Chapter 14

Multivariate Models

Definition 14.1. An important *multivariate location and dispersion model* is a joint distribution with joint pdf

 $f(\boldsymbol{z}|\boldsymbol{\mu},\boldsymbol{\Sigma})$

for a $p \times 1$ random vector \boldsymbol{x} that is completely specified by a $p \times 1$ population location vector $\boldsymbol{\mu}$ and a $p \times p$ symmetric positive definite population dispersion matrix $\boldsymbol{\Sigma}$. Thus $P(\boldsymbol{x} \in A) = \int_A f(\boldsymbol{z}) d\boldsymbol{z}$ for suitable sets A.

The multivariate location and dispersion model is in many ways similar to the multiple linear regression model. The data are iid vectors from some distribution such as the multivariate normal (MVN) distribution. The location parameter μ of interest may be the mean or the center of symmetry of an elliptically contoured distribution. Hyperellipsoids will be estimated instead of hyperplanes, and Mahalanobis distances will be used instead of absolute residuals to determine if an observation is a potential outlier.

Assume that $X_1, ..., X_n$ are *n* iid $p \times 1$ random vectors and that the joint pdf of X_1 is $f(\boldsymbol{z}|\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Also assume that the data $X_i = \boldsymbol{x}_i$ has been observed and stored in an $n \times p$ matrix

$$\boldsymbol{W} = \begin{bmatrix} \boldsymbol{x}_1^T \\ \vdots \\ \boldsymbol{x}_n^T \end{bmatrix} = \begin{bmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,p} \\ x_{2,1} & x_{2,2} & \dots & x_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \dots & x_{n,p} \end{bmatrix} = \begin{bmatrix} \boldsymbol{w}^1 & \boldsymbol{w}^2 & \dots & \boldsymbol{w}^p \end{bmatrix}$$

where the *i*th row of \boldsymbol{W} is \boldsymbol{x}_i^T and the *j*th column is \boldsymbol{w}^j . Each column \boldsymbol{w}^j of \boldsymbol{W} corresponds to a variable. For example, the data may consist of *n* visitors

to a hospital where the p = 2 variables *height* and *weight* of each individual were measured.

There are some differences in the notation used in multiple linear regression and multivariate location dispersion models. Notice that \boldsymbol{W} could be used as the design matrix in multiple linear regression although usually the first column of the regression design matrix is a vector of ones. The $n \times p$ design matrix in the multiple linear regression model was denoted by \boldsymbol{X} and $X_i \equiv \boldsymbol{x}^i$ denoted the *i*th column of \boldsymbol{X} . In the multivariate location dispersion model, \boldsymbol{X} and \boldsymbol{X}_i will be used to denote a $p \times 1$ random vector with observed value \boldsymbol{x}_i , and \boldsymbol{x}_i^T is the *i*th row of the data matrix \boldsymbol{W} . Johnson and Wichern (1988, p. 7, 53) uses \boldsymbol{X} to denote the $n \times p$ data matrix and a $n \times 1$ random vector, relying on the context to indicate whether \boldsymbol{X} is a random vector or data matrix. Software tends to use different notation. For example, R/Splus will use commands such as

var(x)

to compute the sample covariance matrix of the data. Hence x corresponds to W, x[,1] is the first column of x and x[4,] is the 4th row of x.

14.1 The Multivariate Normal Distribution

Definition 14.2: Rao (1965, p. 437). A $p \times 1$ random vector X has a p-dimensional multivariate normal distribution $N_p(\mu, \Sigma)$ iff $t^T X$ has a univariate normal distribution for any $p \times 1$ vector t.

If Σ is positive definite, then X has a pdf

$$f(\boldsymbol{z}) = \frac{1}{(2\pi)^{p/2} |\boldsymbol{\Sigma}|^{1/2}} e^{-(1/2)(\boldsymbol{z} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{z} - \boldsymbol{\mu})}$$
(14.1)

where $|\Sigma|^{1/2}$ is the square root of the determinant of Σ . Note that if p = 1, then the quadratic form in the exponent is $(z - \mu)(\sigma^2)^{-1}(z - \mu)$ and X has the univariate $N(\mu, \sigma^2)$ pdf. If Σ is positive semidefinite but not positive definite, then X has a degenerate distribution. For example, the univariate $N(0, 0^2)$ distribution is degenerate (the point mass at 0).

Definition 14.3. The *population mean* of a random $p \times 1$ vector $\boldsymbol{X} = (X_1, ..., X_p)^T$ is

$$E(\mathbf{X}) = (E(X_1), ..., E(X_p))^T$$

and the $p \times p$ population covariance matrix

$$\operatorname{Cov}(\boldsymbol{X}) = E(\boldsymbol{X} - E(\boldsymbol{X}))(\boldsymbol{X} - E(\boldsymbol{X}))^T = ((\sigma_{i,j})).$$

That is, the *ij* entry of $Cov(\mathbf{X})$ is $Cov(X_i, X_j) = \sigma_{i,j}$.

