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Abstract. Regression is the study of the conditional distribution of the re-
sponse y given the predictors x. In a 1D regression, y is independent of x
given a single linear combination βTx of the predictors. Special cases of 1D
regression include multiple linear regression, binary regression and general-

ized linear models. If a good estimate b̂ of some non-zero multiple cβ of β can
be constructed, then the 1D regression can be visualized with a scatterplot of

b̂
T
x versus y. A resistant method for estimating cβ is presented along with

applications.

1. INTRODUCTION

Regression is the study of the conditional distribution y|x of the response y given
the (p− 1)× 1 vector of nontrivial predictors x. In a 1D regression (or regression
with 1–dimensional structure), y is conditionally independent of x given a single
linear combination βT x of the predictors, written

(1.1) y x|βT x.

A 1D regression model has the form

(1.2) y = g(α + βT x, e)

where g is a bivariate (inverse link) function and e is a zero mean error that is
independent of x. See [20] and [14, p. 414].

The above class of models is very rich. A single index model uses

(1.3) y = g(α + βT x, e) ≡ m(α + βT x) + e,

and the multiple linear regression model is an important special case where m is
the identity function: m(α + βT x) = α + βT x. Another important special case of
1D regression is the response transformation model where

(1.4) g(α + βT x, e) = t−1(α + βT x + e)
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and t−1 is a one to one (typically monotone) function so that t(y) = α + βT x + e.
Generalized linear models (GLM’s) are also a special case of 1D regression.

Some notation from the regression graphics literature will be useful. Dimen-
sion reduction can greatly simplify our understanding of the conditional distrib-
ution y|x. If a 1D regression model is appropriate, then the (p − 1)–dimensional
vector x can be replaced by the 1–dimensional scalar βT x with no loss of infor-
mation. A sufficient summary plot (SSP) is a plot that contains all the sample
regression information about the conditional distribution of y|x. For 1D regression,
if y x|βT x then y x|cβT x for any constant c 6= 0. The quantity cβT x is called
a sufficient predictor (SP), and a plot of the SP versus y is a SSP. If a consistent
estimator b̂ of cβ can be found for some nonzero c, then an estimated sufficient
summary plot (ESSP) is a plot of the estimated sufficient predictor (ESP) b̂

T
x

versus y.
Additional notation is needed before giving theoretical results. Let x, a, t,

and β be (p− 1)× 1 vectors where only x is random. The predictors x satisfy the
condition of linearly related predictors with 1D structure ([14, p. 431]) if

(1.5) E[x|βT x] = a + tβT x.

Notice that β is a fixed (p− 1)× 1 vector. If x is elliptically contoured (EC) with
1st moments, then the assumption of linearly related predictors holds. See [6, p.
130].

Following [6, pp. 143-144], assume that there is an objective function

(1.6) Ln(a, b) =
1
n

n∑

i=1

L(a + bT xi, yi)

where L(u, v) is a bivariate function that is a convex function of the first argument
u. Assume that the estimate (â, b̂) of (a, b) satisfies

(1.7) (â, b̂) = argmin
a,b

Ln(a, b).

For example, the ordinary least squares (OLS) estimator uses

L(a + bT x, y) = (y − a − bT x)2.

Maximum likelihood type estimators such as those used to compute GLM’s and
Huber’s M–estimator also work, as does the Wilcoxon rank estimator. Assume that
the population analog (α, η) is the unique minimizer of E[L(a + bT x, y)] where
the expectation exists and is with respect to the joint distribution of (y, xT )T . For
example, (α, η) is unique if L(u, v) is strictly convex in its first argument. The
following result is a useful extension of [2, 3].

