.3399 2.73 0.0986

Scale 1 0.5489 0.1291

Weibull Shape 1 1.8218 0.4286

R reduced model Value Std. Error z p

(Intercept) 7.384 0.437 16.895 4.87e-64

treat -0.559 0.529 -1.057 2.91e-01

Log(scale) -0.121 0.251 -0.483 6.29e-01

Scale= 0.886

Loglik(model)= -97.4 Loglik(intercept only)= -98

Chisq= 1.18 on 1 degrees of freedom, p= 0.28

R full model Value Std. Error z p

(Intercept) 11.548 1.1970 9.65 5.04e-22

treat -0.561 0.3399 -1.65 9.86e-02

age -0.079 0.0198 -4.00 6.43e-05

Log(scale) -0.600 0.2353 -2.55 1.08e-02
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Scale= 0.549

Loglik(model)= -88.7 Loglik(intercept only)= -98

Chisq= 18.41 on 2 degrees of freedom, p= 1e-04

Shown above is output in symbols from and SAS and R . The estimated
coefficient is β̂j. The Wald chi square = X2

o,j while p and “pr > chisqu” are
both p-values.

41) Instead of fitting the WHP model of 40), R and SAS fit an accelerated
failure time model log(Yi) = α + β′xi + σεi where Var(εi) = 1 and the εi are
iid from a smallest extreme value distribution. Also β 	= βW from 40).

α̂ and β̂ are MLEs found from the censored data (Ti, δi, xi) not from
(Yi, xi).

42) Let log(Ti) = α̂ + β̂
T

Axi + ri. A log censored response (LCR) plot is a

plot of α̂ + β̂
T

Axi vs log(Ti) with plotting symbol 0 for censored cases and +
for uncensored cases. The vertical deviations from the identity line = ri. The
least squares line based on the +’s can be added to the plot, and should have
slope not too far from 1 for the Weibull AFT if γ ≥ 1. The plotted points
should be linear with roughly constant variance. The censoring and long left
tails of the smallest extreme value distribution make judging linearity and
detecting outliers from the left tail difficult. Try to ignore the bottom of the
plot where there are few cases when assessing linearity.

43) Given β̂ from output and given x, be able to find ESP = β̂
′
x =∑p

i=1 β̂ixi = β̂1x1 + · · · + β̂pxp.

44) A large sample 95% CI for βj is β̂j ± 1.96 se(β̂j).

45) 4 step Wald test of hypotheses:
i) State the hypotheses Ho: βj = 0 Ha: βj 	= 0.

ii) Find the test statistic zo,j = β̂j/se(β̂j) or X2
o,j = z2

o,j or obtain it from
output.

iii) The p–value = 2P (Z < −|zoj|) = P (χ2
1 > X2

o,j). Find the p–value from
output or use the standard normal table.
iv) If pval < δ, reject Ho and conclude that Xj is needed in the Weibull
survival model given that the other p − 1 predictors are in the model. If
pval ≥ δ, fail to reject Ho and conclude that Xj is not needed in the Weibull
survival model given that the other p − 1 predictors are in the model.

46) The 4 step likelihood ratio test LRT is
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i) Ho : β = 0 HA : β 	= 0
ii) test statistic X2(N |F ) = [−2 log L(none)] − [−2 log L(full)] is often

obtained from output
iii) The p–value = P (χ2

p > X2(N |F )) where χ2
p has a chi–square distribu-

tion with p degrees of freedom. The p–value is often obtained from output.
iv) Reject Ho if the p–value < δ and conclude that there is a WPH

survival relationship between Y and the predictors x. If p–value ≥ δ, then
fail to reject Ho and conclude that there is not a WPH survival relationship
between Y and the predictors x.

47) The 4 step change in LR test is
i) Ho: the reduced model is good HA: use the full model
ii) test statistic X2(R|F ) = X2(N |F ) − X2(N |R) = [−2 log L(red)] −

[−2 log L(full)]
iii) The p–value = P (χ2

p−r > X2(R|F )) where χ2
p−r has a chi–square

distribution with p − r degrees of freedom.
iv) Reject Ho if the p–value < δ and conclude that the full model should

be used. If p–value ≥ δ, then fail to reject Ho and conclude that the reduced
model is good.

48) R and SAS programs do not have a variable selection option, but the
WPH model is a PH model, so use SAS Cox PH variable selection to suggest
good submodels. Then fit each candidate with WPH software and check the
WPH assumptions.

49) The accelerated failure time (AFT) model has log(Yi) = α +
βT

Axi + σei where the ei are iid from a location scale family.

If the Yi are Weibull, the ei are from a smallest extreme value distribution.
The Weibull regression model is often said to be “both a proportional hazards
model and an accelerated failure time model.” Actually the Yi follow a PH
models and the log(Yi) follow an AFT model.

If the Yi are lognormal, the ei are normal.
If the Yi are loglogistic, the ei are logistic.

50) Still use the log censored response (LCR) plot of 42). The LCR plot
is easier to use when the εi are normal or logistic since these are symmetric
distributions.

51) For the AFT model, hi(t) = e−SP ho(t/e
SP ) and Si(t) = S0(t/ exp(SP )).
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52) Inference for the AFT model is performed exactly in the same way as
for the WPH = Weibull AFT. See points 43) – 47). But the conclusion change
slightly if the AFT is not the Weibull AFT. In point 45, change (if necessary)
“Weibull survival model” to the appropriate model, eg “lognormal survival
model”. In point 46, change (if necessary) “WPH” to the appropriate model,
eg “lognormal AFT”.

In principle, the slice survival plot can be made for parametric AFT
models, but the programming may be difficult.

The loglogistic and lognormal AFT models are not PH models. The
loglogistic AFT is a proportional odds model.

53) Let βC correspond to the Cox regression and βA correspond to the
AFT. An EE plot is a plot of the parametric ESP vs a semiparamtric ESP
with the identity line added as a visual aid. The plotted points should follow
the identity line with a correlation tending to 1.0 as n → ∞.

54) For the Exponential regression model, σ = 1, and βC = −βA. The

Exponential EE plot is a plot of −ESPE = −β̂
′
Ax vs ESPC = β̂

′
Cx.

55) For the Weibull regression model, σ = 1, and βC = −βA/σ. The
Weibull EE plot is a plot of

−ESPW/σ̂ = − 1

σ̂
β̂

′
Ax vs ESPC = β̂

′
Cx.

56) The stratified proportional hazards regression (SPH) model
is

hx,j(t) = hYi|x,j(t) = h
Yi|β

′
xi

(t) = exp(β′xi)h0,j(t)

where h0,j(t) is the unknown baseline function for the jth stratum, j =
1, ..., J where J ≥ 2.

A SPH model is not a PH model, but a PH model is fit to each of the
J strata. The same β is used for each group = stratum, but the baseline
hazard functions differ. Stratification can be useful if there are clusters of
cases such that the observations within the clusters are not independent. A
common example is the variable study sites and the stratification should be
on site. Sometimes stratification is done on a categorical variable such as
gender.

57) Inference is done exactly as for the PH model. See points 21), 22),
23), 24), and 25). Except the conclusion is changed slightly: in 23) and 24)
replace “PH” by “SPH”.
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16.7 Complements

Excellent texts on survival analysis include Allison (1995), Collett (2003),
Klein and Moeschberger (1998), Kleinbaum and Klein (2005b), Hosmer and
Lemeshow (1999) and Smith (2002). Graduate level texts include Kalbfleisch
and Prentice (2002) and Lawless (2002). A review is given by Freedman
(2008). Oakes (2000) notes that the proportional hazards model is not pre-
served when variables are added or deleted from the model, eg by variable
selection.

From the CRAN website, eg (www.stathy.com/cran/), click on packages,
then survival, then survival.pdf to obtain the R reference manual on the
survival package. Much of this material is also in MathSoft (1999b, Ch.
8–13).

For SAS, see the SAS/STAT User’s Guide (1999). The chapters on
PHREG, LIFEREG and LIFETEST procedures are useful. These chapters
can be found on line at (www.google.com) with a search of the keywords
SAS/STAT User’s Guide.

