
Chapter 14

Multivariate Models

Definition 14.1. An important multivariate location and dispersion model
is a joint distribution with joint pdf

f(z|µ,Σ)

for a p×1 random vector x that is completely specified by a p×1 population
location vector µ and a p×p symmetric positive definite population dispersion
matrix Σ. Thus P (x ∈ A) =

∫
A
f(z)dz for suitable sets A.

The multivariate location and dispersion model is in many ways similar
to the multiple linear regression model. The data are iid vectors from some
distribution such as the multivariate normal (MVN) distribution. The lo-
cation parameter µ of interest may be the mean or the center of symmetry
of an elliptically contoured distribution. Hyperellipsoids will be estimated
instead of hyperplanes, and Mahalanobis distances will be used instead of
absolute residuals to determine if an observation is a potential outlier.

Assume that X1, ...,Xn are n iid p × 1 random vectors and that the
joint pdf of X1 is f(z|µ,Σ). Also assume that the data X i = xi has been
observed and stored in an n× p matrix

W =




xT
1
...

xT
n


 =



x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p
...

...
. . .

...
xn,1 xn,2 . . . xn,p


 =

[
w1 w2 . . . wp

]

where the ith row of W is xT
i and the jth column is wj . Each column wj of

W corresponds to a variable. For example, the data may consist of n visitors
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to a hospital where the p = 2 variables height and weight of each individual
were measured.

There are some differences in the notation used in multiple linear regres-
sion and multivariate location dispersion models. Notice that W could be
used as the design matrix in multiple linear regression although usually the
first column of the regression design matrix is a vector of ones. The n × p
design matrix in the multiple linear regression model was denoted by X and
Xi ≡ xi denoted the ith column of X. In the multivariate location dispersion
model, X and X i will be used to denote a p×1 random vector with observed
value xi, and xT

i is the ith row of the data matrix W . Johnson and Wichern
(1988, p. 7, 53) uses X to denote the n× p data matrix and a n× 1 random
vector, relying on the context to indicate whether X is a random vector or
data matrix. Software tends to use different notation. For example, R/Splus
will use commands such as

var(x)

to compute the sample covariance matrix of the data. Hence x corresponds
to W , x[,1] is the first column of x and x[4, ] is the 4th row of x.

14.1 The Multivariate Normal Distribution

Definition 14.2: Rao (1965, p. 437). A p × 1 random vector X has
a p−dimensional multivariate normal distribution Np(µ,Σ) iff tT X has a
univariate normal distribution for any p× 1 vector t.

If Σ is positive definite, then X has a pdf

f(z) =
1

(2π)p/2|Σ|1/2
e−(1/2)(z−µ)TΣ−1

(z−µ) (14.1)

where |Σ|1/2 is the square root of the determinant of Σ. Note that if p = 1,
then the quadratic form in the exponent is (z − µ)(σ2)−1(z − µ) and X has
the univariate N(µ, σ2) pdf. If Σ is positive semidefinite but not positive
definite, then X has a degenerate distribution. For example, the univariate
N(0, 02) distribution is degenerate (the point mass at 0).

Definition 14.3. The population mean of a random p × 1 vector X =
(X1, ..., Xp)

T is
E(X) = (E(X1), ..., E(Xp))

T
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and the p× p population covariance matrix

Cov(X) = E(X − E(X))(X − E(X))T = ((σi,j)).

That is, the ij entry of Cov(X) is Cov(Xi, Xj) = σi,j.

The covariance matrix is also called the variance–covariance matrix and
variance matrix. Sometimes the notation Var(X) is used. Note that Cov(X)
is a symmetric positive semidefinite matrix. If X and Y are p× 1 random
vectors, a a conformable constant vector and A and B are conformable
constant matrices, then

E(a + X) = a + E(X) and E(X + Y ) = E(X) + E(Y ) (14.2)

and
E(AX) = AE(X) and E(AXB) = AE(X)B. (14.3)

Thus
Cov(a + AX) = Cov(AX) = ACov(X)AT . (14.4)

Some important properties of MVN distributions are given in the follow-
ing three propositions. These propositions can be proved using results from
Johnson and Wichern (1988, p. 127-132).