The covariance matrix is also called the variance–covariance matrix and variance matrix. Sometimes the notation $Var(\mathbf{X})$ is used. Note that $Cov(\mathbf{X})$ is a symmetric positive semidefinite matrix. If \mathbf{X} and \mathbf{Y} are $p \times 1$ random vectors, \mathbf{a} a conformable constant vector and \mathbf{A} and \mathbf{B} are conformable constant matrices, then

$$E(\boldsymbol{a} + \boldsymbol{X}) = \boldsymbol{a} + E(\boldsymbol{X}) \text{ and } E(\boldsymbol{X} + \boldsymbol{Y}) = E(\boldsymbol{X}) + E(\boldsymbol{Y})$$
 (14.2)

and

$$E(\mathbf{AX}) = \mathbf{A}E(\mathbf{X})$$
 and $E(\mathbf{AXB}) = \mathbf{A}E(\mathbf{X})\mathbf{B}$. (14.3)

Thus

$$\operatorname{Cov}(\boldsymbol{a} + \boldsymbol{A}\boldsymbol{X}) = \operatorname{Cov}(\boldsymbol{A}\boldsymbol{X}) = \boldsymbol{A}\operatorname{Cov}(\boldsymbol{X})\boldsymbol{A}^{T}.$$
 (14.4)

Some important properties of MVN distributions are given in the following three propositions. These propositions can be proved using results from Johnson and Wichern (1988, p. 127-132).

Proposition 14.1. a) If $\boldsymbol{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $E(\boldsymbol{X}) = \boldsymbol{\mu}$ and

 $\operatorname{Cov}(\boldsymbol{X}) = \boldsymbol{\Sigma}.$

b) If $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then any linear combination $\mathbf{t}^T \mathbf{X} = t_1 X_1 + \cdots + t_p X_p \sim N_1(\mathbf{t}^T \boldsymbol{\mu}, \mathbf{t}^T \boldsymbol{\Sigma} \mathbf{t})$. Conversely, if $\mathbf{t}^T \mathbf{X} \sim N_1(\mathbf{t}^T \boldsymbol{\mu}, \mathbf{t}^T \boldsymbol{\Sigma} \mathbf{t})$ for every $p \times 1$ vector \mathbf{t} , then $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

c) The joint distribution of independent normal random variables is MVN. If $X_1, ..., X_p$ are independent univariate normal $N(\mu_i, \sigma_i^2)$ random vectors, then $\mathbf{X} = (X_1, ..., X_p)^T$ is $N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where $\boldsymbol{\mu} = (\mu_1, ..., \mu_p)$ and $\boldsymbol{\Sigma} = diag(\sigma_1^2, ..., \sigma_p^2)$ (so the off diagonal entries $\sigma_{i,j} = 0$ while the diagonal entries of $\boldsymbol{\Sigma}$ are $\sigma_{i,i} = \sigma_i^2$).

d) If $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and if \mathbf{A} is a $q \times p$ matrix, then $\mathbf{A}\mathbf{X} \sim N_q(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^T)$. If \mathbf{a} is a $p \times 1$ vector of constants, then $\mathbf{a} + \mathbf{X} \sim N_p(\mathbf{a} + \boldsymbol{\mu}, \boldsymbol{\Sigma})$. It will be useful to partition X, μ , and Σ . Let X_1 and μ_1 be $q \times 1$ vectors, let X_2 and μ_2 be $(p-q) \times 1$ vectors, let Σ_{11} be a $q \times q$ matrix, let Σ_{12} be a $q \times (p-q)$ matrix, let Σ_{21} be a $(p-q) \times q$ matrix, and let Σ_{22} be a $(p-q) \times (p-q)$ matrix. Then

$$oldsymbol{X} = \left(egin{array}{c} oldsymbol{X}_1\ oldsymbol{X}_2 \end{array}
ight), \ oldsymbol{\mu} = \left(egin{array}{c} oldsymbol{\mu}_1\ oldsymbol{\mu}_2 \end{array}
ight), \ ext{and} \ oldsymbol{\Sigma} = \left(egin{array}{c} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12}\ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{array}
ight).$$

Proposition 14.2. a) All subsets of a MVN are MVN: $(X_{k_1}, ..., X_{k_q})^T \sim N_q(\tilde{\boldsymbol{\mu}}, \tilde{\boldsymbol{\Sigma}})$ where $\tilde{\boldsymbol{\mu}}_i = E(X_{k_i})$ and $\tilde{\boldsymbol{\Sigma}}_{ij} = \text{Cov}(X_{k_i}, X_{k_j})$. In particular, $\boldsymbol{X}_1 \sim N_q(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_{11})$ and $\boldsymbol{X}_2 \sim N_{p-q}(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_{22})$. b) If \boldsymbol{X}_1 and \boldsymbol{X}_2 are independent, then $\text{Cov}(\boldsymbol{X}_1, \boldsymbol{X}_2) = \boldsymbol{\Sigma}_{12} =$

b) If
$$\mathbf{X}_1$$
 and \mathbf{X}_2 are independent, then $\operatorname{Cov}(\mathbf{X}_1, \mathbf{X}_2) = \Sigma_{12} = E[(\mathbf{X}_1 - E(\mathbf{X}_1))(\mathbf{X}_2 - E(\mathbf{X}_2))^T] = \mathbf{0}$, a $q \times (p-q)$ matrix of zeroes.
c) If $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then \mathbf{X}_1 and \mathbf{X}_2 are independent iff $\boldsymbol{\Sigma}_{12} = \mathbf{0}$.
d) If $\mathbf{X}_1 \sim N_q(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_{11})$ and $\mathbf{X}_2 \sim N_{p-q}(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_{22})$ are independent, then
 $\begin{pmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{pmatrix} \sim N_p \begin{pmatrix} \begin{pmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_{22} \end{pmatrix} \end{pmatrix}$.

