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In the most used survival regression models, the conditional distribution of a time

to event Y is independent of the predictors given a linear combination of predictors

called the sufficient predictor. Slicing the estimated sufficient predictor into J groups

and plotting the Cox survival curve versus the Kaplan Meier estimator for each group

can be used to visualize the Cox regression model and as a diagnostic for goodness of fit.

Plots for Weibull and Exponential regression are also given.
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1. INTRODUCTION

Regression models are used to study the conditional distribution Y |x given the p× 1

vector of nontrivial predictors x. In survival regression, Y is the time until an event such

as death. For many of the most important survival regression models, the nonnegative

response variable Y is independent of x given βTx, written Y x|βTx. Let the sufficient

predictor SP = βT x, and the estimated sufficient predictor ESP = β̂
T
x. The ESP is

sometimes called the estimated risk score.

The conditional distribution Y |x is completely determined by the probability density

function fx(t), the distribution function Fx(t), the survival function

Sx(t) ≡ SY |SP (t) = P (Y > t|SP = βTx),

the cumulative hazard function Hx(t) = − log(Sx(t)) for t > 0, or the hazard function

hx(t) = d
dt

Hx(t) = fx(t)/Sx(t) for t > 0. High hazard implies low survival times while

low hazard implies long survival times.

Survival data is usually right censored so Y is not observed. Instead, the survival

time Ti = min(Yi, Zi) where Yi Zi and Zi is the censoring time. Also δi = 0 if Ti = Zi is

censored and δi = 1 if Ti = Yi is uncensored. Hence the data is (Ti, δi,xi) for i = 1, ..., n.

The Cox proportional hazards regression model (Cox 1972) is a semiparametric model

with SP = βT
Cx and

hx(t) ≡ hY |SP (t) = exp(βT
Cx)h0(t) = exp(SP )h0(t)

where the baseline hazard function h0(t) is left unspecified. The survival function is

Sx(t) ≡ SY |SP (t) = [S0(t)]
exp(βT

Cx) = [S0(t)]
exp(SP ). (1.1)
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If x = 0 is within the range of the predictors, then the baseline survival and hazard

functions correspond to the survival and hazard functions of x = 0. First βC is estimated

by the maximum partial likelihood estimator β̂C , then estimators ĥ0(t) and Ŝ0(t) can be

found (see Breslow 1974), and

Ŝx(t) = [Ŝ0(t)]
exp(

ˆβ
T

Cx) = [Ŝ0(t)]
exp(ESP ). (1.2)

For parametric proportional hazards regression models, the baseline function is para-

metric and the parameters are estimated via maximum likelihood. Then SP = βT
P x,

hx(t) = exp(βT
P x)h0,P (t),

the survival function is

Sx(t) ≡ SY |SP (t) = [S0,P (t)]exp(βT

P x) = [S0,P (t)]exp(SP ), (1.3)

and

Ŝx(t) = [Ŝ0,P (t)]exp(
ˆβ

T

P x) = [Ŝ0,P (t)]exp(ESP ). (1.4)

For a parametric accelerated failure time model,

log(Yi) = α + βT
Axi + σei (1.5)

where the ei are iid from a location scale family. The parameters are again estimated by

maximum likelihood and the survival function is

Sx(t) ≡ SY |x(t) = S0

(
t

exp(βT
Ax)

)
,

and

Ŝx(t) = Ŝ0


 t

exp(β̂
T

Ax)



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where Ŝ0(t) depends on α̂ and σ̂.

The following univariate results will be useful for Exponential and Weibull regression.

If Y has a Weibull distribution, Y ∼ W (γ, λ), then SY (t) = exp(−λtγ) where t, λ and

γ are positive. If γ = 1, then Y has an Exponential distribution, Y ∼ EXP (λ) where

E(Y ) = 1/λ. Now V has a smallest extreme value distribution, V ∼ SEV (θ, σ), if

SV (t) = P (V > t) = exp

(
− exp

(
t − θ

σ

))

where σ > 0 while t and θ are real. If Z ∼ SEV (0, 1), then V = θ + σZ ∼ SEV (θ, σ)

since the SEV distribution is a location scale family. Also, V = log(Y ) ∼ SEV (θ =

−σ log(λ), σ = 1/γ), and Y = eV ∼ W (γ = 1/σ, λ = e−θ/σ).