Theorem 1. ([20, p. 1016]): Assume that the x are linearly related predictors,
that (yi, x

T
i )T are iid observations from some joint distribution and that Cov(xi)

exists and is positive definite. Assume L(u, v) is convex in its first argument and
that η is unique. Assume that y x|βT x. Then η = cβ for some scalar c.
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Sufficient Summary Plot for Gaussian Predictors

Figure 1. SSP for m(u) = u3

Remark 1. If b̂ is a consistent estimator of η ≡ βb, then certainly

βb = cβ + ug

where ug = βb − cβ is the bias vector. If the conditions of Theorem 1 hold, then

ug = 0. Under additional conditions, (â, b̂
T
)T is asymptotically normal (see [20,

p. 1031]). In particular, the OLS estimator frequently has a
√

n convergence rate.
Often if no strong nonlinearities are present among the predictors, the bias vector
is small enough so that b̂ ≈ cβ. See [14, pp. 431-441] for checking whether the
predictors are linearly related and whether a 1D regression model is appropriate.

A very useful result is that if y = m(x) for some function m, then m can
be visualized with both a plot of x versus y and a plot of c x versus y if c 6= 0.
In fact, there are only three possibilities: if c > 0, then the two plots are nearly
identical. If c < 0, then the plot appears to be flipped about the vertical axis. If
c = 0, then the plot is a dot plot. Similarly, if yi = g(α + βT xi, ei), then the plot
of βT x versus y and the plot of cβT x versus y will be nearly identical in overall
shape if c > 0.

Example 1. Suppose that xi ∼ N3(0, I3) where I3 is the 3×3 identity matrix,
and

y = m(βT x) + e = (x1 + 2x2 + 3x3)3 + e with n = 100.

Then a 1D regression model holds with β = (1, 2, 3)T . Figure 1 shows the sufficient
summary plot of βT xi versus yi, and Figure 2 shows the sufficient summary plot



4 David J. Olive

 - SP

Y

-10 -5 0 5 10

-5
00

0
50

0

The SSP using -SP.

Figure 2. Another SSP for m(u) = u3

of −βT xi versus yi. Notice that the functional form m appears to be cubic in both
plots and that both plots can be smoothed by eye or with a scatterplot smoother.

Remark 2. The OLS estimator (âo, b̂o) is obtained from the usual multiple
linear regression of yi on xi, but we are not assuming that the multiple linear regres-
sion model holds; however, we are hoping that the 1D regression model y x|βT x

is a useful approximation to the data and that b̂o ≈ cβ for some nonzero constant
c. Theorem 1 provides some conditions for the above approximation to hold. No-
tice that if the multiple linear regression model does hold and if the errors ei are
such that OLS is a consistent estimator, then c = 1, and ug = 0.

The following result, perhaps first noted by [2, 3], is called the 1D Estimation
Result by [14, p. 432]: let (âo, b̂o) denote the OLS estimate obtained from the OLS

multiple linear regression of y on x. The OLS view is a plot of b̂
T

o x versus y. If
the 1D regression model is appropriate and if no strong nonlinearities are present
among the predictors, then the OLS view will frequently be a useful estimated
sufficient summary plot. Hence the OLS predictor b̂

T

o x is a useful ESP.

Three additional methods considered in this paper that have proven useful for
estimating the ESP are sliced inverse regression (SIR), principal Hessian directions
(PHD), and sliced average variance estimation (SAVE). See [10] for a discussion of
when these methods can fail. These methods frequently perform well if there are
no strong nonlinearities present in the predictors. All of these methods fail if c = 0
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or if the bias vector ug is “large” compared to cβ. For example, the OLS view can
fail if the sufficient summary plot of βT x versus y is approximately symmetric,
and all of these methods can perform poorly if outliers are present ([17] shows that
a single outlier can cause SIR to fail). Some useful references for SIR and related
methods include [6, 7, 8], [14, 15], [16], [19] and [24].

Ellipsoidal trimming is a method for estimating the ESP that can reduce the
bias ug. See [11] and [6, p. 152]. To perform ellipsoidal trimming, an estimator
(T, C) is computed where T is a (p − 1) × 1 multivariate location estimator and
C is a (p− 1)× (p− 1) symmetric positive definite dispersion estimator. Then the
ith squared Mahalanobis distance is the scalar

(1.8) D2
i = (xi − T )T C−1(xi − T )

for each vector of observed predictors xi. If the ordered distance D(j) is unique,
then j of the xi’s are in the ellipsoid

(1.9) {x : (x − T )T C−1(x − T ) ≤ D2
(j)}.

