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Abstract

It will be shown that under regularity conditions, applying the Olive (2013) large

sample 100(1−δ)% prediction region to the bootstrap sample T ∗

1 , ..., T ∗

B gives a large
sample 100(1− δ)% confidence region for an r×1 parameter vector µ, generalizing

the percentile method for r = 1 to r ≥ 1. This prediction region method will be
compared to the Efron (2014) confidence interval for variable selection, and used
to bootstrap a correlation matrix.

Consider testing H0 : µ = c versus H1 : µ 6= c where c is a known r × 1 vector.
Let µ̂ be a consistent estimator of µ and make a bootstrap sample wi = µ̂∗

i −c for

i = 1, ..., B. Make the prediction region for the wi and determine whether 0 is in
the prediction region.

Bootstrapping test statistics is well known, and the prediction region method
can be regarded as a special case where the bootstrapped test statistic is the squared

Mahalanobis distance D2
µ

0

= (T ∗ − µ0)
T [S∗

T ]−1(T ∗ − µ0) where the bagging esti-

mator T ∗ is the sample mean and S∗

T is the sample covariance matrix of T ∗

1 , ..., T ∗

B.

The material in this manuscript has been incorporated in Olive (2017c: section
5.3, d: section 2.3) and in abbreviated form in Olive (2017a, c: section 3.4.1).
Applications include Pelawa Watagoda and Olive (2017), Rupasinghe Arachchige

Don and Olive (2017), and Rupasinghe Arachchige Don and Pelawa Watagoda
(2017).
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1 Introduction

Consider testing H0 : µ = c versus H1 : µ 6= c where c is a known r × 1 vector. If
a confidence region can be constructed for µ − c, then fail to reject H0 if 0 is in the
confidence region, and reject H0 if 0 is not in the confidence region. Given training data
w1, ...,wn, a large sample 100(1 − δ)% prediction region for a future test value wf is a
set An such that P (wf ∈ An) → 1− δ as n→ ∞, while a large sample confidence region
for a parameter µ is a set An such that P (µ ∈ An) → 1 − δ as n→ ∞.

The duality between hypothesis tests and confidence regions is well known, but for
bootstrap samples, the percentile method is simultaneously a large sample confidence
interval for µ, and also a large sample prediction interval (PI) for a future bootstrap
statistic T ∗

f,n. It is natural to try to extend the percentile method to vector valued statis-
tics and parameters using a large sample prediction region for a future bootstrap statistic
T ∗

f,n as a large sample confidence region for µ, but practical large sample prediction re-
gions where r > 1 and the underlying distribution is unknown have only recently been
developed. See Olive (2013, 2017ab) and Lei, Robins, and Wasserman (2013).

For r = 1, the percentile method uses an interval that contains UB ≈ kB = dB(1−δ)e
of the T ∗

i,n from a bootstrap sample T ∗

1,n, ..., T
∗

B,n where the statistic Tn is an estimator
of µ based on a sample of size n. Often the n is suppressed in the double subscripts.
Here dxe is the smallest integer ≥ x, e.g. d7.8e = 8. Let T ∗

(1), T
∗

(2), ..., T
∗

(B) be the order
statistics of the bootstrap sample. Then one version of the percentile method discards the
largest and smallest dBδ/2e order statistics, resulting in an interval (L̂B , R̂B). Janssen
and Pauls (2003) and Mammen (1992) suggest that the bootstrap works if there is a
central limit theorem for the statistic Tn. Also see Beran (1988), Bickel and Freedman
(1981), Horowitz (2001), Machado and Parente (2005), and MacKinnon (2009).

Olive (2014, p. 283) recommends using the shorth(c) estimator for the percentile
method. Let c = kB, and let Wi = T ∗

i,n. Let W(1), ...,W(B) be the order statistics of
the Wi. Compute W(c) − W(1),W(c+1) − W(2), ...,W(B) − W(B−c+1). Let [W(s),W(s+c−1)]
correspond to the closed interval with the smallest distance. Then reject H0 : µ = µ0 if
µ0 is not in the interval. The shorth interval tends to be shorter than the interval that
deletes the smallest and largest dBδ/2e observations Wi when the Wi do not come from a
symmetric distribution. Frey (2013) showed that for largeBδ and iid data, the shorth(kB)
PI has maximum undercoverage ≈ 1.12

√
δ/B, and used the shorth(c) estimator as the

large sample 100(1−δ)% prediction interval where c = min(B, dB[1−δ+1.12
√
δ/B ] e).

Hence if B = 1000, there may be about 1% undercoverage using c = kB . We recommend
using the Frey (2013) shorth(c) intervals for the percentile method. Hall (1988) discusses
the shortest bootstrap interval based on all bootstrap samples.

Some notation is needed to give the Olive (2013) prediction region used to bootstrap
a hypothesis test. Suppose w1, ...,wn are iid r × 1 random vectors with mean µ and
nonsingular covariance matrix Σw. Let a future test observation wf be independent
of the wi but from the same distribution. Let (w,S) be the sample mean and sample
covariance matrix where

w =
1

n

n∑

i=1

wi and S = Sw =
1

n − 1

n∑

i=1

(wi − w)(wi − w)T. (1)
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Then the ith squared sample Mahalanobis distance is the scalar

D2
w = D2

w(w,S) = (w − w)TS−1(w − w). (2)

Let D2
i = D2

wi
for each observation wi. Let D(c) be the cth order statistic of D1, ..., Dn.

Consider the hyperellipsoid

An = {w : D2
w(w,S) ≤ D2

(c)} = {w : Dw(w,S) ≤ D(c)}. (3)

If n is large, we can use c = kn = dn(1 − δ)e. If n is not large, using c = Un where Un

decreases to kn, can improve small sample performance.
Let qn = min(1 − δ + 0.05, 1 − δ + r/n) for δ > 0.1 and

qn = min(1 − δ/2, 1 − δ + 10δr/n), otherwise. (4)

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ.
Let D(Un) be the 100qnth percentile of the Di. Then the Olive (2013) large sample

100(1−δ)% nonparametric prediction region for a future value xf given iid data x1, ..., ,xn

is
{w : D2

w(x,S) ≤ D2
(Un)}, (5)

while the classical large sample 100(1 − δ)% prediction region is

{w : D2
w(x,S) ≤ χ2

p,1−δ}. (6)

Olive (2013) showed that (5) is a large sample 100(1 − δ)% prediction region under
mild conditions, although regions with smaller volumes may exist. Note that the result
follows since if Σw and S are nonsingular, then the Mahalanobis distance is a continuous

function of (w,S). Let D = D(µ,Σw). Then Di
D→ D and D2

i
D→ D2. Hence the sample

percentiles of the Di are consistent estimators of the population percentiles of D at
continuity points of the cumulative distribution function (cdf) of D, and (5) estimates
the highest density region for a large class of elliptically contoured distributions. See
Olive (2017ab) for more on prediction regions. The population percentile D2

1−δ satisfies
P (D2 ≤ D2

1−δ) = 1 − δ.
The prediction region method makes a bootstrap sample wi = µ̂

∗

i − c for i = 1, ..., B.
Make the prediction region (5) for the wi and determine whether 0 is in the prediction
region. As shown below, the prediction region method is a special case of the percentile
method, and a special case of bootstrapping a test statistic.