Proposition 14.1. a) If X ∼ Np(µ,Σ), then E(X) = µ and

Cov(X) = Σ.

b) If X ∼ Np(µ,Σ), then any linear combination tTX = t1X1 + · · · +
tpXp ∼ N1(t

Tµ, tT Σt). Conversely, if tTX ∼ N1(t
Tµ, tT Σt) for every p× 1

vector t, then X ∼ Np(µ,Σ).

c) The joint distribution of independent normal random vari-
ables is MVN. If X1, ..., Xp are independent univariate normal N(µi, σ

2
i )

random vectors, then X = (X1, ..., Xp)
T is Np(µ,Σ) where µ = (µ1, ..., µp)

and Σ = diag(σ2
1, ..., σ

2
p) (so the off diagonal entries σi,j = 0 while the diag-

onal entries of Σ are σi,i = σ2
i ).

d) If X ∼ Np(µ,Σ) and if A is a q×pmatrix, then AX ∼ Nq(Aµ,AΣAT ).
If a is a p× 1 vector of constants, then a + X ∼ Np(a + µ,Σ).
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It will be useful to partition X, µ, and Σ. Let X1 and µ1 be q × 1
vectors, let X2 and µ2 be (p− q)× 1 vectors, let Σ11 be a q × q matrix, let
Σ12 be a q × (p− q) matrix, let Σ21 be a (p− q)× q matrix, and let Σ22 be
a (p− q)× (p− q) matrix. Then

X =

(
X1

X2

)
, µ =

(
µ1

µ2

)
, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Proposition 14.2. a) All subsets of a MVN are MVN: (Xk1 , ..., Xkq)
T

∼ Nq(µ̃, Σ̃) where µ̃i = E(Xki) and Σ̃ij = Cov(Xki , Xkj ). In particular,
X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22).

b) If X1 and X2 are independent, then Cov(X1,X2) = Σ12 =
E[(X1 − E(X1))(X2 −E(X2))

T ] = 0, a q × (p− q) matrix of zeroes.

c) If X ∼ Np(µ,Σ), then X1 and X2 are independent iff Σ12 = 0.

d) If X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22) are independent, then(
X1

X2

)
∼ Np

( (
µ1

µ2

)
,

(
Σ11 0
0 Σ22

) )
.

Proposition 14.3. The conditional distribution of a MVN is
MVN. If X ∼ Np(µ,Σ), then the conditional distribution of X1 given
that X2 = x2 is multivariate normal with mean µ1 + Σ12Σ

−1
22 (x2 −µ2) and

covariance Σ11 −Σ12Σ
−1
22 Σ21. That is,

X1|X2 = x2 ∼ Nq(µ1 + Σ12Σ
−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).

Example 14.1. Let p = 2 and let (Y,X)T have a bivariate normal
distribution. That is,(

Y
X

)
∼ N2

( (
µY

µX

)
,

(
σ2

Y Cov(Y,X)
Cov(X, Y ) σ2

X

) )
.

Also recall that the population correlation between X and Y is given by

ρ(X, Y ) =
Cov(X, Y )√

VAR(X)
√

VAR(Y )
=

σX,Y

σXσY

if σX > 0 and σY > 0. Then Y |X = x ∼ N(E(Y |X = x),VAR(Y |X = x))
where the conditional mean

E(Y |X = x) = µY + Cov(Y,X)
1

σ2
X

(x− µX) = µY + ρ(X, Y )

√
σ2

Y

σ2
X

(x− µX)
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and the conditional variance

VAR(Y |X = x) = σ2
Y −Cov(X, Y )

1

σ2
X

Cov(X, Y )

= σ2
Y − ρ(X, Y )

√
σ2

Y

σ2
X

ρ(X, Y )
√
σ2

X

√
σ2

Y

= σ2
Y − ρ2(X, Y )σ2

Y = σ2
Y [1 − ρ2(X, Y )].

Also aX + bY is univariate normal with mean aµX + bµY and variance

a2σ2
X + b2σ2

Y + 2ab Cov(X, Y ).