The most used survival regression models satisfy Y x|SP , and the slice
survival plot is useful for visualizing SY |SP (t) in the background of the data.
Simultaneous or pointwise CI bands are needed to determine whether the
nonparametric Kaplan Meier estimator is close to the model estimator. If
the two estimators are close for each slice, then the graph suggests that the
model is giving a useful approximation to SY |SP (t) for the observed data if
the number of uncensored cases is large compared to the number of predictors
p. The plots are also useful for teaching survival regression to students and
for explaining the models to consulting clients.

The slice survival and EE plots are due to Olive (2009c). Emphasis was
on proportional hazards models since pointwise CI bands are available for
the Cox proportional hazards model. Thus the slice survival plot can be
made for the Cox model, and then the estimated survival function from
a parametric proportional hazards model can be added as crosses for each
slice if points in the EE plot cluster tightly about the identity line. Stratified
proportional hazards models can be checked by making one slice survival plot
per stratum. EE plots can be made for parametric models if software for a
semiparametric analog is available. See Bennett (1983), Yang and Prentice
(1999), Wei (1992) and Zeng and Lin (2007).

The censored response plot and LCR plot can be regarded as special cases
of the model checking plots of Cook and Weisberg (1997) applied to censored
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data.
If pointwise bands are not available for the parametric or semiparametric

model, but the number of cases in each slice is large, then simultaneous or
pointwise CI bands for the Kaplan Meier estimator could be added for each
slice.

Plots were made in R and the function coxph produces the survival
curves for Cox regression. The collection of R functions regpack available
from (www.math.siu.edu/olive/regpack.txt) contains functions for reproduc-
ing simulations and some of the plots. The functions vlung2, vovar and
vnwtco were used to produce plots in Examples 1, 2 and 3. The function
bphsim3 shows that the Kaplan Meier estimator was close to the Cox sur-
vival curves for 2 groups (a single binary predictor) when censoring was light
and n = 10.

Zhou (2001) shows how to simulate Cox proportional hazards regression
data. Simulated Weibull proportional hazards regression data was made
following Zhou (2001) but with three iid N(0,1) covariates. The function
phsim5 showed that for 9 groups and p = 3, the Kaplan Meier and Cox
curves were close (with respect to the pointwise CI bands) for n ≥ 80. The
function wphsim showed a similar result for Kaplan Meier curves (circles),
and the function wregsim2 shows that for n ≥ 30, the plotted points in an
EE plot cluster tightly about the identity line with correlation greater than
0.99 with high probability.

16.8 Problems

Problems with an asterisk * are especially important.

16.1. Suppose H(t) =
λ

θ
[eθt − 1] for t > 0 where λ > 0 and θ > 0. Find

a)h(t), b)S(t), c) F (t) and d) f(t) for t > 0.

16.2. Suppose T ∼ EXP(λ). Show P (T > t + s|T > s) = P (T > t) for
any t > 0 and s > 0. This property is known as the memoryless property
and implies that the future survival of the product does not depend on the
past if the lifetime T of the product is exponential.

16.3. Suppose F (t) = 1− exp[−at− (bt)2] where a > 0, b > 0 and t > 0.
Find a)S(t), b)f(t), c) h(t) and d) H(t) for t > 0.

16.4. Suppose F (t) = 1− exp[−at− (ct)3] where a > 0, c > 0 and t > 0.

541



Find the following quantities for t > 0.

a) S(t)

b)f(t)

c) h(t)

d) H(t)

16.5. Suppose H(t) = α + βt2 for t > 0 where α > 0 and β > 0.

a) Find h(t).

b) Find S(t).

c) Find F (t).

16.6. Suppose

F (t) = 1 − exp

(−t2

2σ2

)
where σ > 0 and t > 0. Find the following quantities for t > 0.

a) S(t)

b)f(t)

c) h(t)

d) H(t)

16.7. Eleven death times from Collett (2003, p. 16) are given below.
The patients had malignant bone tumours.

11 13 13 13 13 13 14 14 15 15 17

a) Following Example 16.3, make a table with headers
t(j), ti, di, ŜE(t) =

∑
(Ti > t)/n.

b) Plot ŜE(t).

c) Find the 95% classical CI for S(13) based on ŜE(t).

d) Find the 95% plus four CI for S(13) based on ŜE(t).

16.8. Find the 95% classical CI for SY (32) if n = 9 and ŜE(32) = 4/9.

16.9. Find the 95% plus four CI for SY (32) if n = 9 and ŜE(32) = 4/9.

16.10. Find the 95% plus four CI for SY (32) if n = 9 and ŜE(32) = 6/9.

16.11. Find the 95% classical CI for SY (32) if n = 9 and ŜE(32) = 6/9.
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16.12. Survival times for nine electrical components are given below.
8, 8, 23, 32, 32, 46, 57, 88, 109
Compute the empirical survival function ŜE(ti) by filling in the table below.
Then plot the function.

t(j) ti di ŜE(t)

t0 = 0 ŜE(0) = 1 = 9
9

8

8 8 2 ŜE(8) =

23 ŜE(23) =

32

32 ŜE(32) =

46 ŜE(46) =

57 ŜE(57) =

88 ŜE(88) =

109 ŜE(109) =
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16.13. The Klein and Moeschberger (1997, p. 141-142) data set consists
of information from 927 1st born children to mothers who chose to breast
feed their child. The event was time in weeks until weaned (instead of death).
Complete the following table used to produce the lifetable estimator (on a
separate sheet of paper).

Ij dj cj nj n′
j

n′
j−dj

n′
j

ŜL(t)

[0, 2) 77 2 927 926 0.9168 1.0000
[2, 3) 71 3 848 846.5 0.9161 0.9168
[3, 5) 119 6 774 771 0.8457 0.8399
[5, 7) 75 9 649 644.5 0.8836 0.7103
[7, 11) 109 7 565 561.5 0.8059 0.6276
[11, 17) 148 5 449 446.5 0.6685 0.5058
[17, 25) 107 3 296 0.3381
[25, 37) 74 0 186
[37, 53) 85 0 112
[53,∞) 27 0 27

time n.risk n.event survival std.err lower 95% CI upper 95% CI

9 11 1 0.909 0.0867 0.7392 1.000

13 10 1 0.818 0.1163 0.5903 1.000

18 8 1 0.716 0.1397 0.4422 0.990

23 7 1 0.614 0.1526 0.3145 0.913

31 5 1 0.491 0.1642 0.1691 0.813

34 4 1 0.368 0.1627 0.0494 0.687

48 2 1 0.184 0.1535 0.0000 0.485

16.14. The length of times of remission (time until relapse) in acute
myelogeneous leukemia under maintenance chemotherapy for 11 patients is
9, 13, 13+, 18, 23, 28+, 31, 34, 45+, 48, 161+. See Miller (1981, p. 49). From
the output above what is the 95% CI for SY (34)?
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16.15. The Lindsey (2004, p. 280) data set is for survival times for 110
women with stage 1 cervical cancer studied over a 10 year period. Use the life
table estimator to compute the estimated survival function ŜL(ti) by filling
in the table below. Then plot the function.

Ij dj cj nj n′
j

n′
j−dj

n′
j

ŜL(t)

[0, 1) 5 5 110 107.5 0.9535 1.0000
[1, 2) 7 7 100 96.5 0.9275 0.9535
[2, 3) 7 7 86 82.5 0.9152 0.8843
[3, 4) 3 8 72 68 0.9559 0.8093
[4, 5) 0 7 61 57.5 1.0 0.7736
[5, 6) 2 10 54 49 0.9591 0.7736
[6, 7) 3 6 42 39 0.9230 0.7420

[7, 8) 0 5 33

[8, 9) 0 4 28

[9, 10) 1 8 24

[10,∞) 15 0 15
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16.16. Survival times for 13 women with tumors from breast cancer that
were negatively stained with HPA are given below.
23, 47, 69, 70+, 71+, 100+, 101+, 148, 181, 198+, 208+, 212+, 224+
See Collett (2003, p. 6). Compute the Kaplan Meier survival function ŜK(ti)
by filling in the table below. Then plot the function.

t(j) γj ti ni di ŜK(t)

t0 = 0 ŜK(0) = 1

23 1 23 13 1 ŜK(23) =

47 1 47 ŜK(47) =

69 1 69 ŜK(69) =

70 0

71 0

100 0

101 0

148 1 148 ŜK(148) =

181 1 181 ŜK(181) =

198 0

208 0

212 0

224 0
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16.17. The Lindsey (2004, p. 280) data is for survival times for 234
women with stage 2 cervical cancer studied over a 10 year period. Use the
life table estimator to compute the estimated survival function ŜL(ti) by
filling in the table below. Show what you multiply to find ŜL(ti). Then plot
the function.