Consider testing H0 : µ = c versus H1 : µ 6= c, and the statistic Ti = µ̂ − c.
If E(Ti) = θ and Cov(Ti) = ΣT were known, then the squared Mahalanobis distance
D2

i (θ,ΣT ) = (Ti − θ)TΣ−1
T (Ti − θ) would be a natural statistic to use if the percentile

D2
1−δ(θ,ΣT ) was known. The prediction region method bootstraps the squared Maha-

lanobis distances, forming the bootstrap sample wi = T ∗

i = µ̂∗

i − c and the squared Ma-

halanobis distances D2
i = D2

i (T
∗,S∗

T ) = (T ∗

i −T ∗)T [S∗

T ]−1(T ∗

i −T ∗) where T ∗ =
1

B

B∑

i=1

T ∗

i

and S∗

T =
1

B − 1

B∑

i=1

(T ∗

i − T ∗)(T ∗

i − T ∗)T are the sample mean and sample covariance
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matrix of T ∗

1 , ..., T
∗

B. Then the percentile method that contains the smallest UB distances
is used to get the closed interval [0, D(UB)]. If H0 is true and E[µ̂] = c, then θ = 0. Let

D2
0 = T ∗

T
[S∗

T ]−1T ∗ and fail to rejectH0 if D0 ≤ D(UB) and rejectH0 if D0 > D(UB). This
percentile method is equivalent to computing the prediction region (5) on the wi = T ∗

i

and checking whether 0 is in the prediction region.
Note that the percentile method makes an interval that contains UB of the scalar

valued T ∗

i . The prediction region method makes a hyperellipsoid that contains UB of the
r× 1 vectors T ∗

i = wi, and equivalently, makes an interval [0, D(UB)] that contains UB of
the Di.

When r = 1, a hyperellipsoid is an interval. Suppose the parameter of interest is
µ, and there is a bootstrap sample T ∗

1 , ..., T
∗

B. Let ai = |T ∗

i − T ∗|. Let T ∗ and S2∗
T

be the sample mean and variance of the T ∗

i . Then the squared Mahalanobis distance
D2

µ = (µ − T ∗)2/S2∗
T ≤ D2

(UB) is equivalent to µ ∈ [T ∗ − S∗

TD(UB), T ∗ + S∗

TD(UB)] =

[T ∗− a(UB), T ∗ + a(UB)], which is an interval centered at T ∗ just long enough to cover UB

of the T ∗

i . Hence the prediction region method is a special case of the percentile method
if r = 1. Note that when r = 1, then S∗

T and D(UB) do not need to be computed.
Bootstrapping test statistics is well known, and the prediction region is a special case

of this method usingD2
µ

0

= D2
µ

0

(T ∗,S∗

T ) as the test statistic. See Bickel and Ren (2001).
The point of the above discussion is that prediction region method can be thought of

as a variant of two widely used methods. Polansky (2008, p. 73) summarizes a bootstrap
percentile confidence region suggested by Efron and Tibshirani (1998). Section 2 explains
an important relationship between prediction regions and confidence regions. Section 3
examines the method for multiple linear regression, Section 4 examines the method for
variable selection, and Section 5 gives examples and simulations.

2 A Relationship Between Hyperellipsoidal Predic-

tion and Confidence Regions

When teaching confidence intervals, it is often noted that by the central limit theorem,
the probability that Y n is within two standard deviations (2SD(Y ) = 2σ/

√
n) of µ is

about 95%. Hence the probability that µ is within two standard deviations of Y n is
about 95%. Thus the interval (µ − 1.96S/

√
n, µ + 1.96S/

√
n) is a large sample 95%

prediction interval for a future value of the sample mean Y n,f if µ is known, while (Y n −
1.96S/

√
n, Y n + 1.96S/

√
n) is a large sample 95% confidence interval for the population

mean µ. Note that the lengths of the two intervals are the same. Where the interval
is centered, at the parameter µ or the statistic Y n, determines whether the interval is a
confidence or a prediction interval.

The following theorem shows that the hyperellipsoid Rc centered at the statistic Tn

is a large sample 100(1 − δ)% confidence region for µ, but the hyperellipsoid centered at
known µ is a large sample 100(1−δ)% prediction region for a future value of the statistic
Tf,n.

Theorem 1. Let the 100(1 − δ)th percentile D2
1−δ be a continuity point of the distri-

bution of D2. Assume that D2
µ(Tn,ΣT )

D→ D2, D2
µ(Tn, Σ̂T )

D→ D2, and D̂2
1−δ

P→ D2
1−δ
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where P (D2 ≤ D2
1−δ) = 1− δ. i) Then Rc = {w : D2

w(Tn, Σ̂T ) ≤ D̂2
1−δ} is a large sample

100(1 − δ)% confidence region for µ, and if µ is known, then Rp = {w : D2
w(µ, Σ̂T ) ≤

D̂2
1−δ} is a large sample 100(1 − δ)% prediction region for a future value of the statistic

Tf,n. ii) Region Rc contains µ iff region Rp contains Tn.