Remark 14.1. There are several common misconceptions. First, it is
not true that every linear combination tT X of normal random vari-
ables is a normal random variable, and it is not true that all uncor-
related normal random variables are independent. The key condition
in Proposition 14.1b and Proposition 14.2c is that the joint distribution of
X is MVN. It is possible that X1, X2, ..., Xp each has a marginal distribution
that is univariate normal, but the joint distribution of X is not MVN. The
following example is from Rohatgi (1976, p. 229). Suppose that the joint
pdf of X and Y is a mixture of two bivariate normal distributions both with
EX = EY = 0 and VAR(X) = VAR(Y ) = 1, but Cov(X, Y ) = ±ρ. Hence
f(x, y) =

1

2

1

2π
√

1 − ρ2
exp(

−1

2(1 − ρ2)
(x2 − 2ρxy + y2)) +

1

2

1

2π
√

1 − ρ2
exp(

−1

2(1 − ρ2)
(x2 + 2ρxy + y2)) ≡ 1

2
f1(x, y) +

1

2
f2(x, y)

where x and y are real and 0 < ρ < 1. Since both marginal distributions of
fi(x, y) are N(0,1) for i = 1 and 2 by Proposition 14.2 a), the marginal dis-
tributions of X and Y are N(0,1). Since

∫ ∫
xyfi(x, y)dxdy = ρ for i = 1 and

−ρ for i = 2, X and Y are uncorrelated, but X and Y are not independent
since f(x, y) �= fX(x)fY (y).

Remark 14.2. In Proposition 14.3, suppose that X = (Y,X2, ..., Xp)
T .

Let X1 = Y and X2 = (X2, ..., Xp)
T . Then E[Y |X2] = β1+β2X2+· · ·+βpXp

and VAR[Y |X2] is a constant that does not depend on X2. Hence Y =
β1 + β2X2 + · · · + βpXp + e follows the multiple linear regression model.
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14.2 Elliptically Contoured Distributions

Definition 14.4: Johnson (1987, p. 107-108). A p×1 random vector X
has an elliptically contoured distribution, also called an elliptically symmetric
distribution, if X has density

f(z) = kp|Σ|−1/2g[(z − µ)TΣ−1(z − µ)], (14.5)

and we say X has an elliptically contoured ECp(µ,Σ, g) distribution.

If X has an elliptically contoured (EC) distribution, then the character-
istic function of X is

φX (t) = exp(itTµ)ψ(tTΣt) (14.6)

for some function ψ. If the second moments exist, then

E(X) = µ (14.7)

and
Cov(X) = cXΣ (14.8)

where
cX = −2ψ′(0).

Definition 14.5. The population squared Mahalanobis distance

U ≡ D2 = D2(µ,Σ) = (X − µ)T Σ−1(X − µ) (14.9)

has density

h(u) =
πp/2

Γ(p/2)
kpu

p/2−1g(u). (14.10)

For c > 0, an ECp(µ, cI, g) distribution is spherical about µ where I is
the p×p identity matrix. The multivariate normal distribution Np(µ,Σ) has
kp = (2π)−p/2, ψ(u) = g(u) = exp(−u/2) and h(u) is the χ2

p density.

The following lemma is useful for proving properties of EC distributions
without using the characteristic function (14.6). See Eaton (1986) and Cook
(1998, p. 57, 130).
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Lemma 14.4. Let X be a p × 1 random vector with 1st moments; ie,
E(X) exists. Let B be any constant full rank p× r matrix where 1 ≤ r ≤ p.
Then X is elliptically contoured iff for all such conforming matrices B,

E(X|BT X) = µ + MBBT (X −µ) = aB + MBBTX (14.11)

where the p× 1 constant vector aB and the p× r constant matrix MB both
depend on B.

To use this lemma to prove interesting properties, partition X, µ, and
Σ. Let X1 and µ1 be q×1 vectors, let X2 and µ2 be (p− q)×1 vectors. Let
Σ11 be a q× q matrix, let Σ12 be a q× (p− q) matrix, let Σ21 be a (p− q)× q
matrix, and let Σ22 be a (p− q)× (p− q) matrix. Then

X =

(
X1

X2

)
, µ =

(
µ1

µ2

)
, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Also assume that the (p+1)× 1 vector (Y,XT )T is ECp+1(µ,Σ, g) where Y
is a random variable, X is a p× 1 vector, and use(

Y
X

)
, µ =

(
µY

µX

)
, and Σ =

(
ΣY Y ΣY X

ΣXY ΣXX

)
.