Ij dj cj nj n′
j

n′
j−dj

n′
j

ŜL(t)

[0, 1) 24 3 234 232.5 0.8968 1.0000
[1, 2) 27 11 207 201.5 0.8660 0.8968
[2, 3) 31 9 169 164.5 0.8116 0.7766
[3, 4) 17 7 129 125.5 0.8645 0.6302
[4, 5) 7 13 105 98.5 0.9289 0.5448
[5, 6) 6 6 85 82 0.9268 0.5061
[6, 7) 5 6 73 70 0.9286 0.4691

[7, 8) 3 10 62

[8, 9) 2 13 49

[9, 10) 4 6 34

[10,∞) 24 0 24
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16.18. Times (in weeks) until relapse below are for 12 patients with acute
myelogeneous leukemia who reached a state of remission after chemotherapy.
See Miller (1981, p. 49).
5, 5, 8, 8, 12, 16+, 23, 27, 30, 33, 43, 45
Compute the Kaplan Meier survival function ŜK(ti) by filling in the table
below. Show what you multiply to find Ŝk(ti). Then plot the function.

t(j) γj ti ni di ŜK(t)

t0 = 0 ŜK(0) = 1

5 1 5 12 2 ŜK(5) =

5 1

8 1 8 ŜK(8) =

8 1

12 1 12 ŜK(12) =

16 0

23 1 23 ŜK(23) =

27 1 27 ŜK(27) =

30 1 30 ŜK(30) =

33 1 33 ŜK(33) =

43 1 43 ŜK(43) =

45 1 45 ŜK(45) =
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16.19. Suppose that a proportional hazards model holds so that hx(t) =
exp(βTx)h0(t) where h0(t) is the baseline hazard function. Let f0(t), S0(t)
F0(t) and H0(t) denote the baseline pdf, survival function, distribution func-
tion and cumulative hazard function.

a) Show
Hx(t) = exp(βT x)H0(t).

b) Show

Sx(t) = [S0(t)]
exp(βT x).

c) Show

fx(t) = f0(t) exp(βT x)[S0(t)]
exp(β

T
x) − 1.

16.20. Suppose that h0(t) = 1 for t > 0. This corresponds to the ex-
ponential proportional hazards model hx(t) = exp(βTx)h0(t) = exp(βTx).

a) Find H0(t).

b) Find Hx(t).

Data for 16.21

Variables in model -2 log L

none 36.349

size 29.042

size, index 23.533

size, index, treatment 22.572

16.21. The Collett (2003, p. 86) data studies the time until death from
prostate cancer from the date the patient was randomized to a treatment.
The variable treatment was a 0 for a placebo and a 1 for DES (a drug). The
variable size was tumor size, and index the Gleason index. Let the full model
contain size, index and treatment. Use the table above.

a) If the reduced model uses size and index, test whether the reduced
model is good.

b) If the reduced model uses size, test whether the reduced model is good.
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data for 16.22

full model coef exp(coef) se(coef) z p

age 0.00318 1.003 0.0111 0.285 0.78

sex -1.48314 0.227 0.3582 -4.140 0.000035

diseaseGN 0.08796 1.092 0.4064 0.216 0.83

diseaseAN 0.35079 1.420 0.3997 0.878 0.38

diseasePKD -1.43111 0.239 0.6311 -2.268 0.023

Likelihood ratio test=17.6 on 5 df, p=0.00342 n= 76

reduced model coef exp(coef) se(coef) z p

age 0.00203 1.002 0.00925 0.220 0.8300

sex -0.82931 0.436 0.29895 -2.774 0.0055

Likelihood ratio test=7.12 on 2 df, p=0.0285 n= 76

16.22. The R kidney data is on the recurrence times Y to infection, at
the point of insertion of the catheter, for kidney patients. Predictors are age,
sex (M=1,F=2), and the factor disease (0=GN, 1=AN, 2=PKD, 3=Other).

a) For the reduced model, test β = 0.

b) For the reduced model, test β = 0 using δ = 0.01.

c) Test whether the reduced model is good.

Output for 16.23

coef exp(coef) se(coef) z p

rxLev -0.0423 0.959 0.1103 -0.384 0.70000

rxLev+5FU -0.3787 0.685 0.1189 -3.186 0.00140

extent 0.4930 1.637 0.1117 4.412 0.00001

node4 0.9154 2.498 0.0968

Likelihood ratio test=122 on 4 df, p=0 n= 929

16.23. The R colon data from one of the first successful trials of adjuvant
chemotherapy for colon cancer. Levamisole is a low-toxicity compound, 5-
FU is a moderately toxic chemotherapy agent. The treatment was nothing,
levamisole, or levamisole and 5-FU. Y is time until death. The 4 predictors
are x1 = 1 if treatment was levamisole, x2 = 1 if the treatment was levamisole
and 5-FU, extent of local spread (treated as a variate with 1=submucosa,
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2=muscle, 3=serosa, 4=contiguous structures), and node4 = 1 for more than
4 positive lymph nodes.

a) Find the ESP and ĥi(t) if x = (0, 1, 2, 1).

b) Find a 95% CI for β1.

c) Do a 4 step test for Ho : β1 = 0.

d) Do a 4 step test for Ho : β4 = 0.

Output for 16.24.

full model coef exp(coef) se(coef) z p

trt 0.295 1.343 0.20755 1.4194 0.16

celltypesmallcell 0.862 2.367 0.27528 3.1297 0.017

celltypeadeno 1.20 3.307 0.30092 3.9747 0.000

celltypelarge 0.401 1.494 0.28269 1.4196 0.16

karno -0.0328 0.968 0.00551 -5.9580 0.000

diagtime 0.000081 1.000 0.00914 0.0089 0.99

age -0.00871 0.991 0.00930 -0.9361 0.35

prior 0.00716 1.007 0.02323 0.3082 0.76

Likelihood ratio test=62.1 on 8 df, p=1.8e-10 n= 137

reduced model coef exp(coef) se(coef) z p

trt 0.2617 1.30 0.20092 1.30 0.19

celltypesmallcell 0.8250 2.28 0.26891 3.07 0.022

celltypeadeno 1.1540 3.17 0.29504 3.91 0.0009

celltypelarge 0.3946 1.48 0.28224 1.40 0.16

karno -0.0313 0.97 0.00517 -6.05 0.000

Likelihood ratio test=61.1 on 5 df, p=7.3e-12 n= 137

16.24. The R veteran lung cancer data has Y = survival time. The
predictors are trt (1=standard, 2=test), the factor celltype (1=squamous,
2=smallcell, 3=adeno, 4=large), karno = Karnofsky performance score
(100=good), diagtime = months from diagnosis to randomization, age in
years, and prior = prior therapy (0=no, 1=yes).

a) For the full model, test Ho β = 0.

b) Test whether the reduced model is good.
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Full model Output for 16.25

variable coef std._err. z pval

age -0.029 0.008 -3.53 0.000

bectota 0.008 0.005 1.68 0.094

ndrugtx 0.028 0.008 3.42 0.001

herco_2 0.065 0.150 0.44 0.663

herco_3 -0.094 0.166 -0.57 0.572

herco_4 0.028 0.160 0.18 0.861

ivhx_2 0.174 0.139 1.26 0.208

ivhx_3 0.281 0.147 1.91 0.056

race -0.203 0.117 -1.74 0.082

treat -0.240 0.094 -2.54 0.011

site -0.102 0.109 -0.94 0.348

Likelihood ratio test = 24.436 on 11 df, p = 0.011

Reduced model

variable coef std._err. z pval

age -0.026 0.008 -3.25 0.001

bectota 0.008 0.005 1.70 0.090

ndrugtx 0.029 0.008 3.54 0.000

ivhx_3 0.256 0.106 2.41 0.016

race -0.224 0.115 -1.95 0.051

treat -0.232 0.093 -2.48 0.013

site -0.087 0.108 -0.80 0.422

Likelihood ratio test = 21.038 on 7 df, p = 0.004

16.25. The Hosmer and Lemeshow (1999, p. 165 - 170) data studies time
until illegal drug use relapse. Variables were age, becktota, ndrugtx, herco2 =
1 if heroin user and 0 else, herco3 = 1 if cocaine user and 0 else, herco4 = 1
if used neither heroin nor cocaine and 0 else, ivhx2 = 1 if previous but not
recent IV drug use and 0 else, ivhx3 = 1 if recent IV drug use and 0 else, race
= 1 for white and 0 else, treat = 1 for short treatment and 0 for long and
site.