Proposition 14.3. The conditional distribution of a MVN is MVN. If $X \sim N_p(\mu, \Sigma)$, then the conditional distribution of X_1 given that $X_2 = x_2$ is multivariate normal with mean $\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(x_2 - \mu_2)$ and covariance $\Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$. That is,

$$X_1 | X_2 = x_2 \sim N_q (\mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x_2 - \mu_2), \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}).$$

Example 14.1. Let p = 2 and let $(Y, X)^T$ have a bivariate normal distribution. That is,

$$\begin{pmatrix} Y \\ X \end{pmatrix} \sim N_2 \left(\begin{pmatrix} \mu_Y \\ \mu_X \end{pmatrix}, \begin{pmatrix} \sigma_Y^2 & \operatorname{Cov}(Y, X) \\ \operatorname{Cov}(X, Y) & \sigma_X^2 \end{pmatrix} \right).$$

Also recall that the population correlation between X and Y is given by

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{VAR}(X)}\sqrt{\operatorname{VAR}(Y)}} = \frac{\sigma_{X,Y}}{\sigma_X\sigma_Y}$$

if $\sigma_X > 0$ and $\sigma_Y > 0$. Then $Y|X = x \sim N(E(Y|X = x), \text{VAR}(Y|X = x))$ where the conditional mean

$$E(Y|X = x) = \mu_Y + \text{Cov}(Y, X) \frac{1}{\sigma_X^2} (x - \mu_X) = \mu_Y + \rho(X, Y) \sqrt{\frac{\sigma_Y^2}{\sigma_X^2} (x - \mu_X)}$$

and the conditional variance

$$\operatorname{VAR}(Y|X=x) = \sigma_Y^2 - \operatorname{Cov}(X,Y) \frac{1}{\sigma_X^2} \operatorname{Cov}(X,Y)$$
$$= \sigma_Y^2 - \rho(X,Y) \sqrt{\frac{\sigma_Y^2}{\sigma_X^2}} \rho(X,Y) \sqrt{\frac{\sigma_X^2}{\sigma_X^2}} \sqrt{\frac{\sigma_Y^2}{\sigma_X^2}}$$
$$= \sigma_Y^2 - \rho^2(X,Y) \sigma_Y^2 = \sigma_Y^2 [1 - \rho^2(X,Y)].$$

Also aX + bY is univariate normal with mean $a\mu_X + b\mu_Y$ and variance

$$a^2\sigma_X^2 + b^2\sigma_Y^2 + 2ab \operatorname{Cov}(X,Y)$$

Remark 14.1. There are several common misconceptions. First, it is not true that every linear combination $t^T X$ of normal random variables is a normal random variable, and it is not true that all uncorrelated normal random variables are independent. The key condition in Proposition 14.1b and Proposition 14.2c is that the joint distribution of X is MVN. It is possible that $X_1, X_2, ..., X_p$ each has a marginal distribution that is univariate normal, but the joint distribution of X is not MVN. The following example is from Rohatgi (1976, p. 229). Suppose that the joint pdf of X and Y is a mixture of two bivariate normal distributions both with EX = EY = 0 and VAR(X) = VAR(Y) = 1, but $Cov(X, Y) = \pm \rho$. Hence f(x, y) =

$$\frac{1}{2} \frac{1}{2\pi\sqrt{1-\rho^2}} \exp(\frac{-1}{2(1-\rho^2)}(x^2 - 2\rho xy + y^2)) + \frac{1}{2} \frac{1}{2\pi\sqrt{1-\rho^2}} \exp(\frac{-1}{2(1-\rho^2)}(x^2 + 2\rho xy + y^2)) \equiv \frac{1}{2}f_1(x,y) + \frac{1}{2}f_2(x,y)$$

where x and y are real and $0 < \rho < 1$. Since both marginal distributions of $f_i(x, y)$ are N(0,1) for i = 1 and 2 by Proposition 14.2 a), the marginal distributions of X and Y are N(0,1). Since $\int \int xy f_i(x, y) dx dy = \rho$ for i = 1 and $-\rho$ for i = 2, X and Y are uncorrelated, but X and Y are not independent since $f(x, y) \neq f_X(x) f_Y(y)$.

Remark 14.2. In Proposition 14.3, suppose that $\boldsymbol{X} = (Y, X_2, ..., X_p)^T$. Let $X_1 = Y$ and $\boldsymbol{X}_2 = (X_2, ..., X_p)^T$. Then $E[Y|\boldsymbol{X}_2] = \beta_1 + \beta_2 X_2 + \cdots + \beta_p X_p$ and $\text{VAR}[Y|\boldsymbol{X}_2]$ is a constant that does not depend on \boldsymbol{X}_2 . Hence $Y = \beta_1 + \beta_2 X_2 + \cdots + \beta_p X_p + e$ follows the multiple linear regression model.