Another useful fact is that aB and MB do not depend on g:

aB = µ −MBBTµ = (Ip − MBBT )µ,

and
MB = ΣB(BT ΣB)−1.

See Problem 14.11. Notice that in the formula for MB, Σ can be replaced
by cΣ where c > 0 is a constant. In particular, if the EC distribution has
2nd moments, Cov(X) can be used instead of Σ.

Proposition 14.5. Let X ∼ ECp(µ,Σ, g) and assume that E(X) exists.

a) Any subset of X is EC, in particular X1 is EC.

b) (Cook 1998 p. 131, Kelker 1970). If Cov(X) is nonsingular,

Cov(X|BTX) = dg(B
TX)[Σ− ΣB(BTΣB)−1BT Σ]

where the real valued function dg(B
TX) is constant iff X is MVN.
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Proof of a). Let A be an arbitrary full rank q×r matrix where 1 ≤ r ≤ q.
Let

B =

(
A
0

)
.

Then BTX = AT X1, and

E[X|BT X] = E[

(
X1

X2

)
|ATX1] =

(
µ1

µ2

)
+

(
M 1B

M 2B

) (
AT 0T

) (
X1 − µ1

X2 − µ2

)

by Lemma 14.4. HenceE[X1|ATX1] = µ1+M 1BAT (X1−µ1). Since A was
arbitrary, X1 is EC by Lemma 14.4. Notice that MB = ΣB(BT ΣB)−1 =(

Σ11 Σ12

Σ21 Σ22

) (
A
0

)
[
(

AT 0T
)(

Σ11 Σ12

Σ21 Σ22

) (
A
0

)
]−1

=

(
M 1B

M 2B

)
.

Hence
M 1B = Σ11A(ATΣ11A)−1

and X1 is EC with location and dispersion parameters µ1 and Σ11. QED

Proposition 14.6. Let (Y,XT )T be ECp+1(µ,Σ, g) where Y is a random
variable.

a) Assume that E[(Y,XT )T ] exists. Then E(Y |X) = α + βTX where
α = µY − βT µX and

β = Σ−1
XXΣXY .

b) Even if the first moment does not exist, the conditional median

MED(Y |X) = α + βT X

where α and β are given in a).

Proof. a) The trick is to choose B so that Lemma 14.4 applies. Let

B =

(
0T

Ip

)
.
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Then BTΣB = ΣXX and

ΣB =

(
ΣY X

ΣXX

)
.

Now

E[

(
Y
X

)
| X] = E[

(
Y
X

)
| BT

(
Y
X

)
]

= µ + ΣB(BTΣB)−1BT

(
Y − µY

X − µX

)
by Lemma 14.4. The right hand side of the last equation is equal to

µ +

(
ΣY X

ΣXX

)
Σ−1

XX(X − µX) =

(
µY − ΣY XΣ−1

XXµX + ΣY XΣ−1
XXX

X

)

and the result follows since

βT = ΣY XΣ−1
XX .

b) See Croux, Dehon, Rousseeuw and Van Aelst (2001) for references.

Example 14.2. This example illustrates another application of Lemma
14.4. Suppose that X comes from a mixture of two multivariate normals
with the same mean and proportional covariance matrices. That is, let

X ∼ (1 − γ)Np(µ,Σ) + γNp(µ, cΣ)

where c > 0 and 0 < γ < 1. Since the multivariate normal distribution is
elliptically contoured

E(X|BT X) = (1 − γ)[µ + M1B
T (X − µ)] + γ[µ + M2B

T (X − µ)]

= µ + [(1 − γ)M 1 + γM 2]B
T (X − µ) ≡ µ + MBT (X − µ).

Since MB only depends on B and Σ, it follows that M 1 = M 2 = M = MB.
Hence X has an elliptically contoured distribution by Lemma 14.4.

427



14.3 Sample Mahalanobis Distances

In the multivariate location and dispersion model, sample Mahalanobis dis-
tances play a role similar to that of residuals in multiple linear regression.
The observed data X i = xi for i = 1, ..., n is collected in an n× p matrix W
with n rows xT

1 , ...,x
T
n . Let the p × 1 column vector T (W ) be a multivari-

ate location estimator, and let the p × p symmetric positive definite matrix
C(W ) be a covariance estimator.

