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1 INTRODUCTION

Regression is the study of the conditional distribution y|x of the response y given the

(p− 1)× 1 vector of nontrivial predictors x. In a 1D regression model, y is conditionally

independent of x given a single linear combination βTx of the predictors, written

y x|βT x. (1.1)

Many important regression models, including generalized linear models (GLM’s), sat-

isfy (1.1). Another example is the response transformation model,

y = t−1(α + βT x + e), (1.2)

where t−1 is a one to one (typically monotone) function. Hence

t(y) = α + βTx + e.

Koenker and Geling (2001) note that if y is an observed survival time, then many survival

models including the Cox (1972) proportional hazards model are response transformation

models. Yet another example satisfying (1.1) is the single index model which has the

form

y = m(α + βT x) + e.

The multiple linear regression model is an important special case of this model with

m(α + βTx) = α + βTx.

The class of 1D models also includes many other special cases. Li and Duan (1989,

p. 1014) list binary regression, censored regression, and projection pursuit models, while

Stoker (1986), Horowitz (1998) and Cook and Weisberg (1999) also provide applications.
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If the 1D regression model holds, then y x|a + cβTx for any constants a and

c �= 0. The quantity a+cβT x is called a sufficient predictor (SP). An estimated sufficient

predictor (ESP) is α̃ + β̃
T
x where β̃ is an estimator of cβ for some nonzero constant c.

A standard problem in 1D regression is variable (or subset) selection. Assume that

model (1.1) holds and that x = (x1, ..., xp−1)
T are the p − 1 nontrivial predictors. Then

variable selection is a search for a subset of variables that can be deleted without impor-

tant loss of information.

To clarify ideas, assume that there exists a subset S of predictor variables such that

if xS is in the 1D model, then none of the other predictors is needed in the model. Write

E for these (‘extraneous’) variables not in S, partitioning x = (xT
S , xT

E)T . Then

SP = α + βT x = α + βT
SxS + βT

ExE = α + βT
SxS. (1.3)

The extraneous terms that can be eliminated given that the subset S is in the model

have zero coefficients.

Now suppose that I is a candidate subset of predictors and that S ⊆ I . Then

SP = α + βT x = α + βT
SxS = α + βT

I xI ,

(if I includes predictors from E, these will have zero coefficients). For any subset I that

includes all relevant predictors, the correlation

corr(α + βTxi, α + βT
I xI,i) = 1. (1.4)

This observation, which is true regardless of the explanatory power of the model,

suggests that variable selection for 1D regression models is simple in principle. For each

value of j = 1, 2, ..., p − 1 nontrivial predictors, keep track of subsets I that provide the
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largest values of corr(ESP,ESP(I)). Any such subset for which the correlation is high is

worth closer investigation and consideration. To make this advice more specific, use the

rule of thumb that a candidate subset of predictors I is worth considering if the sample

correlation of ESP and ESP(I) satisfies

corr(α̃ + β̃
T
xi, α̃I + β̃

T

I xI,i) = corr(β̃
T
xi, β̃

T

I xI,i) > 0.95. (1.5)

The difficulty in using this approach for general 1D problems is a computational one;

with even modest numbers of predictors, there is a huge number of possible subsets I ,

and in general, fitting each of these subset models involves substantial computation. For

this reason, proposals for subset selection in 1D problems have tended to use methods

such as forward selection and backward elimination, despite their known inferiority – see

for example Naik and Tsai (2001), Fan and Li (2002), Agresti (2002, pp. 211-217) or

Cook and Weisberg (1999, pp. 485, 536-538).

The exception to this general difficulty is OLS, where there are computationally highly

efficient algorithms (notably the Furnival-Wilson (1974) ‘leaps and bounds’ algorithm)

for exploring all possible subsets.