14.2 Elliptically Contoured Distributions

Definition 14.4: Johnson (1987, p. 107-108). A $p \times 1$ random vector X has an *elliptically contoured distribution*, also called an *elliptically symmetric distribution*, if X has density

$$f(\boldsymbol{z}) = k_p |\boldsymbol{\Sigma}|^{-1/2} g[(\boldsymbol{z} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{z} - \boldsymbol{\mu})], \qquad (14.5)$$

and we say \boldsymbol{X} has an elliptically contoured $EC_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}, g)$ distribution.

If X has an elliptically contoured (EC) distribution, then the characteristic function of X is

$$\phi_{\boldsymbol{X}}(\boldsymbol{t}) = \exp(i\boldsymbol{t}^T\boldsymbol{\mu})\psi(\boldsymbol{t}^T\boldsymbol{\Sigma}\boldsymbol{t})$$
(14.6)

for some function ψ . If the second moments exist, then

$$E(\boldsymbol{X}) = \boldsymbol{\mu} \tag{14.7}$$

and

$$\operatorname{Cov}(\boldsymbol{X}) = c_X \boldsymbol{\Sigma} \tag{14.8}$$

where

$$c_X = -2\psi'(0).$$

Definition 14.5. The population squared Mahalanobis distance

$$U \equiv D^2 = D^2(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = (\boldsymbol{X} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{X} - \boldsymbol{\mu})$$
(14.9)

has density

$$h(u) = \frac{\pi^{p/2}}{\Gamma(p/2)} k_p u^{p/2-1} g(u).$$
(14.10)

For c > 0, an $EC_p(\boldsymbol{\mu}, c\boldsymbol{I}, g)$ distribution is spherical about $\boldsymbol{\mu}$ where \boldsymbol{I} is the $p \times p$ identity matrix. The multivariate normal distribution $N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ has $k_p = (2\pi)^{-p/2}, \ \psi(u) = g(u) = \exp(-u/2)$ and h(u) is the χ_p^2 density.

The following lemma is useful for proving properties of EC distributions without using the characteristic function (14.6). See Eaton (1986) and Cook (1998, p. 57, 130).

Lemma 14.4. Let X be a $p \times 1$ random vector with 1st moments; ie, E(X) exists. Let B be any constant full rank $p \times r$ matrix where $1 \le r \le p$. Then X is elliptically contoured iff for all such conforming matrices B,

$$E(\boldsymbol{X}|\boldsymbol{B}^{T}|\boldsymbol{X}) = \boldsymbol{\mu} + \boldsymbol{M}_{B}\boldsymbol{B}^{T}(\boldsymbol{X} - \boldsymbol{\mu}) = \boldsymbol{a}_{B} + \boldsymbol{M}_{B}\boldsymbol{B}^{T}\boldsymbol{X}$$
(14.11)

where the $p \times 1$ constant vector \boldsymbol{a}_B and the $p \times r$ constant matrix \boldsymbol{M}_B both depend on \boldsymbol{B} .

To use this lemma to prove interesting properties, partition \mathbf{X} , $\boldsymbol{\mu}$, and $\boldsymbol{\Sigma}$. Let \mathbf{X}_1 and $\boldsymbol{\mu}_1$ be $q \times 1$ vectors, let \mathbf{X}_2 and $\boldsymbol{\mu}_2$ be $(p-q) \times 1$ vectors. Let $\boldsymbol{\Sigma}_{11}$ be a $q \times q$ matrix, let $\boldsymbol{\Sigma}_{12}$ be a $q \times (p-q)$ matrix, let $\boldsymbol{\Sigma}_{21}$ be a $(p-q) \times q$ matrix, and let $\boldsymbol{\Sigma}_{22}$ be a $(p-q) \times (p-q)$ matrix. Then

$$oldsymbol{X} = \left(egin{array}{c} oldsymbol{X}_1\ oldsymbol{X}_2\end{array}
ight), \ oldsymbol{\mu} = \left(egin{array}{c} oldsymbol{\mu}_1\ oldsymbol{\mu}_2\end{array}
ight), \ ext{and} \ oldsymbol{\Sigma} = \left(egin{array}{c} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12}\ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22}\end{array}
ight).$$

Also assume that the $(p+1) \times 1$ vector $(Y, \mathbf{X}^T)^T$ is $EC_{p+1}(\boldsymbol{\mu}, \boldsymbol{\Sigma}, g)$ where Y is a random variable, \mathbf{X} is a $p \times 1$ vector, and use

$$\begin{pmatrix} Y \\ \boldsymbol{X} \end{pmatrix}, \ \boldsymbol{\mu} = \begin{pmatrix} \mu_Y \\ \boldsymbol{\mu}_X \end{pmatrix}, \text{ and } \boldsymbol{\Sigma} = \begin{pmatrix} \Sigma_{YY} & \boldsymbol{\Sigma}_{YX} \\ \boldsymbol{\Sigma}_{XY} & \boldsymbol{\Sigma}_{XX} \end{pmatrix}.$$

Another useful fact is that a_B and M_B do not depend on g:

$$\boldsymbol{a}_B = \boldsymbol{\mu} - \boldsymbol{M}_B \boldsymbol{B}^T \boldsymbol{\mu} = (\boldsymbol{I}_p - \boldsymbol{M}_B \boldsymbol{B}^T) \boldsymbol{\mu},$$

and

$$\boldsymbol{M}_B = \boldsymbol{\Sigma} \boldsymbol{B} (\boldsymbol{B}^T \boldsymbol{\Sigma} \boldsymbol{B})^{-1}.$$

See Problem 14.11. Notice that in the formula for M_B , Σ can be replaced by $c\Sigma$ where c > 0 is a constant. In particular, if the EC distribution has 2nd moments, Cov(X) can be used instead of Σ .