Using the output for the full and reduced model above, test whether the
reduced model is good.
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variables AIC

trt sex race pburn bhd bbut btor bupleg blowleg bresp 439.470

trt sex race pburn bhd bbut btor bupleg blowleg 437.479

trt sex race pburn bbut btor bupleg blowleg 435.540

trt sex race pburn bbut bupleg blowleg 433.677

trt sex race bbut bupleg blowleg 431.952

trt sex race bbut bupleg 430.281

trt sex race bbut 429.617

trt sex race 428.708

trt race 429.704

race 431.795

16.26. Data from Klein and Moeschberger (1997, p. 7) is on severely
burned patients. The response variable is time until infection. Predictors
include treatment (0-routine bathing 1-Body cleansing), sex (0=male 1=fe-
male), race (0=nonwhite 1=white), pburn = percent of body burned. The
remaining variables are burn cite indicators. For example, bhd is head (1 yes
0 no). Results from backward elimination are shown.

a) What is the minimum AIC submodel Imin?

b) What is the best starting submodel I0?

c) Are there any other candidate submodels? Explain briefly.

M1 M2 M3 M4
# of predictors 10 3 2 1

# with 0.01 ≤ p-value ≤ 0.05 2 2 1 1
# with p-value > 0.05 8 1 0 0

−2 log(L) 419.470 422.708 425.704 429.795
AIC(I) 439.470 428.708 429.704 431.795

p-value for change in PLR test 1.0 0.862 0.304 0.325

16.27. Data from Klein and Moeschberger (1997, p. 7) is on severely
burned patients. The above table gives summary statistics for 4 PH regres-
sion models considered as final submodels after performing variable selection.
Assume that the PH assumptions hold for all 4 models. The full model was
M1, and M2 was the minimum AIC model found. Which model should be
considered as the first starting submodel I0? Explain briefly why each of the
other 3 submodels should not be used as the starting submodel.

553



16.28. Suppose that the survival times are plotted versus the scaled
Schoenfeld residuals for variable x1. Sketch the loess curve if the PH as-
sumption is reasonable.

16.29. Leemis (1995, p. 190, 205-6) gives data on n = 21 leukemia
patients taking the drug 6-MP. Suppose that the remission times given below
follow an exponential (λ) distribution.

6, 6, 6, 6+, 7, 9+, 10, 10+, 11+, 13, 16, 17+,
19+, 20+, 22, 23, 25+, 32+, 32+, 34+, 35+

a) Find λ̂.

b) Find a 95% CI for λ.

16.30. Suppose that the lifetimes of a certain brand of lightbulb follow
an exponential (λ) distribution. 20 light bulbs are tested for 1000 hours. The
failure times are below.

71, 88, 254, 339, 372, 403, 498, 499, 593, 774, 935,
1000+, 1000+, 1000+, 1000+, 1000+, 1000+, 1000+, 1000+, 1000+

a) Find λ̂.

b) Find a 95% CI for λ.

16.31. The following output is from a Weibull Regression for the Allison
(1995, p. 270) recidivism data. The response variable week is time in weeks
until arrest after release from prison (right censored if week = 52). The 7
variables are Fin (1 for those who received financial aid, 0 else), Age at time
of release, Race (1 if black, 0 else), Wexp(1 if inmate had full time work
experience prior to conviction, 0 else), Mar (1 if married at time of release,
0 else), Paro (1 if released on parole, 0 else), Prio (the number of prior
convictions).

a) For the reduced model, find a 95% CI for β1.

b) Test whether the reduced model is good.
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Output for Problem 16.31 Null Model

Log Likelihood -336.08436 Standard 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr>ChiSq

Intercept 1 4.8177 0.1079 4.6062 5.0291 1994.47 <.0001

Scale 1 0.7325 0.0661 0.6138 0.8742

Weib Scale 1 123.6771 13.3417 100.1072 152.7964

Weib Shape 1 1.3651 0.1232 1.1438 1.6293

Full Model Log Likelihood -319.3765238

Standard 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr>ChiSq

Intercept 1 3.9901 0.4191 3.1687 4.8115 90.65 <.0001

fin 1 0.2722 0.1380 0.0018 0.5426 3.89 0.0485

age 1 0.0407 0.0160 0.0093 0.0721 6.47 0.0110

race 1 -0.2248 0.2202 -0.6563 0.2067 1.04 0.3072

wexp 1 0.1066 0.1515 -0.1905 0.4036 0.49 0.4820

mar 1 0.3113 0.2733 -0.2244 0.8469 1.30 0.2547

paro 1 0.0588 0.1396 -0.2149 0.3325 0.18 0.6735

prio 1 -0.0658 0.0209 -0.1069 -0.0248 9.88 0.0017

Scale 1 0.7124 0.0634 0.5983 0.8482

Weib. Shape 1 1.4037 0.1250 1.1789 1.6713

Reduced Model Log Likelihood -321.5012378

Standard 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr>ChiSq

Intercept 1 3.7738 0.3581 3.0720 4.4755 111.08 <.0001

fin 1 0.2495 0.1372 -0.0194 0.5184 3.31 0.0690

age 1 0.0478 0.0154 0.0176 0.0779 9.66 0.0019

prio 1 -0.0698 0.0201 -0.1092 -0.0304 12.08 0.0005

Scale 1 0.7141 0.0637 0.5995 0.8506

Weib. Shape 1 1.4004 0.1250 1.1756 1.6681
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Output for Problem 16.32

Log Likelihood -321.50124 Standard 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr>ChiSq

Intercept 1 3.7738 0.3581 3.0720 4.4755 111.08 <.0001

fin 1 0.2495 0.1372 -0.0194 0.5184 3.31 0.0690

age 1 0.0478 0.0154 0.0176 0.0779 9.66 0.0019

prio 1 -0.0698 0.0201 -0.1092 -0.0304 12.08 0.0005

Scale 1 0.7141 0.0637 0.5995 0.8506

Weibull Shape 1 1.4004 0.1250 1.1756 1.6681

16.32. Above is output from a Weibull Regression for the Allison (1995,
p. 270) recidivism data described in problem 16.31. The full model has 3
predictors, fin, age and prio.

a) Suppose that the log likelihood for the null model is −336.08436. Test
whether β = 0.

b) Test whether β1 = 0.

c) Test whether β2 = 0.

Output for 16.33

Value Std. Error z p

(Intercept) 5.32632 0.66298 8.03 9.44e-16

age -0.00891 0.00711 -1.25 0.210

sex 0.37019 0.12796 2.89 0.00382

ph.karno 0.00926 0.00446 2.08 0.0379

Log(scale) -0.28085 0.06171 -4.55 5.33e-06

Scale= 0.755

Weibull distribution

Loglik(model)= -1138.7 Loglik(intercept only)= -1147.5

Chisq= 17.59 on 3 degrees of freedom, p= 0.00053

n=227 (1 observation deleted due to missingness)

16.33. A Weibull regression model was fit to the R lung data resulting
in the above output.

a) Test whether β = 0.

b) Test whether β1 = 0.
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c) Test whether β2 = 0.

d) Sketch the Weibull EE plot if the Weibull model is good.