For Weibull regression, the Weibull proportional hazards model (1.3) is valid if and

only if the Weibull accelerated failure time model (1.5) is valid, where ei ∼ SEV (0, 1).

Hence a goodness of fit plot for the Weibull proportional hazards model is also a goodness

of fit plot for the Weibull accelerated failure time model. Now log(Y )|x ∼ SEV (α +

βT
Ax, σ), and as a proportional hazards model, Y |x ∼ W (γ = 1/σ, λx) where

λx = exp

[
−
(

α

σ
+

βT
Ax

σ

)]
= λ0 exp(βT

P x)

with λ0 = exp(−α/σ) and βP = −βA/σ. Thus for t > 0, P (Y > t|x) = Sx(t)

= exp(−λxtγ) = exp(−λ0 exp(βT
P x)tγ) = [exp(−λ0t

γ)]exp(βT

P x) = [S0,P (t)]exp(βT

Px).

Exponential regression is the special case where σ = 1. See, for example, Collett (2003,

pp. 176-178) and Hosmer and Lemeshow (1999, pp. 108, 290).

The literature for checking the goodness of fit of the proportional hazards model is

fairly large. See, for example, Arjas (1988), Gill and Schumaker (1987), Kay (1984), Lin
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and Wei (1991), Marzec and Marzec (1997), Ng’andu (1997), Quantin, Moreau, Asselain,

Maccario and Lellouch (1996) and Yu, Chappell, Wong, Hsu and Mazur (2008). May

and Hosmer (1998) show how to implement the Grφnnesby and Borgan (1996) test which

partitions the ESP.

Grambsch and Therneau (1994) give a useful graphical check. Suppose the ith case

had an uncensored survival time ti. Let the scaled Schoenfeld residual for the ith obser-

vation and jth variable xj be r∗P,j(ti). For each variable, plot the ti versus the r∗P,j(ti)+ β̂j

and add the loess curve. If the loess curve is approximately horizontal for each of the p

plots, then the proportional hazards assumption is reasonable. Alternatively, fit a line

to each plot and test that each of the p slopes is equal to 0. The R/Splus function

cox.zph makes both the plots and tests. See MathSoft (1999, pp. 267, 275). Hosmer

and Lemeshow (1999, p. 211) suggest also testing whether the interactions xi log(t) are

significant for i = 1, ..., p.

If the Yi are iid but censored data (Ti, δi) is observed, then the Kaplan Meier (1958)

product limit estimator ŜKM (t) is used to estimate SY (t) = P (Y > t). This estimator

is often used in graphical diagnostics for survival regression models, e.g., the cumulative

hazard plot and log cumulative hazard plot. Allison (1995, p. 96) and Collett (2003, pp.

123, 182, 236) suggest that these two plots are not very useful in practice.

Section 2 suggests 4 new plots: the slice survival plot, the censored response plot, the

log censored response plot and the EE plot. Inference should not be performed unless

the survival regression model has been shown to be a useful approximation for the data.

Section 3 shows how to assess the adequacy of the survival regression model with the

new plots.
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2. ADDITIONAL PLOTS

The slice survival plot divides the ESP into J groups of roughly the same size. For

each group j with nj cases, the model estimated survival function Ŝj(t) is computed

using the x corresponding to the “median ESP” of the group (the kth order statistic of

the ESP in group j, where k = 1 + floor[(nj − 1)/2]). Let ŜKMj(t) be the Kaplan Meier

estimator computed from the survival times (Ti, δi) in the jth group. For each group,

Ŝj(t) is plotted and ŜKMj(ti) is plotted as circles at the uncensored event times ti. The

survival regression model is reasonable if the circles “tracks Ŝj well” in each of the J

plots.

If the slice widths go to zero, but the number of cases per slice increases to ∞ as

n → ∞, then the Kaplan Meier estimator and the model estimator converge to SY |SP (t)

if the model holds. Simulations suggest that the two survival functions are “close” for

moderate n and nine slices. For small n and skewed predictors, some slices may be too

wide in that the model is correct but ŜKMj(t) is not a good approximation of SY |SP (t)

where SP corresponds to the x used to compute Ŝj(t).