The ith case (yi, x
T
i )T is trimmed if Di > D(j). Then an estimator of cβ is com-

puted from the untrimmed cases. For example, if j ≈ 0.9n, then about 10% of the
cases are trimmed, and OLS could be used on the remaining cases.

The following procedure was suggested by [21]. First compute (T, C) using
the Splus function cov.mcd (see [23]). Trim the K% of the cases with the largest
Mahalanobis distances, and then compute the OLS estimator (α̂K , β̂K) from the
untrimmed cases. Use K = 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90 to generate
ten plots of β̂

T

Kx versus y using all n cases. These plots will be called “OLS
trimmed views.” Notice that K = 0 corresponds to the OLS view. The best OLS
trimmed view is the trimmed view with a smooth mean function and the smallest
variance function and is the estimated sufficient summary plot. If K∗ = E is the
percentage of cases trimmed that corresponds to the best trimmed view, then β̂

T

Ex
is the estimated sufficient predictor.

Example 2. For the data in Example 1, the OLS view is similar to Fig-
ure 1 except the plot is not quite as smooth and the horizontal scale is mul-
tiplied by c ≈ 42. The best trimmed view appears to be identical to Figure 1
except that the horizontal scale is multiplied by c ≈ 12.5. The OLS view used
β̂0 = (41.68, 87.40, 120.83)T ≈ 42β while the best trimmed view used β̂50 =
(12.61, 25.07, 37.26)T ≈ 12.5β.

This section has reviewed the existing literature on 1D regression. Section 2
shows that 1D regression can provide useful diagnostics when g is known. Section
3 considers estimating g when g = gλ and λ ∈ {λ1, ..., λk} where k is a small
integer. Section 4 suggests using ellipsoidal trimming with methods other than
OLS. This technique gives a resistant version of SIR and shows that the Splus
function lmsreg can be very useful for finding certain types of curvature.
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Figure 3. Plots for HBK Data

2. 1D REGRESSION DIAGNOSTICS

In this section, we suggest that when g is known, an estimated sufficient summary
plot should be used in addition to the usual diagnostics for checking the model.
Assume that the 1D regression model is yi = g(α + βT xi, ei) for i = 1, ..., n where
the ei are iid with zero mean and variance V (ei) = σ2.

Remark 3. If y x|βT x then y x|a + cβT x for any constants a and c 6= 0.

Hence if b̂
T
x is an ESP, so is a + b̂

T
x.

A good example is the multiple linear regression (MLR) model yi = α +
βT xi + ei. Let (â, b̂) be a MLR estimator of (α, β). Then the fitted values are

ŷi = â + b̂
T
xi, and the residuals are ri = yi − ŷi. The most used residual plot is a

plot of ŷi versus ri, and the forward response plot is a plot of the fitted values ŷi

versus the response yi.

Remark 3 shows that the forward response plot is an ESSP. Let the scalars
wi = α + βT xi. Ignoring the errors gives yi = wi which is the equation of the
identity line that has unit slope and zero intercept. Hence if the MLR model is
appropriate and if (â, b̂) is a good estimator of (α, β), then the plotted points
in the forward response plot should scatter about the identity line. The vertical
deviations from the identity line are the residuals ri since these deviations are
yi − ŷi. When the OLS estimator is used, the coefficient of determination R2 is
equal to the squared correlation of yi and ŷi. See [4, p. 280].
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Figure 4. OLS and LMSREG Suggest Using log(y) for the Tex-
tile Data

High leverage outliers challenge conventional numerical MLR diagnostics such
as Cook’s distance ([5]), but, as shown in Example 3 below, can often be detected
using the forward response and residual plots. Using trimmed views (see

∮
4) is

also effective for detecting outliers and other departures from the MLR model.

Example 3. In the well known artificial HBK data set ([18]), the first 10 cases
are outliers while cases 11-14 are good leverage points. This data set has n = 75
cases and p− 1 = 3 nontrivial predictors. Figure 3 shows the residual and forward
response plots based on the OLS estimator. The highlighted cases have Cook’s
distance > min(0.5, 2p/n), and the identity line is shown in the ESSP.