Proposition 14.5. Let $X \sim EC_p(\mu, \Sigma, g)$ and assume that E(X) exists.

- a) Any subset of \boldsymbol{X} is EC, in particular \boldsymbol{X}_1 is EC.
- b) (Cook 1998 p. 131, Kelker 1970). If $Cov(\mathbf{X})$ is nonsingular,

$$\operatorname{Cov}(\boldsymbol{X}|\boldsymbol{B}^{T}\boldsymbol{X}) = d_{g}(\boldsymbol{B}^{T}\boldsymbol{X})[\boldsymbol{\Sigma} - \boldsymbol{\Sigma}\boldsymbol{B}(\boldsymbol{B}^{T}\boldsymbol{\Sigma}\boldsymbol{B})^{-1}\boldsymbol{B}^{T}\boldsymbol{\Sigma}]$$

where the real valued function $d_g(\boldsymbol{B}^T\boldsymbol{X})$ is constant iff \boldsymbol{X} is MVN.

Proof of a). Let \boldsymbol{A} be an arbitrary full rank $q \times r$ matrix where $1 \leq r \leq q$. Let

$$oldsymbol{B}=\left(egin{array}{c}oldsymbol{A}\oldsymbol{0}\end{array}
ight).$$

Then $\boldsymbol{B}^T \boldsymbol{X} = \boldsymbol{A}^T \boldsymbol{X}_1$, and

$$E[\boldsymbol{X}|\boldsymbol{B}^{T}\boldsymbol{X}] = E\begin{bmatrix}\begin{pmatrix}\boldsymbol{X}_{1}\\\boldsymbol{X}_{2}\end{pmatrix}|\boldsymbol{A}^{T}\boldsymbol{X}_{1}] = \\ \begin{pmatrix}\boldsymbol{\mu}_{1}\\\boldsymbol{\mu}_{2}\end{pmatrix} + \begin{pmatrix}\boldsymbol{M}_{1B}\\\boldsymbol{M}_{2B}\end{pmatrix} \begin{pmatrix}\boldsymbol{A}^{T} & \boldsymbol{0}^{T}\end{pmatrix} \begin{pmatrix}\boldsymbol{X}_{1} - \boldsymbol{\mu}_{1}\\\boldsymbol{X}_{2} - \boldsymbol{\mu}_{2}\end{pmatrix}$$

by Lemma 14.4. Hence $E[\mathbf{X}_1|\mathbf{A}^T\mathbf{X}_1] = \boldsymbol{\mu}_1 + \boldsymbol{M}_{1B}\mathbf{A}^T(\mathbf{X}_1 - \boldsymbol{\mu}_1)$. Since \mathbf{A} was arbitrary, \mathbf{X}_1 is EC by Lemma 14.4. Notice that $\mathbf{M}_B = \boldsymbol{\Sigma} \mathbf{B} (\mathbf{B}^T \boldsymbol{\Sigma} \mathbf{B})^{-1} =$

Hence

$$\boldsymbol{M}_{1B} = \boldsymbol{\Sigma}_{11} \boldsymbol{A} (\boldsymbol{A}^T \boldsymbol{\Sigma}_{11} \boldsymbol{A})^{-1}$$

and X_1 is EC with location and dispersion parameters μ_1 and Σ_{11} . QED

Proposition 14.6. Let $(Y, \mathbf{X}^T)^T$ be $EC_{p+1}(\boldsymbol{\mu}, \boldsymbol{\Sigma}, g)$ where Y is a random variable.

a) Assume that $E[(Y, \mathbf{X}^T)^T]$ exists. Then $E(Y|\mathbf{X}) = \alpha + \boldsymbol{\beta}^T \mathbf{X}$ where $\alpha = \mu_Y - \boldsymbol{\beta}^T \boldsymbol{\mu}_X$ and $\boldsymbol{\beta} = \boldsymbol{\Sigma}_{XX}^{-1} \boldsymbol{\Sigma}_{XY}.$

b) Even if the first moment does not exist, the conditional median

$$MED(Y|X) = \alpha + \beta^T X$$

where α and β are given in a).