For the Cox model, if pointwise confidence interval (CI) bands are added to the plot,

then ŜKMj “tracks Ŝj well” if most of the plotted circles do not fall very far outside the

pointwise CI bands since these pointwise bands are not as wide as simultaneous bands.

Collett (2003, pp. 241-243) places several observed Kaplan Meier curves with fitted

curves on the same plot.

Survival regression is the study of the conditional survival SY |SP (t), and the slice sur-

vival plot is a useful tool for visualizing SY |SP (t) in the background of the data. Suppose
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the jth slice is narrow so that ESP ≈ wj. If the model is reasonable, ESP ≈ SP , and

the number of uncensored cases in the jth slice is not too small, then SY |SP=wj
(t) ≈

Ŝj(t) ≈ ŜKMj(t). (These quantities approximate [Ŝ0(t)]
exp(wj) for the Cox model.) Thus

the nonparametric Kaplan Meier estimator is used to check the model estimator Ŝj(t) in

each slice.

The slice survival plot tailored to the Cox model is closely related to May and Hosmer

(1998) test. Van Houwelingen, Bruinsma, Hart, Veer and Wessels (2006) use similar

ideas, but place the J Kaplan Meier curves on one plot and the J Cox survival curves

on another plot. A similar plot has been suggested by several authors with x divided

into J groups instead of the ESP. For example, see Miller (1981, p. 168). Hosmer and

Lemeshow (1999, pp. 141–145) suggests making plots based on the quartiles of the ith

predictor xi, and note that a problem with Cox survival curves (1.2) is that they may

use inappropriate extrapolation. Using the ESP results in narrow slices with many cases,

and adding Kaplan Meier curves shows if there is extrapolation.

The following two plots can be regarded as the model checking plots of Cook and

Weisberg (1997) extended to censored data, but the main use of the two plots is to check

for cases with unusual survival times. A censored response plot is a plot of the ESP

versus T with plotting symbol 0 for censored cases and + for uncensored cases. Slices in

this plot correspond to the slices used in the slice survival plot. Gentleman and Crowley

(1991) give a similar plot for models with a single predictor x.

Suppose the ESP is a good estimator of the SP. Consider a narrow vertical slice

taken in the censored response plot about ESP = w. The points in the slice are a

censored sample with SY |SP (t) ≈ SY |w(t). For proportional hazards models, hY |SP (t) ≈
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exp(ESP )h0(t), and the hazard increases while the survival decreases as the ESP in-

creases.

Let log(Ti) = α̂+β̂
T

Axi+ri. For accelerated failure time models, a log censored response

(LCR) plot is a plot of α̂ + β̂
T

Axi versus log(Ti) with plotting symbol 0 for censored cases

and + for uncensored cases. The identity line with unit slope and zero intercept is added

to the plot, and the vertical deviations from the identity line = ri. Collett (2003, p. 231)

defines a standardized residual rSi = ri/σ̂.

For Weibull regression, log(Y )|(α + βT
Ax) ∼ SEV (α + βT

Ax, σ). Thus points in a

narrow vertical slice about α̂ + β̂
T

Ax = w are approximately a censored sample from an

SEV (w, σ̂) distribution if the fitted model is a good approximation to the data.

Censoring causes the bulk of the data to be below the identity line. For example,

Hosmer and Lemeshow (1998, p. 226) state that for the Exponential regression model,

α̂ forces

n∑

i=1

δi =
n∑

i=1

Ti

exp(α̂ + β̂
T

Axi)
.

Hence T̂i = exp(α̂+ β̂
T

Axi) ≈ (n/
∑n

i=1 δi)Ti (roughly). With no censoring, the bulk of the

data will still be lower than the identity line if the ei are left skewed as for the Weibull

regression model where the ei ∼ SEV (0, 1).

For parametric proportional hazards models, an EE plot is a plot of the parametric

ESP β̂
T

P x versus the Cox semiparametric ESP β̂
T

Cx. If the parametric proportional

hazards model is good, then the plotted points should track the identity line with unit

slope and zero intercept. As n → ∞, the correlation of the plotted points goes to 1

in probability for any finite interval, e.g., from the 1st percentile to the 99th percentile
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of β̂
T

Cx. Lack of fit is suggested if the plotted points do not cluster tightly about the

identity line. For the Exponential regression model, σ = 1 and βC = −βA, and the

Exponential EE plot is a plot of

ESPE = −β̂
T

Ax versus ESPC = β̂
T

Cx.