Proof: i) Note that D2
µ(Tn, Σ̂T ) = D2

Tn
(µ, Σ̂T ). Thus the probability that Rc contains

µ is P (D2
µ(Tn, Σ̂T ) ≤ D̂2

1−δ) → 1 − δ, and the probability that Rp contains Tf,n is

P (D2
µ(Tf,n, Σ̂T ) ≤ D̂2

1−δ) → 1 − δ, as n→ ∞.

ii) D2
µ(Tn, Σ̂T ) ≤ D̂2

1−δ iff D2
Tn

(µ, Σ̂T ) ≤ D̂2
1−δ . �

Hence if there was an iid sample T1,n, ..., TB,n of the statistic, the Olive (2013) large
sample 100(1−δ)% prediction region {w : D2(T ,ST ) ≤ D2

(c)} for Tf,n containsE(Tn) = µ

with asymptotic coverage ≥ 1−δ. To make the asymptotic coverage equal to 1−δ, use the
large sample 100(1 − δ)% confidence region {w : D2(T1,n,ST ) ≤ D2

(c)}. The prediction
region method bootstraps this procedure by using a bootstrap sample of the statistic
T ∗

1,n, ..., T
∗

B,n. Centering the region at T ∗

1,n instead of T
∗

is not needed since the bootstrap
sample is centered near Tn: the distribution of

√
n(Tn − µ) is approximated by the

distribution of
√
n(T ∗ − Tn) or by the distribution of

√
n(T ∗ − T

∗

). See equations (7),
(12), and (13) below.

When the bootstrap is used, a large sample 100(1−δ)% confidence region for an r×1
parameter vector µ is a set An,B such that P (µ ∈ An,B) → 1 − δ as n,B → ∞. Assume

nS∗

T
P→ ΣA as n,B → ∞ where ΣA and S∗

T are nonsingular r× r matrices, and Tn is an
estimator of µ such that √

n (Tn −µ)
D→ U (7)

as n→ ∞. Then √
n Σ

−1/2
A (Tn − µ)

D→ Σ
−1/2
A U = Z,

n (Tn − µ)T Σ̂
−1

A (Tn − µ)
D→ ZTZ = D2

as n→ ∞ where Σ̂A is a consistent estimator of ΣA, and

(Tn − µ)T [S∗

T ]−1 (Tn −µ)
D→ D2 (8)

as n,B → ∞. Assume the cumulative distribution function (cdf) of D2 is continuous and
increasing in a neighborhood of D2

1−δ where P (D2 ≤ D2
1−δ) = 1 − δ. If the distribution

of D2 is known, then a common bootstrap large sample 100(1 − δ)% confidence region
for µ is

{w : (w − Tn)
T [S∗

T ]−1(w − Tn) ≤ D2
1−δ} = {w : D2

w(Tn,S
∗

T ) ≤ D2
1−δ}. (9)

Often by a central limit theorem or the multivariate delta method,
√
n(Tn − µ)

D→
Nr(0,ΣA), and D2 ∼ χ2

r. Note that [S∗

T ]−1 could be replaced by nΣ̂
−1

A . Machado and
Parente (2005) provide sufficient conditions and references for when nS∗

T is a consistent
estimator of ΣT .

Bickel and Ren (2001) use nΣ̂
−1

A instead of [S∗

T ]−1, and replace the D2 cutoff in (9)

by D2
(kB) where D2

(kB) is computed from D2
i = n(T ∗

i − Tn)
T Σ̂

−1

A (T ∗

i − Tn) for i = 1, ..., B.

5



If nS∗

T = Σ̂A, the (modified) large sample 100(1 − δ)% confidence region for µ is

{w : (w − Tn)
T [S∗

T ]−1(w − Tn) ≤ D2
(UB)} = {w : D2

w(Tn,S
∗

T ) ≤ D2
(UB)} (10)

where D2
(UB) is computed from D2

i = (T ∗

i − Tn)
T [S∗

T ]−1(T ∗

i − Tn) for i = 1, ..., B.

The prediction region method large sample 100(1 − δ)% confidence region for µ is

{w : (w − T
∗

)T [S∗

T ]−1(w − T
∗

) ≤ D2
(UB)} = {w : D2

w(T
∗

,S∗

T ) ≤ D2
(UB)} (11)

where D2
(UB) is computed from D2

i = (T ∗

i − T
∗

)T [S∗

T ]−1(T ∗

i − T
∗

) for i = 1, ..., B.

Given (7) and (8), a sufficient condition for (10) to be confidence region is

√
n(T ∗

i − Tn)
D→ U , (12)

while sufficient conditions for (11) to be confidence region are

√
n(T ∗

i − T
∗

)
D→ U , (13)

and √
n(T

∗ − µ)
D→ U . (14)

(We could replace U by W in (13) and (14), but W ∼ U works.) Note (13) and (14)

follow from (12) and (7) if
√
n(Tn − T

∗

)
P→ 0, so Tn − T

∗

= oP (n−1/2).
Following Bickel and Ren (2001), let µ = T (F ), Tn = T (Fn), and T ∗ = T (F ∗

n) where
F is the cdf of iid x1, ...,xn, Fn is the empirical cdf, and F ∗

n is the empirical cdf of

x∗

1, ...,x
∗

n, a sample from Fn using the nonparametric bootstrap. If
√
n(Fn −F )

D→ zF , a
Gaussian random process, and if T is sufficiently smooth (Hadamard differentiable with
a well behaved Hadamard derivative Ṫ (F )), then (7) and (12) hold with U = Ṫ (F )zF .
Note that Fn is a perfectly good cdf “F ” and F ∗

n is a perfectly good empirical cdf from
Fn = “F .” Thus if n is fixed, and a sample of size m is drawn with replacement from the

empirical distribution, then
√
m(T (F ∗

m)−Tn)
D→ Ṫ (Fn)zFn

. Now let n→ ∞ with m = n.

Then bootstrap theory gives
√
n(T ∗

i − Tn)
D→ limn→∞ Ṫ (Fn)zFn

= Ṫ (F )zF ∼ U .
To justify the prediction region method, assume that (7) and (12) hold where U ∼

Nr(0,ΣA). Use W n ∼ ANr (µn,Σn) to indicate that a normal approximation is used:

W n ≈ Nr(µn,Σn). Let T ∗

i = T ∗

i,n. Then T ∗

i ∼ ANr

(
Tn,

ΣA

n

)
. Fix n temporarily and

let W i =
√
n(T ∗

i − Tn). Then with respect to the bootstrap distribution (so conditional

on the data), W 1, ...,WB are iid, and
√
n(T

∗ − Tn) =
1

B

B∑

i=1

W i ∼ ANr

(
0,

ΣA

B

)
is a

normal approximation. Hence
√
nB(T

∗ − Tn) ∼ ANr(0,ΣA). Now unfix n. Since the
same normal approximation holds for n and B large (and ANr(0,ΣA) does not depend
on n or B), it follows that T

∗ − Tn = oP (n−1/2).
The prediction region method should often work if E(T

∗

) − Tn = oP (n−1/2) and
the asymptotic covariance matrix of

√
nB(T

∗−Tn) is ΣA as n,B → ∞. Following Efron
(2014), T ∗ is the bagging or smoothed bootstrap estimator of µ, which often outperforms
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Tn for inference. See Büchlmann and Yu (2002) and Friedman and Hall (2007) for theory
and references for the bagging estimator.