Output for 16.34, n = 26

coef exp(coef) se(coef) z p full model

age 0.121 1.13 0.0484 2.500 0.012

resid.ds 0.792 2.21 0.8078 0.980 0.330

ecog.ps 0.087 1.09 0.6592 0.132 0.890

Likelihood ratio test= 13.7 on 3 df, p=0.00333

coef exp(coef) se(coef) z p reduced model

age 0.137 1.15 0.0474 2.9 0.0038

Likelihood ratio test= 12.7 on 1 df, p=0.000368

16.34. The R ovarian data gives survival times for patients with ovar-
ian cancer. Predictors are age in years, resid.ds (residual disease present
1=no,2=yes), and ecog.ps (ECOG performance status: 1 is better than 2). A
stratified proportional hazards model is fit where the stratification variable
rx is the treatment group.

a) Test whether β3 = 0.

b) Test whether β = 0 for the full model.

c) Test whether the reduced model is good.

16.35. The R lung cancer data has the time until death or censoring.
ph.ecog = Ecog performance score 0-4, pat.karno = patient’s assessment of
their karno score and wt.loss = weight loss in last 6 months. A stratified
proportional hazards model is used and stratification is on sex.

a) Find the ESP and ĥi(t) if x = (1.0, 80.0, 7.0) and sex = F .

b) Find a 95% CI for β2.

c) Do a 4 step test for Ho : β2 = 0.

d) Do a 4 step test for Ho : β3 = 0.
e) R output says Likelihood ratio test=22.8.
Do a 4 step test for Ho : β = 0.
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output for f)

coef exp(coef) se(coef) z p

age 0.01444 1.01 0.010508 1.374 0.17

meal.cal -0.00016 1.00 0.000240 -0.666 0.51

Likelihood ratio test=2.97 on 2 df, p=0.227 n=181

(47 observations deleted due to missingness)

f) Now the SPH model uses the predictors age and meal.cal = calories
consumed at meals excluding beverages and snacks.

Do a 4 step test for Ho : β = 0.

SAS Problems

SAS is a statistical software package that will be used in this course. You
will need a disk. There are SAS manuals and books at the library, but they
are not needed in this course. To use SAS on windows (PC), use the following
steps.

i) Double click on the Math Progs icon and after a window appears, double
click on the SAS icon. If your computer does not have SAS, go to another
computer.

ii) A window should appear with 3 icons. Double click on The SAS System
for ....

iii) Like Minitab a window with a split screen will open. The top screen
says
Log-(Untitled) while the bottom screen says Editor-Untitled1. Press the
spacebar and an asterisk appears: Editor-Untitled1*.

iv) Go to the webpage (www.math.siu.edu/olive/reghw.txt) to copy and
paste the program for Problem 16.36 into Notepad. The ls stands for linesize
so l is a lowercase L, not the number one. Save your file as h16d36.sas on
your diskette (A: drive). (On the top menu of the editor, use the commands
“File > Save as”. A window will appear. Use the upper right arrow to locate
“31/2 Floppy A” and then type the file name in the bottom box. Click on
OK.)

v) Get back into SAS, and from the top menu, use the “File> Open” com-
mand. A window will open. Use the arrow in the NE corner of the window to
navigate to “31/2 Floppy(A:)”. (As you click on the arrow, you should see My
Documents, C: etc, then 31/2 Floppy(A:).) Double click on hw16d36.sas.
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(Alternatively cut and paste the program into the SAS editor window.) To
execute the program, use the top menu commands “Run>Submit”. An out-
put window will appear if successful.

If you were not successful, look at the log window for hints on errors.
A single typo can cause failure. Reopen your file in Word or Notepad and
make corrections. Occasionally you can not find your error. Then find your
instructor or wait a few hours and reenter the program. Word seems to make
better looking tables, and copying from Notepad to Word can completely ruin
the table.

vi) To copy and paste relevant output into Word, click on the output
window and use the top menu commands “Edit>Select All” and then the
menu commands “Edit>Copy”.

(In Notepad use the commands “Edit>Paste”. Then use the mouse to
highlight the relevant output (the table and statistics for the table).
Then use the commands “Edit>Copy”.)

Finally, in Word, use the commands “Edit>Paste”.

You may want to save your SAS output as the file hw16d36.doc

vii) This point explains the SAS commands. The semicolon “;” is used to
end SAS commands and the “options ls = 70;” command makes the output
readable. (An “*” can be used to insert comments into the SAS program.
Try putting an * before the options command and see what it does to the
output.) The next step is to get the data into SAS. The command “data
heart;” gives the name “heart” to the data set. The command “input time
status number;” says the first entry is the censored variable time, the 2nd
variable status (0 if censored 1 if uncensored) and the third variable number
(= number of deaths or number of cases censored, depending on status).
The command “cards;” means that the data is entered below. Then the data
in entered and the isolated semicolon indicates that the last case has been
entered. The next 4 lines make perform the lifetable estimates for S(t) and
the corresponding confidence intervals. Also plots of the estimated survival
and hazard functions are given. The command “run;” tells SAS to execute
the program.

It may be easier to save output from each problem as a Word document,
but you get an extra page printed whenever you use the printer.

16.36. The following problem gets the lifetable estimator using SAS. The
data is on 68 patients that received heart transplants at about the time when
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getting a heart transplant was new. See Allison (1995, p. 49-50).

a) Do i) through v) above. But instead of vi), click on the SAS output,
then click on the printer icon. This will produce 2 pages of output. Then
click on the graph of the survival function and click on the printer icon.

Include these 3 pages of output as part of your homework.

b) From the 1st page of output, Number Failed = di, Number Censored
= ci, Effective Sample Size = n′

i, Survival = ŜL(ti−1) = estimated survival for
the left endpoint of the interval and Survival Standard Error = SE[ŜL(ti−1)].

What is SE[ŜL(200)]?

c) From the 2nd page of output, SDF LCL SDF UCL gives a 95% CI for
S(ti−1).

What is the 95% CI for S(200) using output?

d) Compute the 95% CI for S(200) using the formula and SE[ŜL(200)].

e) The SAS program (with plots(s,h)) plots both the survival and the
hazard function (scroll down!). From the 2nd page of output, plot MID-
POINT vs HAZARD (so the first point is (25,0.0055)) by hand. Connect
the dots to make an estimated hazard function. Notice that the estimated
hazard function decreases sharply to about 200 days after surgery and then
is fairly stable.

16.37. This problem examines the Allison (1995, p. 31-34) myelomatosis
data (a cancer causing tumors in the bone marrow) with SAS using the
Kaplan Meier product limit estimator. Obtain the SAS program for this
problem from (www.math.siu.edu/olive/reghw.txt). Obtain the output from
the program in the same manner as i) through v) above Problem 16.36.

a) But instead of vi), click on the SAS output, then click on the printer
icon. This will produce 3 pages of output (perhaps). Then click on the graph
of the survival function and click on the printer icon.

Include these 4 pages of output as part of your homework.

b) From the summary statistics of the first page of output, about when
do 50% of the patients die?

c) From the first page of output (perhaps), what is the 95% CI for the
time when 50% of the patients die?

d) From the 3rd page of output (perhaps), what is the 95% CI for SY (13).
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e) Check this CI using ŜK(13) and SE(ŜK(13)) obtained from the 1st
page of output (perhaps). If the interval is (L, U), use (max(0, L), min(U, 1))
as the final interval.

f) SAS does not compute a hazard estimator for the KM estimator, but
from the plot of ŜK(t), briefly explain survival for days 0–250 and for days
250–2250.

16.38. This Miller (1981, p. 49-50) data set is on remission times in
weeks for leukemia patients. Twenty patients received treatment A and 20
received treatment B. The predictor group was 0 for A and 1 for B.

a) Obtain the SAS program for this problem from
(www.math.siu.edu/olive/reghw.txt). Obtain the output from the program
in the same manner as i) through vi) above Problem 16.36.

But instead of vi), click on the SAS output, then click on the printer icon.
This will produce 1 page of output.

b) Do a 4 step test for Ho : β = 0.

c) Do a 4 step PLRT for Ho : β = 0 (for β = 0). (The PLRT is better
than the Wald test in b).)