Proof. a) The trick is to choose \boldsymbol{B} so that Lemma 14.4 applies. Let

$$oldsymbol{B} = \left(egin{array}{c} oldsymbol{0}^T \ oldsymbol{I}_p \end{array}
ight).$$

Then $\boldsymbol{B}^T \boldsymbol{\Sigma} \boldsymbol{B} = \boldsymbol{\Sigma}_{XX}$ and

$$\boldsymbol{\Sigma} \boldsymbol{B} = \left(egin{array}{c} \boldsymbol{\Sigma}_{YX} \ \boldsymbol{\Sigma}_{XX} \end{array}
ight).$$

Now

$$E\begin{bmatrix} \begin{pmatrix} Y \\ X \end{pmatrix} \mid X \end{bmatrix} = E\begin{bmatrix} \begin{pmatrix} Y \\ X \end{pmatrix} \mid B^T \begin{pmatrix} Y \\ X \end{pmatrix} \end{bmatrix}$$
$$= \mu + \Sigma B (B^T \Sigma B)^{-1} B^T \begin{pmatrix} Y - \mu_Y \\ X - \mu_X \end{pmatrix}$$

by Lemma 14.4. The right hand side of the last equation is equal to

$$\boldsymbol{\mu} + \begin{pmatrix} \boldsymbol{\Sigma}_{YX} \\ \boldsymbol{\Sigma}_{XX} \end{pmatrix} \boldsymbol{\Sigma}_{XX}^{-1} (\boldsymbol{X} - \boldsymbol{\mu}_X) = \begin{pmatrix} \mu_Y - \boldsymbol{\Sigma}_{YX} \boldsymbol{\Sigma}_{XX}^{-1} \boldsymbol{\mu}_X + \boldsymbol{\Sigma}_{YX} \boldsymbol{\Sigma}_{XX}^{-1} \boldsymbol{X} \\ \boldsymbol{X} \end{pmatrix}$$

and the result follows since

$$\boldsymbol{\beta}^T = \boldsymbol{\Sigma}_{YX} \boldsymbol{\Sigma}_{XX}^{-1}.$$

b) See Croux, Dehon, Rousseeuw and Van Aelst (2001) for references.

Example 14.2. This example illustrates another application of Lemma 14.4. Suppose that X comes from a mixture of two multivariate normals with the same mean and proportional covariance matrices. That is, let

$$\boldsymbol{X} \sim (1 - \gamma) N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}) + \gamma N_p(\boldsymbol{\mu}, c\boldsymbol{\Sigma})$$

where c > 0 and $0 < \gamma < 1$. Since the multivariate normal distribution is elliptically contoured

$$E(\boldsymbol{X}|\boldsymbol{B}^{T}\boldsymbol{X}) = (1-\gamma)[\boldsymbol{\mu} + \boldsymbol{M}_{1}\boldsymbol{B}^{T}(\boldsymbol{X}-\boldsymbol{\mu})] + \gamma[\boldsymbol{\mu} + \boldsymbol{M}_{2}\boldsymbol{B}^{T}(\boldsymbol{X}-\boldsymbol{\mu})]$$
$$= \boldsymbol{\mu} + [(1-\gamma)\boldsymbol{M}_{1} + \gamma\boldsymbol{M}_{2}]\boldsymbol{B}^{T}(\boldsymbol{X}-\boldsymbol{\mu}) \equiv \boldsymbol{\mu} + \boldsymbol{M}\boldsymbol{B}^{T}(\boldsymbol{X}-\boldsymbol{\mu}).$$

Since M_B only depends on B and Σ , it follows that $M_1 = M_2 = M = M_B$. Hence X has an elliptically contoured distribution by Lemma 14.4.

14.3 Sample Mahalanobis Distances

In the multivariate location and dispersion model, sample Mahalanobis distances play a role similar to that of residuals in multiple linear regression. The observed data $\boldsymbol{X}_i = \boldsymbol{x}_i$ for i = 1, ..., n is collected in an $n \times p$ matrix \boldsymbol{W} with n rows $\boldsymbol{x}_1^T, ..., \boldsymbol{x}_n^T$. Let the $p \times 1$ column vector $T(\boldsymbol{W})$ be a multivariate location estimator, and let the $p \times p$ symmetric positive definite matrix $\boldsymbol{C}(\boldsymbol{W})$ be a covariance estimator.

Definition 14.6. The *i*th squared Mahalanobis distance is

$$D_i^2 = D_i^2(T(\boldsymbol{W}), \boldsymbol{C}(\boldsymbol{W})) = (\boldsymbol{x}_i - T(\boldsymbol{W}))^T \boldsymbol{C}^{-1}(\boldsymbol{W})(\boldsymbol{x}_i - T(\boldsymbol{W}))$$
 (14.12)

for each point \boldsymbol{x}_i . Notice that D_i^2 is a random variable (scalar valued).

Notice that the population squared Mahalanobis distance is

$$D_{\boldsymbol{x}}^{2}(\boldsymbol{\mu},\boldsymbol{\Sigma}) = (\boldsymbol{x} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})$$
(14.13)

and that the term $\Sigma^{-1/2}(\boldsymbol{x} - \boldsymbol{\mu})$ is the *p*-dimensional analog to the *z*-score used to transform a univariate $N(\boldsymbol{\mu}, \sigma^2)$ random variable into a N(0, 1) random variable. Hence the sample Mahalanobis distance $D_i = \sqrt{D_i^2}$ is an analog of the absolute value $|z_i|$ of the sample *z*-score $z_i = (x_i - \overline{X})/\hat{\sigma}$. Also notice that the Euclidean distance of \boldsymbol{x}_i from the estimate of center $T(\boldsymbol{W})$ is $D_i(T(\boldsymbol{W}), \boldsymbol{I}_p)$ where \boldsymbol{I}_p is the $p \times p$ identity matrix.