These results suggest that under reasonable conditions, (7), (12), (13), and (14) hold:√
n(Tn−µ)

D→ U ,
√
n(T ∗

i −Tn)
D→ U ,

√
n(T ∗

i −T
∗

)
D→ U , and

√
n(T

∗−µ)
D→ U . Stronger

conditions are needed for nS∗

T
P→ ΣA. The regularity conditions for the prediction region

method are weaker when r = 1, since S∗

T does not need to be computed.
The following result is also informative. Let Ti = Ti,n, and assume T1, ..., TB are iid

where

n

B

B∑

i=1

(Ti −µ)(Ti − µ)T P→ ΣA and
n

B

B∑

i=1

(T∗

i − T
∗

)(T∗

i −T
∗

)T P→ ΣA.

Then
n

B

B∑

i=1

(Ti − µ)(Ti − µ)T − n

B

B∑

i=1

(T ∗

i − T
∗

)(T ∗

i − T
∗

)T P→ 0, (15)

the r× r matrix of zeroes. The trace is a continuous linear function. Post multiply both
sides of (15) by [S∗

T ]−1, and take the trace of both sides to get

n

B

B∑

i=1

(Ti − µ)T [S∗

T ]−1(Ti − µ) − n

B

B∑

i=1

(T ∗

i − T
∗

)T [S∗

T ]−1(T ∗

i − T
∗

)
P→ 0. (16)

Now (Ti − µ)T [S∗

T ]−1(Ti − µ) − n(Ti − µ)T Σ−1
A (Ti − µ)

P→ 0. Hence the first sum in
(16) behaves like a sum of iid nonnegative terms that each converge in distribution to
D2. If n is fixed, then the T ∗

i are iid with respect to the bootstrap distribution where
T

∗ ≈ E(T ∗

i ) = µn and S∗

T ≈ Cov(T ∗

i ) = Σn with respect to the bootstrap distribution.
Hence the second sum in (16) behaves like a sum of iid nonnegative terms with respect
to the bootstrap distribution.

The prediction region method will often simulate well even if B is rather small. Figure
1 shows 10%, 30%, 50%, 70%, 90%, and 98% prediction regions for a future value of Tf

for two multivariate normal statistics. The plotted points are iid T1, ..., TB. If the T ∗

i are
iid from the bootstrap distribution, then Cov(T

∗

) ≈ Cov(T )/B ≈ ΣA/(nB). Consider
the 90% region. Suppose many iid samples are generated to produce T

∗

. By Theorem
1, if T

∗

is in the 90% prediction region with probability near 90%, then the confidence
region should give simulated coverage near 90% and the volume of the confidence region
should be near that of the 90% prediction region. If B = 100, then T

∗

falls in a covering
region of the same shape as the prediction region, but centered near Tn and the lengths
of the axes are divided by

√
B. Hence if B = 100, then the axes lengths are about one

tenth of those in Figure 1. Hence when Tn falls within the 70% prediction region, the
probability that T

∗

falls in the 90% prediction region is near one. If Tn is just within or
just without the boundary of the 90% prediction region, T

∗

tends to be just within or
just without of the 90% prediction region. Hence the coverage and volume of prediction
region confidence region is near that of the nominal coverage 90% and near the volume
of the 90% prediction region.
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Figure 1: Confidence Regions for 2 Statistics with MVN Distributions
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Hence B does not need to be large provided that n and B are large enough so that
S∗

T ≈ Cov(T ∗) ≈ ΣA/n. If n is large, the sample covariance matrix starts to be a good
estimator of the population covariance matrix when B ≥ Jr where J = 20 or 50. For
small r, using B = 1000 often led to good simulations, but B = max(50r, 100) may work
well.

OftenD2 is unknown, and we useD2
(UB) to estimateD2

1−δ instead of assumingD2 ∼ χ2
r.

Suppose the T ∗

i = T ∗

i,n are iid from some distribution with cdf F̃n. For example, if

T ∗

i,n = t(F ∗

n) where iid samples from Fn are used, then F̃n is the cdf of t(F ∗

n). Fix n, and

let E(T ∗

i,n) = µn and Cov(T ∗

i,n) = Σn. With respect to F̃n, µn and Σn are parameters,
but with respect to F , µn is a random vector and Σn is a random matrix. For example,
using least squares and the residual bootstrap for the multiple linear regression model

in Section 3, µn = β̂, Σn =
n− p

n
MSE(XT X)−1, and ΣT = σ2 limn→∞(XT X/n)−1.

Then for fixed n, by the multivariate central limit theorem,

√
B(T ∗ − µn)

D→ Nr(0,Σn) and B(T∗ − µn)
T[S∗

T]−1(T∗ − µn)
D→ χ2

r

as B → ∞.
For r = 1, Efron (2014) uses confidence intervals T ∗ ± z1−δSE(T ∗) where P (Z ≤

z1−δ) = 1 − δ if Z ∼ N(0, 1). Efron uses a delta method estimate of SE(T ∗) to avoid
using the computationally expensive double bootstrap. The prediction region method,
T

∗ ± S∗

TD(UB), avoids assuming a normal limiting distribution and estimates the cutoff
using quantiles of the Mahalanobis distances of the T ∗

i,n from T ∗. The shorth(c) estimator
is recommended since it can be much shorter.

The following theorem will provide some intuition for why the percentile method works
if Tn has a central limit theorem. Let Zδ be the 100δth percentile of Z: P (Z ≤ Zδ) = δ,
and let P (ZδL

≤ Z ≤ ZδU
) = 1 − δ. Let Tn,δ be the 100δth percentile of (the sampling

distribution of) Tn. Then a population prediction interval for Tf,n is [Tn,δL
, Tn,δU

] which
can be estimated by the sample percentiles [T(cL), T(cU )] when there is an iid sample
T1, ..., Tn. The shortest such interval can be estimated by the shorth.

Theorem 2. Suppose r = 1 and
√
n(Tn − µ)

D→ X and

√
n(Tn − µ)

σ

D→ 1

σ
X = W. If

the percentiles are continuity points of the distribution of W , then for each large sample
100(1 − δ)% PI [T(cL), T(cU )] for Tf,n, there is a large sample 100(1 − δ)% CI for µ[
Tn −WδU

σ̂√
n
, Tn −WδL

σ̂√
n

]
with approximately the same length.