Definition 14.6. The ith squared Mahalanobis distance is

D2
i = D2

i (T (W ),C(W )) = (xi − T (W ))T C−1(W )(xi − T (W )) (14.12)

for each point xi. Notice that D2
i is a random variable (scalar valued).

Notice that the population squared Mahalanobis distance is

D2
x(µ,Σ) = (x − µ)T Σ−1(x − µ) (14.13)

and that the term Σ−1/2(x − µ) is the p−dimensional analog to the z-score
used to transform a univariate N(µ, σ2) random variable into a N(0, 1) ran-
dom variable. Hence the sample Mahalanobis distance Di =

√
D2

i is an
analog of the absolute value |zi| of the sample z-score zi = (xi −X)/σ̂. Also
notice that the Euclidean distance of xi from the estimate of center T (W )
is Di(T (W ), Ip) where Ip is the p× p identity matrix.

Example 14.3. The contours of constant density for the Np(µ,Σ) dis-
tribution are ellipsoids defined by x such that (x − µ)TΣ−1(x − µ) = a2.
An α−density region Rα is a set such that P (X ∈ Rα) = α, and for the
Np(µ,Σ) distribution, the regions of highest density are sets of the form

{x : (x− µ)TΣ−1(x −µ) ≤ χ2
p(α)} = {x : D2

x(µ,Σ) ≤ χ2
p(α)}

where P (W ≤ χ2
p(α)) = α if W ∼ χ2

p. If the X i are n iid random vectors
each with a Np(µ,Σ) pdf, then a scatterplot of Xi,k versus Xi,j should be
ellipsoidal for k �= j. Similar statements hold if X is ECp(µ,Σ, g), but the
α-density region will use a constant Uα obtained from Equation (14.10).

The classical Mahalanobis distance corresponds to the sample mean and
sample covariance matrix

T (W ) = x =
1

n

n∑
i=1

xi,
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and

C(W ) = S =
1

n− 1

n∑
i=1

(xi − x)(xi − x)T

and will be denoted by MDi. When T (W ) and C(W ) are estimators other
than the sample mean and covariance, Di =

√
D2

i will sometimes be denoted
by RDi.

14.4 Complements

Johnson and Wichern (1988) and Mardia, Kent and Bibby (1979) are good
references for multivariate statistical analysis based on the multivariate nor-
mal distribution. The elliptically contoured distributions generalize the mul-
tivariate normal distribution and are discussed in Johnson (1987). Cambanis,
Huang and Simons (1981), Chmielewski (1981) and Eaton (1986) are also im-
portant references.

14.5 Problems

14.1∗. Suppose that


X1

X2

X3

X4


 ∼ N4







49
100
17
7


 ,




3 1 −1 0
1 6 1 −1
−1 1 4 0
0 −1 0 2





 .

a) Find the distribution of X2.

b) Find the distribution of (X1, X3)
T .

c) Which pairs of random variables Xi and Xj are independent?

d) Find the correlation ρ(X1, X3).

14.2∗. Recall that if X ∼ Np(µ,Σ), then the conditional distribution of
X1 given that X2 = x2 is multivariate normal with mean µ1 +Σ12Σ

−1
22 (x2−

µ2) and covariance matrix Σ11 − Σ12Σ
−1
22 Σ21.
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Let σ12 = Cov(Y,X) and suppose Y and X follow a bivariate normal
distribution (

Y
X

)
∼ N2

( (
49
100

)
,

(
16 σ12

σ12 25

) )
.

a) If σ12 = 0, find Y |X. Explain your reasoning.

b) If σ12 = 10 find E(Y |X).

c) If σ12 = 10, find Var(Y |X).

14.3. Let σ12 = Cov(Y,X) and suppose Y and X follow a bivariate
normal distribution(

Y
X

)
∼ N2

( (
15
20

)
,

(
64 σ12

σ12 81

) )
.

a) If σ12 = 10 find E(Y |X).

b) If σ12 = 10, find Var(Y |X).

c) If σ12 = 10, find ρ(Y,X), the correlation between Y and X.

14.4. Suppose that

X ∼ (1 − γ)ECp(µ,Σ, g1) + γECp(µ, cΣ, g2)

where c > 0 and 0 < γ < 1. Following Example 14.2, show that X has
an elliptically contoured distribution assuming that all relevant expectations
exist.