Example 14.3. The contours of constant density for the $N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ distribution are ellipsoids defined by \boldsymbol{x} such that $(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) = a^2$. An α -density region R_{α} is a set such that $P(\boldsymbol{X} \in R_{\alpha}) = \alpha$, and for the $N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ distribution, the regions of highest density are sets of the form

$$\{\boldsymbol{x}: (\boldsymbol{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}-\boldsymbol{\mu}) \leq \chi_p^2(\alpha)\} = \{\boldsymbol{x}: D_{\boldsymbol{x}}^2(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \leq \chi_p^2(\alpha)\}$$

where $P(W \leq \chi_p^2(\alpha)) = \alpha$ if $W \sim \chi_p^2$. If the \mathbf{X}_i are *n* iid random vectors each with a $N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ pdf, then a scatterplot of $X_{i,k}$ versus $X_{i,j}$ should be ellipsoidal for $k \neq j$. Similar statements hold if \mathbf{X} is $EC_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}, g)$, but the α -density region will use a constant U_α obtained from Equation (14.10).

The classical Mahalanobis distance corresponds to the sample mean and sample covariance matrix

$$T(\boldsymbol{W}) = \overline{\boldsymbol{x}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_i,$$

and

$$oldsymbol{C}(oldsymbol{W}) = oldsymbol{S} = rac{1}{n-1} \sum_{i=1}^n (oldsymbol{x}_i - \overline{oldsymbol{x}}) (oldsymbol{x}_i - \overline{oldsymbol{x}})^T$$

and will be denoted by MD_i . When $T(\mathbf{W})$ and $C(\mathbf{W})$ are estimators other than the sample mean and covariance, $D_i = \sqrt{D_i^2}$ will sometimes be denoted by RD_i .

14.4 Complements

Johnson and Wichern (1988) and Mardia, Kent and Bibby (1979) are good references for multivariate statistical analysis based on the multivariate normal distribution. The elliptically contoured distributions generalize the multivariate normal distribution and are discussed in Johnson (1987). Cambanis, Huang and Simons (1981), Chmielewski (1981) and Eaton (1986) are also important references.

14.5 Problems

14.1^{*}. Suppose that

$$\begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{pmatrix} \sim N_4 \begin{pmatrix} 49 \\ 100 \\ 17 \\ 7 \end{pmatrix}, \begin{pmatrix} 3 & 1 & -1 & 0 \\ 1 & 6 & 1 & -1 \\ -1 & 1 & 4 & 0 \\ 0 & -1 & 0 & 2 \end{pmatrix} \end{pmatrix}.$$

- a) Find the distribution of X_2 .
- b) Find the distribution of $(X_1, X_3)^T$.
- c) Which pairs of random variables X_i and X_j are independent?
- d) Find the correlation $\rho(X_1, X_3)$.

14.2^{*}. Recall that if $X \sim N_p(\mu, \Sigma)$, then the conditional distribution of X_1 given that $X_2 = x_2$ is multivariate normal with mean $\mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x_2 - \mu_2)$ and covariance matrix $\Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$.

Let $\sigma_{12} = \operatorname{Cov}(Y, X)$ and suppose Y and X follow a bivariate normal distribution

$$\begin{pmatrix} Y \\ X \end{pmatrix} \sim N_2 \left(\begin{pmatrix} 49 \\ 100 \end{pmatrix}, \begin{pmatrix} 16 & \sigma_{12} \\ \sigma_{12} & 25 \end{pmatrix} \right).$$

a) If $\sigma_{12} = 0$, find Y|X. Explain your reasoning.

- b) If $\sigma_{12} = 10$ find E(Y|X).
- c) If $\sigma_{12} = 10$, find $\operatorname{Var}(Y|X)$.

14.3. Let $\sigma_{12} = Cov(Y, X)$ and suppose Y and X follow a bivariate normal distribution

$$\left(\begin{array}{c}Y\\X\end{array}\right) \sim N_2 \left(\begin{array}{c}\left(\begin{array}{c}15\\20\end{array}\right), \quad \left(\begin{array}{c}64&\sigma_{12}\\\sigma_{12}&81\end{array}\right)\right).$$

- a) If $\sigma_{12} = 10$ find E(Y|X).
- b) If $\sigma_{12} = 10$, find $\operatorname{Var}(Y|X)$.
- c) If $\sigma_{12} = 10$, find $\rho(Y, X)$, the correlation between Y and X.

14.4. Suppose that

$$\boldsymbol{X} \sim (1-\gamma)EC_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}, g_1) + \gamma EC_p(\boldsymbol{\mu}, c\boldsymbol{\Sigma}, g_2)$$

where c > 0 and $0 < \gamma < 1$. Following Example 14.2, show that X has an elliptically contoured distribution assuming that all relevant expectations exist.

14.5. In Proposition 14.5b, show that if the second moments exist, then Σ can be replaced by Cov(X).

crancap	hdlen	hdht	Data for 14.6
1485	175	132	
1450	191	117	
1460	186	122	
1425	191	125	
1430	178	120	
1290	180	117	
90	75	51	

14.6^{*}. The table (W) above represents 3 head measurements on 6 people and one ape. Let $X_1 = cranial \ capacity$, $X_2 = head \ length$ and $X_3 = head$ height. Let $\boldsymbol{x} = (X_1, X_2, X_3)^T$. Several multivariate location estimators, including the coordinatewise median and sample mean, are found by applying a univariate location estimator to each random variable and then collecting the results into a vector. a) Find the coordinatewise median MED(W).

b) Find the sample mean \overline{x} .