Proof. Note that 1 − δ = P (Tn,δL
≤ Tn ≤ Tn,δU

] ≈ P (T(cL) ≤ Tn ≤ T(cU )) ≈

P (WδL
≤

√
n(Tn − µ)

σ
≤ WδU

) = P (Tn −WδU

σ√
n
≤ µ ≤ Tn −WδL

σ√
n

) =

P (WδL

σ√
n

+µ ≤ Tn ≤ WδU

σ√
n

+µ). Hence Tn,δL
≈ WδL

σ√
n

+µ and Tn,δU
≈ WδU

σ√
n

+µ.

Thus T(cU ) − T(cL) ≈
σ√
n

(WδU
−WδL

) ≈ Tn,δU
− Tn,δL

. �

Theorem 2 suggests that the Frey (2013) shorth(c) interval applied to the bootstrap

sample estimates the shortest large sample 100(1−δ)% CI

[
Tn −WδU

σ̂√
n
, Tn −WδL

σ̂√
n

]
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based on the asymptotic pivot. Note that if Zi = Tn + µ − Ti for i = 1, ..., n, then
P (Z(cL) ≤ µ ≤ Z(cU )) ≈ P (Tn + µ − Tn,δU

≤ µ ≤ Tn + µ − Tn,δL
) = P (Tn,δL

≤ Tn ≤
Tn,δU

) = 1− δ. Then the Zi are centered at Tn with deviations equal to µ−Ti. Note that

the distribution of Tn −µ is the same as the distribution of Ti−µ: Ti−µ
D
= Tn −µ. Now

the bootstrap approximation says that the distribution of Tn−µ can be approximated by

the distribution of T ∗

i − Tn. Thus Ti −µ
D
= Tn − µ ≈ T ∗

i −Tn, or T ∗

i ≈ Ti + Tn −µ. If the
distribution of Tn−µ is approximately the same as the distribution of µ−Tn (asymptotic

symmetry), then the percentile method should work. Since
√
n(Tn − µ)

D→ X, we have

nγ(Tn − µ)
D→ 0 if 0 < γ < 0.5. The point mass at 0 is a symmetric distribution, and

nγ(Ti + Tn − µ) ≈ nγµ for large n.

3 Bootstrap Tests for Multiple Linear Regression

Consider the multiple linear regression model Yi = xT
i β + ei for i = 1, ..., n, written

in matrix form as Y = Xβ + e where Y is n × 1 and X is n × p. Consider testing
H0 : Aβ = c where A is an r × p matrix with full rank r and µ = Aβ. To perform
the test, suppose a bootstrap sample β̂

∗

1, ..., β̂
∗

B has been generated. Form the prediction

region (5) for w1 = Aβ̂
∗

1 − c, ...,wB = Aβ̂
∗

B − c. If 0 is in the prediction region, fail to
reject H0, otherwise reject H0.

It is useful to compare the bootstrap tests with classical tests. Methods for boot-
strapping this model are well known. The estimated covariance matrix of the (ordinary)
least squares estimator is

Ĉov(β̂OLS) = MSE(XTX)−1.

The residual bootstrap computes the least squares estimator and obtains the n residuals
and fitted values r1, ..., rn and Ŷ1, ..., Ŷn. Then a sample of size n is selected with replace-
ment from the residuals resulting in r∗11, ..., r

∗

n1. Hence the empirical distribution of the
residuals is used. Then a vector Y ∗

1 = (Y ∗

11, ..., Y
∗

n1)
T is formed where Y ∗

j1 = Ŷj + r∗j1.

Then Y ∗

1 is regressed on X resulting in the estimator β̂
∗

1. This process is repeated B

times resulting in the estimators β̂
∗

1, ..., β̂
∗

B . This method should have n ≥ 10p so that
the residuals ri are close to the errors ei.

Efron (1982, p. 36) notes that for the residual bootstrap, the sample covariance

matrix of the β̂
∗

i is estimating the population bootstrap matrix
n− p

n
MSE(XTX)−1 as

B → ∞. Hence the residual bootstrap standard error SE(β̂∗

i ) ≈
√
n− p

n
SE(β̂i,OLS).

If the zi = (Yi,x
T
i )T are iid observations from some population, then a sample of

size n can be drawn with replacement from z1, ..., zn. Then the response and predictor
variables can be formed into vector Y ∗

1 and design matrix X∗

1. Then Y ∗

1 is regressed

on X∗

1 resulting in the estimator β̂
∗

1. This process is repeated B times resulting in the

estimators β̂
∗

1, ..., β̂
∗

B. This nonparametric bootstrap uses the empirical distribution of
the cases zi where often the zT

i are the rows of a matrix Z.
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Following Seber and Lee (2003, p. 100), the classical test statistic for testing H0 is

FR =
(Aβ̂ − c)T [MSE A(XT X)−1AT ]−1(Aβ̂ − c)

r
,

and when H0 is true, rFR
D→ χ2

r for a large class of error distributions. The sample

covariance matrix Sw of the wi is estimating
n− p

n
MSE A(XT X)−1AT , and w ≈ 0

when H0 is true. Thus under H0, the squared distance D2
i = (wi − w)TS−1

w(wi − w) ≈
n

n− p
(Aβ̂

∗ − c)T [MSE A(XT X)−1AT ]−1(Aβ̂
∗ − c),

and we expect D2
(UB) ≈ n

n−p
χ2

r,1−δ, for large n and B and small p. Hence the prediction

region method is closely related to the Mammen (1993) suggestion of bootstrapping the
test statistic FR for this model.

4 Bootstrapping the Variable Selection Estimator

Variable selection, also called subset or model selection, is the search for a subset of
predictor variables that can be deleted without important loss of information. By treating
a variable selection estimator β̂ of β as a shrinkage estimator, the bootstrap can be
used to examine variable selection. Forward selection, backward elimination, stepwise
regression, and all subsets variable selection can be used if there is a criterion that selects
the submodel, such as AIC or Cp. Similar ideas can be used to bootstrap other shrinkage
estimators.

Consider testing H0 : Aβ = c where A is an r×p matrix with full rank r. Now let β̂

be a variable selection estimator of β. To perform the test, suppose a bootstrap sample
β̂

∗

1, ..., β̂
∗

B has been generated. Form the prediction region (5) for w1 = Aβ̂
∗

1−c, ...,wB =

Aβ̂
∗

B − c. If 0 is in the prediction region, fail to reject H0, otherwise reject H0.
A model for variable selection in multiple linear regression can be described by

Y = xT β + e = βT x + e = xT
SβS + xT

EβE + e = xT
SβS + e (17)

where e is an error, Y is the response variable, x = (xT
S ,x

T
E)T is a p × 1 vector of

predictors, xS is a kS × 1 vector and xE is a (p− kS)× 1 vector. Given that xS is in the
model, βE = 0 and E denotes the subset of terms that can be eliminated given that the
subset S is in the model.