Now suppose that model (1.2) holds where g is known. If the estimator (â, b̂)

satisfies b̂ ≈ cβ, then the plot of â + b̂
T
x or b̂

T
x versus y can be used to visualize

g provided that c 6= 0. Since g is known, the classical (e.g. maximum likelihood)
estimator for β should be used since then c = 1 and the bias vector should be
small for large sample size n. Often adding a parametric fit and a lowess smooth
to the plot will be useful.

Plots are also useful for additive error models

yi = m(xi,1, ..., xi,p−1) + ei = m(xT
i ) + ei = mi + ei.

Many anova, categorical, nonlinear regression, nonparametric regression, and multi-
index models have this form. For these models ŷi = m̂i and the residuals ri =
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yi − ŷi. In the fit–response plot (FY plot) of ŷi versus yi, the plotted points should
scatter about the identity line, and the vertical deviations from the identity line
are equal to the residuals.

3. 1D REGRESSION MODEL SELECTION

In this section, we assume that a 1D regression model holds with g = gλo where
λo ∈ Λ = {λ1, ..., λk} and k > 1 is a small integer. To estimate λo, make an
ESSP for each of the k possible models. Examples include choosing a frequentist
or a Bayesian model; a proportional hazards model or one of several competing
1D survival models; a logistic, probit or complementary log–log model in binary
regression; a full or sub model in variable selection.

A good example for illustration is the response transformation model

(3.1) tλo(yi) ≡ y
(λo)
i = α0 + βT

0 xi + ei

where the response variable yi > 0 and the power transformation family

(3.2) tλ(y) ≡ y(λ) =
yλ − 1

λ

for λ 6= 0 and y(0) = log(y). Assume λo ∈ Λ = {0,±1/4,±1/3,±1/2,±2/3,±1}.
The literature for estimating λo is enormous, and at least two papers using

results from 1D regression have appeared. Let the OLS estimator (âo, b̂o) be com-
puted from the multiple linear regression of yi on xi. Then [13] suggests that the
inverse response plot of y versus ŷOLS will often show tλo . Hence the forward re-
sponse plot of ŷOLS versus y will show t−1

λo
. If tλ is the appropriate transformation,

[12] suggests that a plot of ŷOLS versus tλ(y) will follow the identity line.
These ideas suggest a graphical method for selecting response transformations

that can be used with any good MLR estimator. Let wi = tλ(yi) for λ 6= 1, and
let wi = yi if λ = 1. Next, perform the multiple linear regression of wi on xi and
make the forward response plot of ŵi versus wi. If the plotted points follow the
identity line, then take λo = λ. One plot is made for each of the eleven values of
λ ∈ Λ, and if more than one value of λ works, contact subject matter experts and
use the simplest or most reasonable transformation. (Note that this procedure can
be modified to create a graphical diagnostic for a numerical estimator by adding
the estimate λ̂ of λo to Λ.)

Example 4. A textile data set is given in [1] where samples of worsted yarn
with different levels of the three factors were given a cyclic load until the sam-
ple failed. The goal was to understand how y = the number of cycles to failure
was related to the predictor variables length, amplitude and load. Figure 4 shows
the forward response plots for two MLR estimators: OLS and the Splus function
lmsreg. Figures 4a and 4b show that a response transformation is needed while 4c
and 4d both suggest that log(y) is the appropriate response transformation. Using
OLS and a resistant estimator as in Figure 4 may be very useful if outliers are
present.
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Figure 5. Estimated Sufficient Summary Plots

4. IMPROVING 1D ESTIMATORS

Assume that the 1D regression model (1.2) holds but both g and β are unknown. If
a good estimator b̂ ≈ cβ can be found where c 6= 0, then the ESSP can be used to
visualize g. The next step might be to fit a tentative parametric or nonparametric
model in the ESP.