14.5. In Proposition 14.5b, show that if the second moments exist, then
Σ can be replaced by Cov(X).

crancap hdlen hdht Data for 14.6

1485 175 132

1450 191 117

1460 186 122

1425 191 125

1430 178 120

1290 180 117

90 75 51
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14.6∗. The table (W ) above represents 3 head measurements on 6 people
and one ape. Let X1 = cranial capacity, X2 = head length and X3 = head
height. Let x = (X1, X2, X3)

T . Several multivariate location estimators,
including the coordinatewise median and sample mean, are found by applying
a univariate location estimator to each random variable and then collecting
the results into a vector. a) Find the coordinatewise median MED(W ).

b) Find the sample mean x.

14.7. Using the notation in Proposition 14.6, show that if the second
moments exist, then

Σ−1
XXΣXY = [Cov(X)]−1Cov(X, Y ).

14.8. Using the notation under Lemma 14.4, show that if X is elliptically
contoured, then the conditional distribution of X1 given that X2 = x2 is
also elliptically contoured.

14.9∗. Suppose Y ∼ Nn(Xβ, σ2I). Find the distribution of
(XTX)−1XTY if X is an n× p full rank constant matrix.

14.10. Recall that Cov(X,Y ) = E[(X − E(X))(Y − E(Y ))T ]. Using
the notation of Proposition 14.6, let (Y,XT )T be ECp+1(µ,Σ, g) where Y is
a random variable. Let the covariance matrix of (Y,XT ) be

Cov((Y,XT )T ) = c

(
ΣY Y ΣY X

ΣXY ΣXX

)
=

(
VAR(Y ) Cov(Y,X)

Cov(X, Y ) Cov(X)

)

where c is some positive constant. Show that E(Y |X) = α + βT X where

α = µY − βTµX and

β = [Cov(X)]−1Cov(X, Y ).

14.11. (Due to R.D. Cook.) Let X be a p × 1 random vector with
E(X) = 0 and Cov(X) = Σ. Let B be any constant full rank p× r matrix
where 1 ≤ r ≤ p. Suppose that for all such conforming matrices B,

E(X|BT X) = MBBT X

where MB a p× r constant matrix that depend on B.
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Using the fact that ΣB = Cov(X,BTX) = E(XXTB) =
E[E(XXTB|BTX)], compute ΣB and show that MB = ΣB(BTΣB)−1.
Hint: what acts as a constant in the inner expectation?

R/Splus Problems

Use the command source(“A:/regpack.txt”) to download the func-
tions and the command source(“A:/regdata.txt”) to download the data.
See Preface or Section 17.2. Typing the name of the regpack function,
eg maha, will display the code for the function. Use the args command, eg
args(maha), to display the needed arguments for the function.

14.12. a) Download the maha function that creates the classical Maha-
lanobis distances.

b) Enter the following commands and check whether observations 1–40
look like outliers.

> simx2 <- matrix(rnorm(200),nrow=100,ncol=2)

> outx2 <- matrix(10 + rnorm(80),nrow=40,ncol=2)

> outx2 <- rbind(outx2,simx2)

> maha(outx2)

14.13∗. a) Assuming that you have done the two source commands above
Problem 14.12 (and in R the library(MASS) command), type the command
ddcomp(buxx). This will make 4 DD plots (see Section 3.6) based on the
DGK, FCH, FMCD and median ball estimators. The DGK and median ball
estimators are the two attractors used by the FCH estimator. With the
leftmost mouse button, move the cursor to each outlier and click. This data
is the Buxton (1920) data and cases with numbers 61, 62, 63, 64, and 65
were the outliers with head lengths near 5 feet. After identifying the outliers
in each plot, hold the rightmost mouse button down (and in R click on Stop)
to advance to the next plot. When done, hold down the Ctrl and c keys to
make a copy of the plot. Then paste the plot in Word.

b) Repeat a) but use the command ddcomp(cbrainx). This data is the
Gladstone (1905-6) data and some infants are multivariate outliers.

c) Repeat a) but use the command ddcomp(museum[,-1]). This data
is the Schaaffhausen (1878) skull measurements and cases 48–60 were apes
while the first 47 cases were humans.
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