16.39. Data is from SAS/STAT User’s Guide (1999) and is from a study
on multiple myeloma (bone cancer) in which researchers treated 65 patients
with alkylating agents. The variable Time is the survival time in months
from diagnosis. The predictor variables are LogBUN (blood urea nitrogen),
HGB (hemoglobin at diagnosis), Platelet (platelets at diagnosis: 0=abnor-
mal, 1=normal), Age at diagnosis in years, LogWBC, Frac (fractures at diag-
nosis: 0=none, 1=present), LogPBM (log percentage of plasma cells in bone
marrow), Protein (proteinuria at diagnosis), and SCalc (serum calcium at
diagnosis).

a) Obtain the SAS program for this problem from
(www.math.siu.edu/olive/reghw.txt).

b) First backward elimination is considered. From the SAS output win-
dow, copy and paste the output for the full model that uses all 9 variables
into Word. That is, scroll to the top of the output and copy and paste the
following output.

Step 0. The model contains the following variables:

LogBUN HGB Platelet Age LogWBC Frac LogPBM Protein SCalc
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SCalc 1 0.12595 0.10340 1.4837 0.2232 1.134

c) At step 7 of backward elimination, the final model considered uses
LogBUN and HGB. Copy and paste the output for this model (similar to the
output for b) into Word.

d) Backward elimination will consider 8 models. Write down the variables
used for each model as well as the AIC. The first two models are shown below.

variables AIC

LogBUN HGB Platelet Age LogWBC Frac LogPBM Protein SCalc 310.588

LogBUN HGB Age LogWBC Frac LogPBM Protein SCalc 308.827

e) Repeat d) for the 4 models considered by forward selection.

f) Repeat d) for the 4 models considered by stepwise selection.

g) For all subsets selection, complete the following table.

variables chisq

2 LogBUN HGB

9 full

h) Perform a change in PLR test if the full model uses 9 variables and the
reduced model uses LogBUN and HGB. (Use the output from b) and c).)

i) Are there any other good candidate models?
16.40. Data is from Allison (1995, p. 270). The response variable week

is time in weeks until arrest after release from prison (right censored if week
= 52). The 7 variables are Fin (1 for those who received financial aid, 0 else),
Age at time of release, Race (1 if black, 0 else), Wexp(1 if inmate had full
time work experience prior to conviction, 0 else), Mar (1 if married at time
of release, 0 else), Paro (1 if released on parole, 0 else), Prio (the number of
prior convictions).

a) This is a large data file. SAS needs an “end of file” marker to de-
termine when the data ends. SAS uses a period as the end of file marker,
and the period has already been added to the file. Obtain the file from
(www.math.siu.edu/olive/recid.txt) and save the file as recid.txt using the
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commands “File>Save as.” A window will appear, in the top box make 3
1/2 Floppy (A:) appear while in the File name box type recid.txt.

b) Obtain the SAS program for this problem from
(www.math.siu.edu/olive/reghw.txt). To execute the program, use the top
menu commands “Run>Submit”. An output window will appear if success-
ful. Warning: if you do not have the recid.txt file on A drive, then
you need to change the infile command in the SAS code to the drive that
you are using, eg change infile “a:redic.txt”; to infile “f:recid.txt”; if you are
using F drive.

c) First backward elimination is considered. Scroll to the top of the copy
and paste the 1st 2 pages of output for the full model into Word.

d) Backward elimination will consider 5 models. Write down the variables
used for each model as well as the AIC. The first two models are shown below.

variables AIC

fin age race wexp mar paro prio 1332.241

fin age race wexp mar prio 1330.429

e) Repeat d) for the 4 models considered by forward selection.

f) Repeat d) for the 5 models considered by stepwise selection.

g) For all subsets selection, complete the following table.

variables chisq

3 fin age prio

7 full

16.41. This problem considers the ovarian data from Collett (2003, p.
344-346).

a) Obtain the SAS program for this problem from
(www.math.siu.edu/olive/reghw.txt). Print the output.

b) Find the ESP if age = 40 and treat 1 = 1. (Comment: treatment
takes on 2 levels so only one indicator is needed. SAS output includes a 2nd
indicator treat 2 but its coefficient is β̂3 = 0 and hence can be ignored. In
general if the category takes on J levels, SAS will give nonzero output for
the first J − 1 levels and a line of 0s for the Jth level. This means level J
was omitted and the line of 0s should be ignored.)

563



c) Give a 95% CI for β1 corresponding to age from output and the CI
using the formula.

d) Give a 95% CI for β2 corresponding to treat 1 from output and the CI
using the formula.

e) If the model statement in the SAS program is changed to
model survtime*status(0)=;
then the null model is fit and the SAS output says
Log Likelihood −29.76723997.

Test β = 0 with the LR test.
(Hint: The full model log likelihood log(L) = −20.56313339. Want −2 log(L)
for both the full and null models for the LR test.)

f) Suppose the reduced model does not include treat. Then SAS output
says Log Likelihood −21.7830. Test whether the reduced model is good.
(Hint: The log likelihood for the full model is log(L) = −20.56313339. Want
−2 log(L) for the full and reduced models for the change in LR test.)

16.42. Copy and paste commands for this problem from
(www.math.siu.edu/olive/reghw.txt) for this problem into SAS. The myelo-
matosis data is from Allison (1995, p. 31, 158-161, 269). The 25 patients
have tumours in the bone marrow. The patients were randomly assigned 2
drug treatments treat. The variable renal is 1 if renal (kidney) functioning is
normal and 0 otherwise.

A stratified proportional hazards (SPH) model makes sense if the effect
of Renal varies with time since randomization (if there is a time–Renal in-
teraction). In this situation the PH model would be inappropriate since
time–variable interactions are not allowed in the PH model. Notice that the
results in a) and b) below are different. The analysis does need to control
for the variable Renal to obtain good estimates of the treatment effect, but
both the SPH model in a) and the PH model in c) may be adequate

a) The SAS program produces output for 3 models. The first model
is a SPH model with stratification on Renal. Perform a Wald test on β1

corresponding to treat. (In the output, β̂1 = 1.463986.)

b) The 2nd model is a PH model with the predictor treat. Perform a
Wald test on β1 corresponding to treat. (In the output, β̂1 = 0.56103.)

c) The 3rd model is a PH model with the predictors treat and Renal.
Perform a Wald test on β1 corresponding to treat. (In the output, β̂1 =
1.22191.)
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R Problems
R is the free version of Splus. The website (www.stat.umn.edu) has a link

under the icon Rweb. The icon other links has the link Cran that gives R
support. Click on the Rgui icon to get into R. Then typing q() gets you out
of R.

16.43. Miller (1981, p. 49) gives the length of times of remission (time
until relapse) in acute myelogeneous leukemia under maintenance chemother-
apy for 11 patients is
9, 13, 13+, 18, 23, 28+, 31, 34, 45+, 48, 161+.

a) Following Example 16.3, make a table with headers t(j), γj, ti, ni, di

and ŜK(ti). Then compute the Kaplan Meier estimator. (You can check it
with the R output obtained in b).)

b) Get into R. Copy and paste commands for this problem from
(www.math.siu.edu/olive/reghw.txt) into R. Hit Enter and a plot should
appear. Copy and paste the R output with header (time ... upper 95% CI)
into Word. Following the R handout, click on the plot and hold down the Ctrl
and c buttons simultaneously. Then in the Word Edit menu, select “paste.”

Include this output with the homework. The center step function is the
Kaplan Meier estimator ŜK(t) while the lower and upper limits correspond
to the confidence interval for SY (t).

c) Write down the 95% CI for SY (23) and then verify the CI by computing
ŜK(23) ± 1.96SE(ŜK(23)).

16.44. Copy and paste commands for parts a) and b) for this problem
from (www.math.siu.edu/olive/reghw.txt) into R.

The commands make the KM estimator for censored data T = min(Y, Z)
where Y ∼ EXP (1). The KM estimator attempts to estimate SY (t) =
exp(−t). The points in the plot are SY (t(j)) = exp(−t(j)), and the points
should be within the confidence intervals roughly 95% of the time (actually,
if you make many plots the points should be in the intervals about 95% of
the time, but for a given plot you could get a “bad data set” and then the
rather more than 5% of the points are outside of the intervals).

a) Copy and paste the commands for a) and hit Enter. Then copy and
paste the plot into Word.

b) Copy and paste the commands for b) and hit Enter. Then copy and
paste the plot into Word.

c) As the sample size increases from n = 20 to n = 200, the CIs should
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become more narrow. Can you see this in the two plots? Are about 95% of
the plotted points within the CIs?