Since methods for estimating the sufficient predictor such as OLS, PHD,
SAVE and SIR can fail if strong nonlinearities such as outliers are present in the
predictors or if b̂ ≈ 0 β, techniques for improving these methods are needed.
The basic tool will be to use (b̂, T, C) trimmed views where b̂ is an estimator of
cβ and (T, C) is an estimator of multivariate location and dispersion. Two good
choices for (T, C) are the classical estimator ([6, p. 152]) or a robust estimator
such as cov.mcd. Then, for example, SIR trimmed views generalize the SIR ESSP
in the same way that OLS trimmed views generalize the OLS view: use ellipsoidal
trimming to delete the K% of the cases with the largest Mahalanobis distances.
Next, plot b̂

T

Kxi versus yi where b̂K is the first SIR direction computed from the
untrimmed cases. Again use 10 values of K where K = 0 corresponds to the usual
SIR ESSP, and the best SIR trimmed view is the trimmed view with a smooth
mean function and the smallest variance function.

Using trimmed views seems to work for several reasons. The ellipsoidal trim-
ming divides the data into two groups: the trimmed cases and the untrimmed
cases. Trimming often removes strong nonlinearities from the predictors, and the
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Figure 6. The Weighted lmsreg Fitted Values vs. Y

untrimmed predictor distribution is often more nearly elliptical contoured than
the predictor distribution of the entire data set (recall Winsor’s principle: “data
are roughly Gaussian in the middle”). Secondly, under heavy trimming, the mean
function of the untrimmed cases may be more linear than the mean function of the
entire data set. Thirdly, if |c| is very large, then the bias vector ug may be small
relative to cβ. From Remarks 1 and 2, any of these three reasons could produce a
better estimated sufficient predictor. Also notice that trimmed views are resistant
to y–outliers since the y values are plotted, and trimmed views are resistant to
x–outliers if (T, C) is a resistant estimator.

Example 5. To illustrate the above discussion, an artificial data set with
200 trivariate vectors xi was generated. The marginal distributions of xi,j are
iid lognormal for j = 1, 2, and 3. Since the response yi = sin(βT xi)/βT xi where
β = (1, 2, 3)T , the random vector xi is not elliptically contoured and the function g
is strongly nonlinear. The cov.mcd estimator was used for trimming, and Figure 5
shows the estimated sufficient summary plots for SIR, PHD, SAVE (using 8 slices),
and the OLS 90% trimmed view. The OLS trimmed view is the best, while SAVE
completely fails. Figure 6 shows that for this data, the lmsreg trimmed view is
very useful for visualizing g. The lmsreg estimator attempts to make the median
squared MLR residual small and implements the PROGRESS algorithm described
in [22, pp. 197-204]. Table 1 shows the estimated sufficient predictor coefficients b̂
when the sufficient predictor coefficients are c(1, 2, 3)T . Only the OLS and lmsreg
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Table 1. Estimated Sufficient Predictors Estimating c(1, 2, 3)T

method b̂1 b̂2 b̂3

OLS View 0.0032 0.0011 0.0047
SIR -0.394 -0.361 -0.845
PHD -0.072 -0.029 -0.0097
SAVE -1.09 0.870 -0.480

OLS 90% Trimmed View 0.086 0.182 0.338
LMSREG 70% Trimmed View 0.143 0.287 0.428

trimmed views produce estimated sufficient predictors that are highly correlated
with the sufficient predictor. (The SAVE 40% trimmed view was also very good.)

Figure 6 helps illustrate why the best lmsreg trimmed view worked. This
view used 70% trimming, and the open circles denote cases that were trimmed
while the highlighted squares are the untrimmed cases. Note that the highlighted
cases are far more linear than the data set as a whole. Also lmsreg will give about
half of the highlighted cases zero weight, further linearizing the function. In Figure
6 the weighted lmsreg constant α̂70 is included, and the plot is simply the forward
response plot of the weighted lmsreg fitted values versus y. The vertical deviations
from the identity line are the “MLR residuals” yi − α̂70 − β̂

T

70xi and at least half
of the highlighted cases have small MLR residuals. There exist data sets where
OLS is better than lmsreg for showing curvature (see [9]), but, as illustrated by
Example 5, lmsreg often performed better for single index models when m was
smooth.

A great deal of work remains to be done in the area of resistant dimension
reduction. When a 1D regression model holds, the trimmed views work at least as
well as the untrimmed view since the untrimmed view corresponds to 0% trimming.
The webpage (http://www.math.siu.edu/olive/) contains programs and a good
introduction to 1D regression models.
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