For the Weibull regression model, βC = −βA/σ, and the Weibull EE plot is a plot of

ESPW =
−1

σ̂
β̂

T

Ax versus ESPC = β̂
T

Cx.

Suppose the plotted points cluster tightly about the identity line in the EE plot with

corr(β̂
T

Cxi, β̂
T

P xi) > 0.99. Thus β̂
T

Cx ≈ β̂
T

P x for the observed xi, and slicing on the Cox

ESP is nearly the same as slicing on the parametric ESP. Make the slice survival plot for

the Cox model and add the estimated parametric survival function (1.4) as crosses. If the

parametric proportional hazards model holds, then (1.1) = (1.3). Thus if (1.2) ≈ (1.4)

for any xi, then S0,P (t) ≈ S0(t), (1.2) ≈ (1.4) for all xi, and the parametric proportional

hazards model is reasonable.

Thus checking parametric proportional hazards models has 3 steps: i) check that the

proportional hazards assumption is reasonable with the slice survival plot for the Cox

model, ii) check that the parametric and semiparametric ESPs are approximately the

same, β̂
T

P x ≈ β̂
T

Cx with the EE plot, and iii) using the slice survival plot, check that

(1.2) ≈ (1.4) for the x used in each of the J slices. Since the Weibull proportional hazards

model (1.3) is valid for (Y,x) if and only if the Weibull accelerated failure time model

(1.5) is valid for (log(Y ),x), the above procedure can be used to simultaneously check

the goodness of fit of both models. The slice survival plot for the Cox model is used

because of the ease of making pointwise CI bands.
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3. EXAMPLES
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Figure 1: Censored Response Plot for R Lung Cancer Data

0 200 400 600

0.
0

0.
4

0.
8

Time

E
st

im
at

ed
 S

(t
)

0 200 400 600

0.
0

0.
4

0.
8

Time

E
st

im
at

ed
 S

(t
)

0 200 400 600

0.
0

0.
4

0.
8

Time

E
st

im
at

ed
 S

(t
)

0 200 400 600

0.
0

0.
4

0.
8

Time

E
st

im
at

ed
 S

(t
)

Figure 2: Slice Survival Plots for R Lung Cancer Data

Example 1. R and Splus contain a data set lung where the response variable Y is the

time until death for patients with lung cancer. See MathSoft (1999, p. 268). Consider

the data set for males with predictors ph.ecog = Ecog performance score 0-4, ph.karno =
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Figure 3: LCR Plot for Ovarian Cancer Data

a competitor to ph.ecog, pat.karno = patient’s assessment of their karno score and wt.loss

= weight loss in last 6 months. Figure 1 shows the censored response plot. Notice that

the survival times decrease rapidly as the ESP increases and that there is one time that

is unusually large for ESP ≈ 1.8. If the Cox regression model is a good approximation

to the data, then the response variables corresponding to the cases in a narrow vertical

strip centered at ESP = w are approximately a censored sample from a distribution with

hazard function hx(t) ≈ exp(w)h0(t). Figure 2 shows the slice survival plots. The ESP

was divided into 4 groups and the ESP increases from the upper left, upper right, lower

left and lower right corners of the plot where Ŝ(400) ≈ (0.70, 0.60, 0.55, 0.30). The circles

corresponding to the Kaplan Meier estimator are “close” to the Cox survival curves in

that the circles do not fall very far outside the pointwise CI bands.

Example 2. The ovarian cancer data is from Collett (2003, pp. 187-190) and

Edmunson et al. (1979). The response variable is the survival time of n = 26 patients

in days with predictors age in years and treat (1 for cyclophosphamide alone and 2 for

cyclophosphamide combined with adriamycin). Figure 3 shows that most of the plotted
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Figure 4: EE Plots for Ovarian Cancer Data

points in the LCR plot are below the identity line. If a Weibull regression model is

a good approximation to the data, then the plotted points in a narrow vertical slice

centered at α̂ + β̂
T
x = w are approximately a censored sample from an SEV (w, σ̂)

distribution. Figure 4 shows the Weibull and Exponential regression EE plots. Notice

that the estimated risk scores from the Cox regression and Weibull regression are nearly

the same with correlation = 0.997. The points from the Exponential regression do not

cluster about the identity line. Hence Exponential regression should not be used. Figure

5 gives the slice survival plot for the Cox model with the Weibull survival function

Ŝx(t) = exp[− exp(−γ̂β̂
T

Ax) exp(−γ̂α̂) tγ̂ ] represented by crosses where γ̂ = 1/σ̂. Notice

that the Weibull and Cox estimated survival functions are close and thus similar. Again

the circles corresponding to the Kaplan Meier estimator are “close” to the Cox survival

curves in that the circles do not fall very far outside the pointwise CI bands.