16.45. Go to (www.math.siu.edu/olive/regpack.txt) and cut and paste
the program kmsim2 into R. a) Type the command kmsim2(n=10), hit Enter
and include the output in Word.

This program computes censored data T = min(Y, Z) where Y ∼ EXP (1).
Then a 95% CI is made for SY (t(j)) for each of the n = 10 t(j). This is done
for 100 data sets and the program counts how many times the CI contains
SY (t(j)) = exp(−t(j)). The scaled lengths are also computed. The ccov is the

count for the classical Ŝ ± 1.96SE(Ŝ) interval while p4cov is for the plus 4
CI. The lcov is based on a CI that uses log(Ŝ) and llcov is based on a CI that
uses log(−log(Ŝ)). The 1st 3 CIs are not made if the last case is censored so
NA is given. The plus 4 CI seems to be good at t(1) and t(n).

16.46. This data is from a study on ovarian cancer. There were 26
patients. The variable futime was the time until death or censoring in days,
the variable fustat was 1 for death and 0 for censored, age is age and ecog.ps
is a measure of status ranging from 0 (fully functional) to 4 (completely
disabled). Level 4 subjects are usually considered too ill to enter a study
such as this one.

a) Copy and paste commands for this problem from
(www.math.siu.edu/olive/reghw.txt) into R. Hit Enter and a plot should
appear. Copy and paste the R output into Word. The output is similar to
that of Problem 16.47 but also contains the variable ecog.ps.

Click on the plot and hold down the Ctrl and c buttons simultaneously.
Then in the Word Edit menu, select “paste.” The plot is the Cox regression
estimated survival function at the average age (56.17) and average ecog.ps
(1.462).

b) Now copy and paste the command for b) and place the plot in Word as
described in a). This plot p is the Cox regression estimated survival function
at the (age,ecog.ps) = (66,4). Is survival better for (56.17,1.462) or (66,4)?

c) Find the ESP and ĥi(t) if x = (56.17, 1.462).

d) Find the ESP and ĥi(t) if x = (66, 4).

e) Find a 95% CI for β1.

f) Find a 95% CI for β2.

g) Do a 4 step test for Ho : β1 = 0.
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h) Do a 4 step test for Ho : β2 = 0.

i) Do a 4 step PLRT for Ho : β = 0.

coef exp(coef) se(coef) z p

age 0.162 1.18 0.0497

Likelihood ratio test=14.3

16.47. Use the output above which is for the same data as in 16.46 but
only the predictor age is used.

a) Find a 95% CI for β.

b) Do a 4 step test for Ho : β = 0.

c) Do a 4 step PLRT for Ho : β = 0 (for β = 0). (The PLRT is better
than the Wald test in b).)

16.48. The R lung cancer data has the time until death or censoring and
status = 0 for censored and 1 for uncensored. Then the covariates are age,
sex = 1 for M and 2 for F, ph.ecog = Ecog performance score 0-4, ph.karno
= a competitor to ph.ecog, pat.karno = patient’s assessment of their karno
score, meal.cal = calories consumed at meals excluding beverages and snacks
and wt.loss = weight loss in last 6 months. A stratified proportional hazards
model with stratification on sex will be used.

a) Copy and paste commands for this problem from
(www.math.siu.edu/olive/reghw.txt) into R.

Type zfull, then zred1 then zred2. Copy and paste the resulting output
into Word. The full model uses age, ph.ecog, ph.karno, pat.karno and wt.loss.

b) Test whether the reduced model that omits age can be used.

c) Test whether the reduced model that omits age and ph.karno can be
used.

16.49. Go to (www.math.siu.edu/olive/regpack.txt) and cut and paste
the program bphgfit into R.

Alternatively, suppose that you download regpack.txt onto a disk. (Use
File and Save Page as.) Enter R and wait for the curser to appear. Then go
to the File menu and drag down Source R Code. A window should appear.
Navigate the Look in box until it says 3 1/2 Floppy(A:). In the Files of
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type box choose All files(*.*) and then select regpack.txt. The following line
should appear in the main R window.

> source("A:/regpack.txt")

a) Copy and paste commands for this problem from
(www.math.siu.edu/olive/reghw.txt) into R. Copy and paste the output into
Word.

b) Click on the plot and hold down the Ctrl and c buttons simultaneously.
Then in the Word Edit menu, select “paste.”

c) The data is remission time in weeks for leukemia patients receiving
treatments A (x = 0) or B (x = 1). See Smith (2002, p. 174). The indicator
variable x (leuk[,3]) is the single covariate. Do a PLRT to test whether β = 0.
Is there a difference in the effectiveness of the 2 treatments?

d) The solid lines in the plot correspond to the estimated PH survival
function for each treatment group. The plotted points correspond to the
estimated Kaplan Meier estimator for each group. If the PH model is good,
then the plotted points should track the solid lines fairly well. Is the PH
model good? (When β = 0, the PH model for this data is h0(t) = h1(t),
but the PH model could fail, eg if the survival function for treatment A is
higher than that of treatment B until time tA and then the survival function
for treatment B is higher: the survival functions cross at exactly one point
tA > 0.)

16.50. An extension of the PH model is the stratified PH model where
hx,j = exp(βTx)h0,j(t) for j = 1, ..., K where K ≥ 2 is the number of strata
(groups). Testing is done in exactly the same manner as for the PH model,
and the same β is used for each strata, only the baseline function changes.
The regression in problem 16.48 used gender, male and female, as strata.
If the model was good, then a PH model should hold for males and a PH
model should hold for females. For the lung cancer data, females had a higher
survival curve than males for x set to the average values.

An estimated sufficient summary plot (ESSP) is a plot of the ESP = β̂
′
x

versus T , the survival times, where the symbol “0” means the time was
censored and “+” uncensored. If the PH model holds, the variability of the
plotted points should decrease rapidly as ESP increases.

a) Copy and paste commands from (www.math.siu.edu/olive/reghw.txt)
for this problem into R. Click on the plot and hold down the Ctrl and c
buttons simultaneously. Then in the Word Edit menu, select “paste.”
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b) Repeat a) except use the commands for 16.50b.
How does the variability in the plot for a narrow vertical strip at ESP =

0.5 compare to the variability for a narrow vertical strip at ESP = −1.5?

c) Go to (www.math.siu.edu/olive/regpack.txt) and cut and paste the
program vlung2 into R. Type the following two commands and include the
resulting plot in Word.

vlung2(1)

title("males")

d) Type the following two commands and include the resulting plot in
Word.

vlung2(2)

title("females")

e) The plots in c) and d) divide the ESP into 4 slices. The estimated PH
survival function is evaluated at the last point in the first 3 slices and at the
first point in the 4th slice. Pointwise confidence intervals are also included
(dashed upper and lower lines). The plotted circles correspond to the Kaplan
Meier estimator for the points in each slice. The 1st slice is in the NW corner,
the 2nd slice in the NE, the 3rd slice in the SW and the 4th slice in the SE.
Confidence bands that would include an entire reasonable survival function
would be much wider. Hence if the plotted circles are not very far outside
the pointwise CI bands, then the PH model is reasonable.

Is the PH model reasonable for males? Is the PH model reasonable for
females?

16.51. The lung cancer data is the same as that described in 16.48, but
the PH model is stratified on sex with variables ph.ecog, ph.karno, pat.karno
and wt.loss.

a) Copy and paste commands for this problem from
(www.math.siu.edu/olive/reghw.txt) into R. Click on the left window and
hit Enter. Then 4 plots should appear. Include the plot in Word.

b) The plots are of xj versus the martingale residuals when xj is omitted.
The loess curve should be roughly linear (or at least not taking on some
simple shape such as a quadratic) if xj is the correct functional form. If
the loess curve looks like t(xj) for some simple t (eg t(xj) = x2

j), then t(xj)
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should be used instead of xj. Are the loess curves in the 4 plots roughly
linear?

c) Copy and paste commands for this problem from
(www.math.siu.edu/olive/RMLRhw.txt) into R. Click on the left window
and hit Enter. Then 4 plots should appear. Include the plot in Word. Also
include the output from cox.zph(lungfit2) in Word.

d) The plots are of survival times vs scaled Schoenfeld residuals for each
of the 4 variables. The loess curves should be approximately horizontal (0
slope) lines if the PH assumption is reasonable. Alternatively, the pvalue
for Ho slope = 0 from cox.zph should be greater than 0.05 for each of the 4
variables. Is the PH assumption is reasonable? Explain briefly.