Since S is unknown, candidate subsets will be examined. Following Olive and Hawkins
(2005), let xI be the vector of k terms from a candidate subset indexed by I , and let xO

be the vector of the remaining predictors (out of the candidate submodel). Then

Y = xT
I βI + xT

OβO + e. (18)

The model Y = xTβ + e that uses all of the predictors is called the full model. A model
Y = xT

I βI + e that only uses a subset xI of the predictors is called a submodel.

11



Suppose that S is a subset of I and that model (17) holds. Then

xTβ = xT
SβS = xT

SβS + xT
I/Sβ(I/S) + xT

O0 = xT
I βI (19)

where xI/S denotes the predictors in I that are not in S. Since this is true regardless of
the values of the predictors, βO = 0 if S ⊆ I .

For multiple linear regression, if the candidate model of xI has k terms (including the
constant), then the partial F statistic for testing whether the p− k predictor variables
in xO can be deleted is

FI =
SSE(I)− SSE

(n − k) − (n− p)
/
SSE

n− p
=
n− p

p− k

[
SSE(I)

SSE
− 1

]

where SSE is the error sum of squares from the full model and SSE(I) is the error sum
of squares from the candidate submodel. An important criterion for variable selection is
the Cp criterion

Cp(I) =
SSE(I)

MSE
+ 2k − n = (p− k)(FI − 1) + k

where MSE is the mean square error for the full model. Olive and Hawkins (2005) show
that submodels with Cp(I) ≤ min(2k, p) are especially interesting. The AIC is criterion
similar to Cp.

Other automated variable selection methods may work better than Imin. For the Cp

criterion, find the submodel II with the fewest number of predictors such that Cp(II) ≤
Cp(Imin) + 1. For AIC, Burnham and Anderson (2004) suggest that if ∆(I) = AIC(I)−
AIC(Imin), then models with ∆(I) ≤ 2 are good. Find the submodel II with the smallest
number of predictors such that ∆(II) ≤ 2. It is possible that II = Imin or that II is the
full model. Do not use more predictors than model II to avoid overfitting.

Suppose model I is selected after variable selection. Then least squares output for
the model Y = XIβI + e can be obtained, but the least squares output is not correct
for inference. In particular, MSE(I)(XT

I XI)
−1 is not the correct estimated covariance

matrix of β̂I . The selected model tends to fit the data too well, so SE(β̂i) from the
incorrect estimated covariance matrix is too small. Hence the confidence intervals for βi

are too short, and hypothesis tests reject H0 : βi = 0 too often.
Hastie, Tibshirani, and Friedman (2009, p. 57) note that variable selection is a

shrinkage estimator: the coefficients are shrunk to 0 for the omitted variables. Suppose
n ≥ 10p. If β̂I is k × 1, form β̂I,0 from β̂I by adding 0s corresponding to the omitted

variables. Then β̂I,0 is a nonlinear estimator of β, and the residual bootstrap method

can be applied. For example, suppose β̂ = β̂Imin,0 is formed from model Imin that
minimizes Cp from some variable selection method such as forward selection, backward
elimination, stepwise selection, or all subsets variable selection. Instead of computing the
least squares estimator from regressing Y ∗

i on X , perform variable selection on Y ∗

i and
X, fit the model that minimizes the criterion, and add 0s corresponding to the omitted
variables, resulting in estimators β̂

∗

1, ..., β̂
∗

B.
Suppose the variable selection method, such as forward selection or all subsets, pro-

duces K models. Let model Imin be the model that minimizes the criterion, e.g. Cp(I)
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or AIC(I). Following Seber and Lee (2003, p. 448) and Nishi (1984), the probability
that model Imin from Cp or AIC underfits goes to zero as n → ∞. Since there are a
finite number of regression models I that contain the true model, and each model gives
a consistent estimator β̂I,0 of β, the probability that Imin picks one of these models goes

to one as n→ ∞. Hence β̂Imin,0 is a consistent estimator of β under model (17).

Note that if S ⊆ I , and Y = XIβI+eI , then
√
n(β̂I−βI)

D→ Nk(0, σ
2
IW I) under mild

regularity conditions where n(XT
I XI)

−1 → W I . Hence
√
n(β̂I,0 − β)

D→ Np(0, σ
2
IW I,0)

where the W I,0 has a column and row of zeroes added for each variable not in I . Note
that W I,0 is singular unless I corresponds to the full model. For example, if p = 3 and
model I uses a constant and x3 with

W I =

[
W11 W12

W21 W22

]
, then W I,0 =



W11 0 W12

0 0 0
W21 0 W22


 .

Hence it is reasonable to conjecture that
√
n(β̂Imin,0 − β)

D→ U where

U =

K∑

i=1

πiNp(0, σ
2
Ii
W Ii,0),

0 ≤ πi ≤ 1,
∑K

i=1 πi = 1, and K is the number of subsets Ii that contain S.
Before Efron (2014), inference techniques for the variable selection model have not

had much success. Efron (2014) let t(Z) be a scalar valued statistic, based on all of the
data Z, that estimates a parameter of interest µ. Form a bootstrap sample Z∗

i and t(Z∗

i )

for i = 1, ..., B. Then µ̃ = s(Z) =
1

B

B∑

i=1

t(Z∗

i ), a “bootstrap smoothing” or “bagging”

estimator. In the regression setting with variable selection, Z∗

i can be formed with the
nonparametric or residual bootstrap using the full model. The prediction region method
can also be applied to t(Z). For example, when A is 1× p, the prediction region method
uses µ = Aβ − c, t(Z) = Aβ̂ − c and T ∗ = µ̃. Efron (2014) used the confidence interval
T ∗ ± z1−δSE(T ∗) which is symmetric about T ∗. The prediction region method uses
T ∗ ± S∗

TD(UB) which is also a symmetric interval centered at T ∗. If both the prediction
region method and Efron’s method are large sample confidence intervals for µ, then
they have the same asymptotic length (scaled by multiplying by

√
n), since otherwise

the shorter interval will have lower asymptotic coverage. Since the prediction region
interval is a percentile interval, the shorth(c) interval could have much shorter length
than the Efron interval and the prediction region interval if the bootstrap distribution is
not symmetric.