Example 3. R contains a data set nwtco where the response variable Y is the time
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Figure 5: Slice Survival Plots for Ovarian Cancer Data
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until relapse with n = 4028. The model used predictors histol = tumor histology from

central lab, instit = tumor histology from local institution, age in months, and stage of

disease from 1 to 4 (treated as an continuous variable). In Figure 6, the Grambsch and

Therneau (1994) plots suggest that the Cox model is not valid since not all of the loess

curves are flat, and the global test has p-value ≈ 5.66 × 10−11. The slice survival plot in

Figure 7 shows that the Cox survival estimators and Kaplan Meier estimators are nearly

identical in the six slices, suggesting that the Cox model is a reasonable approximation

to the data. The greatest contributors to lack of fit seem to be the predictors age and

stage corresponding to the bottom two plots of Figure 6, and survival for small ESP

corresponding to the upper left plot in Figure 7.

4. DISCUSSION

The slice survival plot is useful for visualizing SY |SP (t) in the background of the

data. The default x for R is the sample mean x which may not be a valid x if some

of the predictors are indicator variables. Choosing a representative x corresponding

to the “median ESP” in each slice displays survival for the entire range of observed

predictors x. See Figures 2, 5 and 7. Pointwise CI bands can be used to determine

whether the nonparametric Kaplan Meier estimator is close to the model estimator for

each representative x. If the two estimators are close for each slice, then the graph

suggests that the model is giving a useful approximation to SY |SP (t) for the observed

data if the number of uncensored cases is large compared to the number of predictors p.

The plots are also useful for teaching survival regression to students and for explaining

the models to consulting clients.
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Emphasis was on proportional hazards models since pointwise CI bands are available

for the Cox proportional hazards model. Thus the slice survival plot can be made for

the Cox model, and then the estimated survival function from a parametric proportional

hazards model can be added as crosses for each slice if points in the EE plot cluster tightly

about the identity line. Since the Weibull proportional hazard model is valid if and only

if the Weibull accelerated failure time model is valid, the EE and slice survival plots can

be used to simultaneously check the goodness of fit of both the proportional hazards

and accelerated failure time models for Weibull and Exponential regression. Stratified

proportional hazards models can be checked by making one slice survival plot per stratum.

EE plots can be made for parametric models if software for a semiparametric analog is

available. See Bennett (1983), Yang and Prentice (1999), Wei (1992) and Zeng and Lin

(2007).

The four new plots are not used for models where some of the explanatory variables are

time varying. If pointwise bands are not available for the parametric or semiparametric

model, but the number of cases in each slice is large, then simultaneous or pointwise CI

bands for the Kaplan Meier estimator could be added for each slice.

Plots were made in R using the survival library, and the function coxph produces

the survival curves for Cox regression. See R Development Core Team (2008). The

collection of R functions regpack available from (www.math.siu.edu/olive/regpack.txt)

contains functions for reproducing simulations and some of the plots. The functions

vlung2, vovar and vnwtco were used to produce plots in Examples 1, 2 and 3. The

function bphsim3 shows that the Kaplan Meier estimator was close to the Cox survival

curves for 2 groups (a single binary predictor) when censoring was light and n = 10.
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Simulated Weibull proportional hazards regression data was made following Zhou

(2001) but with three iid N(0,1) covariates. The function phsim5 showed that for 9

groups and p = 3, the Kaplan Meier and Cox curves were close (with respect to the

pointwise CI bands) for n ≥ 80. The function wphsim showed a similar result for Kaplan

Meier curves (circles), and the function wregsim2 shows that for n ≥ 30, the plotted

points in an EE plot cluster tightly about the identity line with correlation greater than

0.99 with high probability.
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