16.52. Copy and paste the programs from
(www.math.siu.edu/olive/regpack.txt) into R.

Alternatively, suppose that you download regpack.txt onto a disk. (Use
File and Save Page as.) Enter R and wait for the curser to appear. Then go
to the File menu and drag down Source R Code. A window should appear.
Navigate the Look in box until it says 3 1/2 Floppy(A:). In the Files of
type box choose All files(*.*) and then select regpack.txt. The following line
should appear in the main R window.

> source("A:/regpack.txt")

a) In R, type “library(survival)” if necessary. Then type “phsim(k=1)”.
Hit the up arrow to repeat this command several times. Repeat for “ph-
sim(k=0.5)” and “phsim(k=5)” to make ET plots. The simulated data fol-
lows a PH Weibull regression model with h0(t) = ktk−1. For k = 1 the data
follows a PH exponential regression model. Did the survival times decrease
rapidly as ESP increases?

b) The function phsim2 slices the ESP into 9 groups and computes the
Kaplan Meier estimator for each group. If the PH model is reasonable and n
is large enough, the 9 plots should have approximately the same shape. Type
“phsim2(n=100,k=1)”, then “phsim2(n=100,k=1)” and keep increasing n by
100 until the nine plots look similar (assuming survival decreases from 1 to 0,
and ignoring the labels on the horizontal axis and the + signs that correspond
to censored times). We will say that the plots look similar if n = 800. What
value of n did you get?
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c) The function bphsim3 makes the slice survival plots when the single
covariate is an indicator for 2 groups. The PH assumption is reasonable if
the plotted circles corresponding to the Kaplan Meier estimator track the
solid line corresponding to the PH estimated survival function. Type “bph-
sim3(n=10,k=1)” and repeat several times (use the up arrow). Do the plotted
circle track the solid line fairly well?

d) The function phsim5 is similar but the ESP takes on many values and is
divided into 9 groups. Type “phsim5(n=50,k=1)”, then “phsim5(n=60,k=1)”
and keep increasing n by 10 until the circles track the solid lines well. We will
say that the circles track the solid lines well if they are not very far outside
the pointwise CI bands. What value of n do you get?

16.53. This problem considers the ovarian data from Collett (2003, p.
344-346).

a) Obtain the R code for this problem from
(www.math.siu.edu/olive/reghw.txt). Click on the left screen then hit Enter.
Copy and paste both the output into Word. Also copy and paste the plot
into Word.

b) The plot is a log censored response plot. The top line is the identity
line and the bottom line the least squares line. Is the slope of the least
squares line near 1?

16.54. Copy and paste the programs phdata, weyp and wregsim from
(www.math.siu.edu/olive/regpack.txt) into R (or download regpack on a
disk and use the source command as in Problem 16.52).

Make the left window small by moving the cursor to the lower right corner
of the window, then hold the right mouse button down and drag the window
to the left.

The program wregsim generates Weibull proportional hazards regression
data with baseline hazard function h0(t) = ktk−1.

a) Type the command wregsim(k=1) 5 times (or use the “up arrow”
after typing the command once). This gives 5 simulated Weibull regression
data sets with k = 1. Hence the Weibull regression is also an exponential
regression. Include the last plot in Word.

b) Type the command wregsim(k=5) 5 times. To judge linearity, ignore
the cases on the bottom of the plot with low density (points with log(time)
less than −2). (These tend to be censored cases because time Y = W 1/k
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where W ∼ EXP (λ = exp(SP )) where E(W ) = 1/λ. Z ∼ EXP (.1) has
mean 10 and if Zi < Yi then Zi is usually very small.) Do the plots seem
linear ignoring the cases on the bottom of the plot?

c) Type the command wregsim(k=0.5) 5 times. (Now censored cases
tend to be large because time Y = W 1/k = W 2 where W ∼ EXP (λ).
Z ∼ EXP (.1) has mean 10 and if Zi < Yi then Yi > 10, usually.) Do the
plots seem linear (ignoring cases on the bottom of the plot)?

16.55. This problem considers the ovarian data from Collett (2003, p.
189, 344-346).

a) Obtain the R code for this problem from
(www.math.siu.edu/olive/reghw.txt). Copy and paste the plot into Word.

b) Now obtain the R code for this problem and put the plot into Word.

c) Can the Exponential regression model be used or should the more
complicated Weibull regression model be used?

16.56. Copy and paste the programs phdata and wregsim2 from
(www.math.siu.edu/olive/regpack.txt) into R (or download regpack on a
disk and use the source command as in 16.52).

Make the left window small by moving the cursor to the lower right corner
of the window, then hold the right mouse button down and drag the window
to the left.

The program wregsim2 generates Weibull proportional hazards regression
data with baseline hazard function h0(t) = ktk−1.

a) Type the command wregsim2(n=10, k=1) 5 times (or use the “up
arrow” after typing the command once). This gives 5 simulated Weibull
regression data sets with k = 1. Increase n by 10 until the plotted points
cluster tightly about the identity line in at least 4 out of 5 times. How big is
n?

b) Type the command wregsim2(n =10, k=5) 5 times. Increase n by 10
until the plotted points cluster tightly about the identity line in at least 4
out of 5 times. How big is n?

c) Type the command wregsim2(n=10, k=0.5) 5 times. Increase n by 10
until the plotted points cluster tightly about the identity line in at least 4
out of 5 times. How big is n?
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16.57. Copy and paste the programs phdata and wregsim3 from
(www.math.siu.edu/olive/regpack.txt) into R (or download regpack on a
disk and use the source command as in 16.52).

Make the left window small by moving the cursor to the lower right corner
of the window, then hold the right mouse button down and drag the window
to the left.

The program wregsim3 generates Weibull proportional hazards regression
data with baseline hazard function h0(t) = ktk−1. This is also an AFT model
with α = 0, β′ = −(1/k, ..., 1/k) and σ = 1/k. The program generate 100
Weibull AFT data sets and for each run i computes α̂i, β̂i and σ̂i. Then
the averages are reported. Want mnint ≈ 0, mncoef ≈ −(1/k, ..., 1/k) and
mnscale ≈ 1/k.

a) Make a table (by hand) with headers

n k mnint mncoef mnscale

Fill in the table for n = 20, k = 1; n = 100, k = 1; n = 200, k = 1; n =
20, k = 5; n = 100, k = 5; n = 200, k = 5; n = 20, k = 0.5; n = 100, k =
0.5; n = 200, k = 0.5 by using the commands wregsim3(n=20, k=1), ...,
wregsim3(n=200, k=0.5).

b) Are the estimators close to parameters α, β and σ for n = 20? How
about for n = 100?

16.58. Copy and paste the programs wphsim and swhat from
(www.math.siu.edu/olive/regpack.txt) into R (or download regpack on a
disk and use the source command as in 16.52). Type the command wph-
sim(n=999) to make a slice survival plot based on the WPH survival func-
tion. Are the KM curve and Weibull estimated survival function close for
the plot in the bottom right corner? Include the plot in Word.
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16.59. The R lung cancer data has the time until death or censoring and
status = 0 for censored and 1 for uncensored. Then the covariates are age,
sex = 1 for M and 2 for F, ph.ecog = Ecog performance score 0-4, ph.karno
= a competitor to ph.ecog, pat.karno = patient’s assessment of their karno
score, meal.cal = calories consumed at meals excluding beverages and snacks
and wt.loss = weight loss in last 6 months. The R output will use a stratified
proportional hazards model that is stratified on sex with variables ph.ecog,
pat.karno and wt.loss.

a) Copy and paste commands for this problem from
(www.math.siu.edu/olive/reghw.txt) into R. Click on the left window and
hit Enter. Include the plot in Word. Also include the R output in Word.

b) Test whether β = 0.

c) Based on the plot, do females or males appear to have better survival
rates?
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