The prediction region method can be used for vector valued statistics and parameters,
and does not need the statistic to be asymptotically normal. These features are likely
useful for variable selection models. Prediction intervals and regions can have higher
than the nominal coverage 1 − δ if the distribution is discrete or a mixture of a discrete
distribution and some other distribution. In particular, coverage can be high if the wi

distribution is a mixture of a point mass at 0 and the method checks whether 0 is in the
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prediction region. Such a mixture often occurs for variable selection methods and lasso.
The bootstrap sample for the Wi = β̂

∗

ij can contain many zeroes and be highly skewed if
the jth predictor is weak. Then the computer program may fail because Sw is singular,
but if all or nearly all of the β̂

∗

ij = 0, then there is strong evidence that the jth predictor
is not needed given that the other predictors are in the variable selection method.

As an extreme simulation case, suppose β̂
∗

ij = 0 for i = 1, ..., B and for each run in
the simulation. Consider testing H0 : βj = 0. Then regardless of the nominal coverage
1 − δ, the closed interval [0,0] will contain 0 for each run and the observed coverage will
be 1 > 1−δ. Using the open interval (0,0) would give observed coverage 0. Also intervals
[0, b] and [a, 0] correctly suggest failing to reject βj = 0, while intervals (0, b) and (a, 0)
incorrectly suggest rejecting H0 : βj = 0. Hence closed regions and intervals make sense.

5 Example and Simulations

Example. Cook and Weisberg (1999, pp. 351, 433, 447) gives a data set on 82 mussels
sampled off the coast of New Zealand. Let the response variable be the logarithm log(M)
of the muscle mass M , and the predictors are the length L and height H of the shell in
mm, the logarithm log(W ) of the shell width W, the logarithm log(S) of the shell mass

S, and a constant. Table 1 shows results for the full model including the shorth(c)
nominal 95% confidence intervals for βi computed using the nonparametric and residual
bootstraps. As expected, the residual bootstrap intervals are close to the classical least
squares confidence intervals ≈ β̂i ± 2SE(β̂i). The minimum Cp model used a constant,
H, and log(S). Table 2 shows results for this variable selection model including the
shorth(c) nominal 95% confidence intervals for βi using the residual bootstrap. Note
that the interval for H is right skewed and contains 0 when closed intervals are used
instead of open intervals.

It was expected that log(S) may be the only predictor needed, along with a constant,
since log(S) and log(M) are both log(mass) measurements and likely highly correlated.
Hence we want to test H0 : β2 = β3 = β4 = 0 with the Imin model selected by all
subsets variable selection. (Of course this test would be easy to do with the full model
using least squares theory.) Then H0 : Aβ = (β2, β3, β4)

T = 0. Using the prediction
region method with the full model gave an interval [0,2.930] with D0 = 1.641. Note that√
χ2

3,0.95 = 2.795. So fail to reject H0. Using the prediction region method with the Imin

variable selection model had [0, D(UB)] = [0, 3.293] while D0 = 1.134. So fail to reject
H0.

A small simulation study was done in R using B = max(1000, n, 20r) and 5000 runs.
The regression model used β = (1, 1, 0, 0)T with n = 100, p = 4, and various zero mean
iid error distributions. The design matrix X consisted of iid N(0,1) random variables.
Hence the full model least squares confidence intervals for βi should have length near
2t96,0.975σ/

√
n ≈ 2(1.96)σ/10 = 0.392σ when the iid zero mean errors have variance σ2.

The simulation computed the shorth(c) interval for each βi and used the prediction region
method to testH0 : β3 = β4 = 0. The nominal coverage was 0.95 with δ = 0.05. Observed
coverage between 0.94 and 0.96 would suggest coverage is close to the nominal value.
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Table 1: Bootstrapping the Full Model

variable β̂ OLS SE OLS CI rowboot resboot
constant −1.2493 0.8388 (−2.920,0.421) [−2.93,−0.048] [−3.138,0.194]

L −0.0006 0.0023 (−0.005,0.004) [−0.005,0.003] [−0.005,0.004]
logW 0.1298 0.3738 (−0.615,0.874) [−0.384,0.827] [−0.555,0.971]

H 0.0075 0.0050 (−0.002,0.018) [−0.002,0.018] [−0.003,0.017]
logS 0.6404 0.1686 (0.305,0.976) [0.188,1.001] [0.276,0.955]

Table 2: Bootstrapping the Variable Selection Model

variable β̂Imin,0 OLS SE resboot
constant -0.9573 0.1519 [−2.769,0.460]

L 0 [−0.004, 0.004]
logW 0 [−0.595, 0.869]

H 0.0072 0.0047 [ 0.000, 0.016]
logS 0.6530 0.1160 [ 0.324, 0.913]

The regression models used the residual bootstrap on the full model least squares
estimator and on the all subsets variable selection estimator for the model Imin. The
residuals were from least squares applied to the full model in both cases. Results are
shown for when the iid errors ei ∼ N(0, 1). Table 3 shows two rows for each model giving
the observed confidence interval coverages and average lengths of the confidence intervals.
The term “reg” is for the full model regression, and the term “vs” is for the all subsets
variable selection. The column for the “test” gives the length and coverage = P(fail to
reject H0) for the interval [0, D(UB)] where D(UB) is the cutoff for the confidence region.
The volume of the confidence region will decrease to 0 as n → ∞. The cutoff will often

be near
√
χ2

r,0.95 if the statistic T is asymptotically normal. Note that
√
χ2

2,0.95 = 2.448

is very close to 2.4493 for the full model regression bootstrap test. The coverages were
near 0.95 for the regression bootstrap on the full model. For Imin the coverages were
near 0.95 for β1 and β2, but higher for the other 3 tests since zeroes often occurred for
β̂∗

j for j = 3, 4. The average lengths and coverages were similar for the full model and
all subsets variable selection Imin for β1 and β2, but the lengths are shorter for Imin for
β3 and β4. Volumes of the hyperellipsoids were not computed, but the average cutoff of
2.69 for the variable selection test suggests that the test statistic was not multivariate
normal, which is not surprising since many zeroes were produced for β̂∗

j for j = 3, 4.
Larger sample sizes n are needed as r increases. Olive (2013) suggested that for iid

elliptically contoured data xi where xi is p × 1, the prediction region coverage for a
future value xf started to get close to the nominal coverage when n ≥ 20p, but volume
ratios needed n ≥ 50p. Hence we may need B ≥ 50r for the confidence region to
have small volume. Consider testing whether correlations in a correlation matrix are 0.
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Table 3: Bootstrapping Regression and Variable Selection