14.7. Using the notation in Proposition 14.6, show that if the second moments exist, then

$$\boldsymbol{\Sigma}_{XX}^{-1}\boldsymbol{\Sigma}_{XY} = [\operatorname{Cov}(\boldsymbol{X})]^{-1}\operatorname{Cov}(\boldsymbol{X},Y).$$

14.8. Using the notation under Lemma 14.4, show that if X is elliptically contoured, then the conditional distribution of X_1 given that $X_2 = x_2$ is also elliptically contoured.

14.9^{*}. Suppose $\boldsymbol{Y} \sim N_n(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I})$. Find the distribution of $(\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$ if \boldsymbol{X} is an $n \times p$ full rank constant matrix.

14.10. Recall that $\operatorname{Cov}(\boldsymbol{X}, \boldsymbol{Y}) = E[(\boldsymbol{X} - E(\boldsymbol{X}))(\boldsymbol{Y} - E(\boldsymbol{Y}))^T]$. Using the notation of Proposition 14.6, let $(Y, \boldsymbol{X}^T)^T$ be $EC_{p+1}(\boldsymbol{\mu}, \boldsymbol{\Sigma}, g)$ where Y is a random variable. Let the covariance matrix of (Y, \boldsymbol{X}^T) be

$$\operatorname{Cov}((Y, \boldsymbol{X}^{T})^{T}) = c \begin{pmatrix} \boldsymbol{\Sigma}_{YY} & \boldsymbol{\Sigma}_{YX} \\ \boldsymbol{\Sigma}_{XY} & \boldsymbol{\Sigma}_{XX} \end{pmatrix} = \begin{pmatrix} \operatorname{VAR}(Y) & \operatorname{Cov}(Y, \boldsymbol{X}) \\ \operatorname{Cov}(\boldsymbol{X}, Y) & \operatorname{Cov}(X) \end{pmatrix}$$

where c is some positive constant. Show that $E(Y|\mathbf{X}) = \alpha + \boldsymbol{\beta}^T \mathbf{X}$ where

$$\alpha = \mu_Y - \boldsymbol{\beta}^T \boldsymbol{\mu}_X$$
 and
 $\boldsymbol{\beta} = [\operatorname{Cov}(\boldsymbol{X})]^{-1} \operatorname{Cov}(\boldsymbol{X}, Y).$

14.11. (Due to R.D. Cook.) Let X be a $p \times 1$ random vector with $E(X) = \mathbf{0}$ and $Cov(X) = \Sigma$. Let B be any constant full rank $p \times r$ matrix where $1 \leq r \leq p$. Suppose that for all such conforming matrices B,

$$E(\boldsymbol{X}|\boldsymbol{B}^T|\boldsymbol{X}) = \boldsymbol{M}_B \boldsymbol{B}^T \boldsymbol{X}$$

where M_B a $p \times r$ constant matrix that depend on B.

Using the fact that $\Sigma B = \text{Cov}(X, B^T X) = \text{E}(X X^T B) = \text{E}[\text{E}(X X^T B | B^T X)]$, compute ΣB and show that $M_B = \Sigma B(B^T \Sigma B)^{-1}$. Hint: what acts as a constant in the inner expectation?

R/Splus Problems

Use the command source("A:/regpack.txt") to download the functions and the command source("A:/regdata.txt") to download the data. See Preface or Section 17.2. Typing the name of the regpack function, eg maha, will display the code for the function. Use the args command, eg args(maha), to display the needed arguments for the function.

14.12. a) Download the maha function that creates the classical Mahalanobis distances.

b) Enter the following commands and check whether observations 1–40 look like outliers.

```
> simx2 <- matrix(rnorm(200),nrow=100,ncol=2)
> outx2 <- matrix(10 + rnorm(80),nrow=40,ncol=2)
> outx2 <- rbind(outx2,simx2)
> maha(outx2)
```

14.13^{*}. a) Assuming that you have done the two source commands above Problem 14.12 (and in R the library(MASS) command), type the command ddcomp(buxx). This will make 4 DD plots (see Section 3.6) based on the DGK, FCH, FMCD and median ball estimators. The DGK and median ball estimators are the two attractors used by the FCH estimator. With the leftmost mouse button, move the cursor to each outlier and click. This data is the Buxton (1920) data and cases with numbers 61, 62, 63, 64, and 65 were the outliers with head lengths near 5 feet. After identifying the outliers in each plot, hold the rightmost mouse button down (and in R click on Stop) to advance to the next plot. When done, hold down the Ctrl and c keys to make a copy of the plot. Then paste the plot in Word.

b) Repeat a) but use the command ddcomp(cbrainx). This data is the Gladstone (1905-6) data and some infants are multivariate outliers.

c) Repeat a) but use the command ddcomp(museum[,-1]). This data is the Schaaffhausen (1878) skull measurements and cases 48–60 were apes while the first 47 cases were humans.