model cov/len β1 β2 β3 β4 test
reg cov 0.9496 0.9430 0.9440 0.9454 0.9414

len 0.3967 0.3996 0.3997 0.3997 2.4493
vs cov 0.9482 0.9486 0.9974 0.9974 0.9896

len 0.3965 0.3990 0.3241 0.3257 2.6901

Table 4: Bootstrapping the Correlation Matrix

n ψ cov/len ρ12 ρ13 ρ14 ρ23 ρ24 ρ34 test
100 0 cov 0.943 0.939 0.942 0.937 0.940 0.941 0.848

len 0.391 0.391 0.391 0.391 0.392 0.392 3.549
400 0 cov 0.944 0.948 0.943 0.946 0.950 0.952 0.923

len 0.199 0.199 0.199 0.199 0.199 0.199 3.559
400 0.03 cov 0.950 0.950 0.948 0.949 0.948 0.951 0.441

len 0.198 0.198 0.198 0.198 0.198 0.198 3.558
400 0.1 cov 0.947 0.949 0.952 0.949 0.952 0.951 0.000

len 0.190 0.190 0.189 0.190 0.189 0.189 3.561

There are r = p(p − 1)/2 correlations ρi,j = cor(Xi, Xj) where i < j. The simulation
simulated iid data w with x = Aw and Aij = ψ for i 6= j and Aii = 1. Hence
cor(Xi, Xj) = [2ψ+(p−2)ψ2]/[1+(p−1)ψ2]. Let µ = (ρ12, ..., ρ1p, ρ23, ..., ρ2p, ..., ρp−1,p)

T .
Table 4 shows the results for multivariate normal data with p = 4 so r = 6 for

testing H0 : µ = 0. The nominal coverage was 0.95. For n = 100 and ψ = 0, the
test failed to reject H0 84.8% of the time, but 92% of the time for n = 400. Note that√
χ2

6,0.95 = 3.548. With n = 400 and ψ > 0, for the test the coverage = 1 − power. For

ψ = 0.03 the simulated power was 0.56, but 1.0 for ψ = 0.1.

6 Conclusions

Let Tn = T1,n where
√
n(Tn−µ)

D→ U , and suppose there was an iid sample T1,n, ..., TB,n.
Then standard inference techniques could be used to examine how the statistic Tn be-
haves. Usually there is only one sample and one value of the statistic Tn, but if the
empirical distribution is well behaved, and if the statistic Tn is sufficiently smooth, then
bootstrap sample of the statistic T ∗

1 , ..., T
∗

B is useful: T ∗

1 −Tn, ..., T
∗

B−Tn is pseudodata for
T1,n −µ, ..., TB,n−µ, and applying the Olive (2013) large sample 100(1− δ)% prediction
region to the T ∗

1 , ..., T
∗

B results in a large sample 100(1−δ)% confidence region for µ. If Tn

is asymptotically normal, then under regularity conditions, the large sample confidence
region and equivalent hypothesis test are closely related to applying the Hotelling’s T 2

test statistic and confidence region to the T ∗

1 , ..., T
∗

B.
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Applications of the prediction region method are numerous, but we may need n ≥ 50r
and B ≥ max(100, n, 50r) if the test statistic has an approximate multivariate normal
distribution. Sample sizes may need to be much larger for other limiting distributions.
An abbreviated version of this manuscript is Olive (2017a), and see Olive (2017b, ch. 5)
for more on the prediction region method.

A similar technique can be used to estimate the 100(1 − δ)% Bayesian credible re-
gion for θ. Generate B = max(100000, n) values of θ̂ from the posterior distribution,
and compute the prediction region (5). Olive (2014, p. 364) used the shorth esti-
mator to estimate Bayesian credible intervals. The mussels data was obtained from
(http://lagrange.math.siu.edu/Olive/lregdata.txt).

Theorem 1 says that the hyperellipsoidal prediction and confidence regions have ex-
actly the same volume. We compensate for the prediction region undercoverage when n
is moderate by using D2

(Un). If n is large, by using D2
(UB), the prediction region method

confidence region compensates for undercoverage when B is moderate, say B ≥ Jr where
J = 20 or 50. This result can be useful if a simulation with B = 1000 or B = 10000
is much slower than a simulation with B = Jr. The price to pay is that the prediction
region method confidence region is inflated to have better coverage, so the power of the
hypothesis test is decreased if moderate B is used instead of larger B.

Simulations were done in R. See R Core Team (2016). The collection of R func-
tions mpack, available at (http://lagrange.math.siu.edu/Olive/mpack.txt), has some use-
ful functions for the prediction region method. The function vselboot bootstraps the
minimum Cp model from all subsets variable selection. The function shorth3 can be
used to find the Frey (2013) shorth(c) intervals for µ̂i. The function predreg computes
the prediction region and the Mahalanobis distance of the zero vector corresponding to
Aθ − c = 0. The functions rowboot and regboot do the nonparametric and residual
bootstrap for the full model. The functions regbootsim and vsbootsim can be used to
simulate the bootstrap tests for multiple linear regression and for the all subsets variable
selection model that minimizes Cp. The functions corboot and corbootsim can be used
to bootstrap the correlation matrix.

R code for Tables 1 and 2 is below.

library(leaps)

y <- log(mussels[,5]); x <- mussels[,1:4]

x[,4] <- log(x[,4]); x[,2] <- log(x[,2])

out <- regboot(x,y,B=1000)

tem <- rowboot(x,y,B=1000)

outvs <- vselboot(x,y,B=1000) #get bootstrap CIs,

apply(out$betas,2,shorth3);

apply(tem$betas,2,shorth3);

apply(outvs$betas,2,shorth3)

ls.print(outvs$full)

ls.print(outvs$sub)

#test if beta_2 = beta_3 = beta_4 = 0

Abeta <- out$betas[,2:4]

#prediction region method with residual bootstrap
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predreg(Abeta)

Abeta <- outvs$betas[,2:4]

#prediction region method with Imin

predreg(Abeta)

R code for Table 3 is below.

regbootsim(nruns=5000) #takes a while

library(leaps)

vsbootsim(nruns=5000) #takes a long while

vsbootsim2(nruns=5000) #bootstraps forwards selection

R code for Table 4 is below.

corbootsim(type=1,n=100,nruns=5000)

corbootsim(type=1,n=400,nruns=5000) #takes a few minutes

corbootsim(type=1,n=400,psi=0.03,nruns=5000)

corbootsim(type=1,n=400,psi=0.1,nruns=5000)
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