This observation ties in with another. As shown by Li and Duan (1989), it is frequently

found that fitting the full model as an ordinary least squares (OLS) regression gives a

coefficient vector which is consistent for some non-zero multiple of the true ESP, even if

the 1D model is not a linear regression. Pairing these observations leads to an approach

in which the computational ease of OLS can be applied to the more general 1D subsetting

problem:

• Fit a full model using the methods appropriate to that 1D problem to find the ESP
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α̂ + β̂
T
x.

• Find the OLS ESP α̂OLS + β̂
T

OLSx.

• If the 1D ESP and the OLS ESP have ‘a strong linear relationship’ – for example

|corr(ESP, OLS ESP)| > 0.95 – then infer that the 1D problem is one in which OLS

may serve as an adequate surrogate for the correct 1D model fitting procedure.

• Use computationally fast OLS subsetting procedures such as the leaps and bounds

algorithm to identify predictor subsets that are effectively equivalent to the full set

of predictions (as measured by such metrics as Cp, see Mallows 1973 and Jones

1946).

• Perform a final check on interesting-looking subsets identified in this way by using

them to fit the 1D model.

This strategy allows us to use computationally efficient OLS procedures to perform the

computationally intensive portion of subset investigation for some problems, restricting

the potentially much heavier computations of the 1D fitting to just the final verification

stages. Section 3 will show that if the model I contains k predictors including a constant

and if Cp(I) ≤ 2k, then

corr(α̂OLS + β̂
T

OLSxi, α̂OLS,I + β̂
T

OLS,IxI,i) → 1

as the sample size n → ∞.

Section 4 examines the impact of influential cases on variable selection for the multiple

linear regression model. We show how to use an RC plot of residuals versus Cook’s
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distances to detect the influential cases. This graphical technique could be used to

complement robust numerical variable selection methods. See Burman and Nolan (1995),

Ronchetti and Staudte (1994) and Sommer and Huggins (1996).

2 Some Plotting Aids for Subset Selection

After performing a variable selection procedure, there will often be several subsets that

look competitive (e.g., to subject matter experts). A large number of numerical and

graphical quantities can be produced to compare the models. The ESP, the response y,

and the difference y −ESP can always be generated for a 1D regression, and sometimes

Wald p-values are available for the coefficients β̂i. Often fitted values, residuals, diag-

nostics such as Cook’s distances (Cook, 1977), and goodness of fit quantities such as the

deviance and AIC are also available.

We use the following notation for naming plots.

F is the fitted value.

E is the ESP.

R is the fitted residual.

V is the difference V = y − ESP.

C is the Cook’s distance.

In OLS, E = F and V = R , but in other 1D problems this correspondence falls away.

The term ‘wz’ plot refers to a plot with w on the horizontal axis and z on the vertical

axis. So for example an EY plot has the ESP on the horizontal axis and the response
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y on the vertical axis. FY, FR, ER and RC plots are all commonly useful. Equation

1.5 leads to an EE plot using ESP(I) on the horizontal axis and the full model ESP on

the vertical. If several submodels I1, ..., Id are under consideration, let I0 denote the full

model. Then a scatterplot matrix of y and ESP(Ij) for j = 0, ..., d provides a compact

comparison of all the subsets; those showing high correlation with the full ESP can be

retained for closer study.

For multiple linear regression, the EY plot has been called a forward response plot and

is a familiar model checking plot (Cook and Weisberg, 1997, 1999). It has been suggested

for more general 1D model diagnostics also. Brillinger (1983) suggested using the OLS

EY plot to visualize m for single index models. Li and Duan (1989) showed that under

fairly reasonable conditions, the OLS estimator β̂OLS is a
√

n consistent asymptotically

normal estimator of cβ, showing that the EY plot can be used to diagnose a general

nonlinear 1D relationship.

The key to understanding which plots are the most useful is the observation that a wz

plot is used to visualize the conditional distribution of z given w. Since a 1D regression

is the study of the conditional distribution of y given α + βT x, the EY plot is used to

visualize this conditional distribution and should be made for any 1D regression analysis.

Adding visual aids such as the estimated parametric mean function m(α̂ + β̂
T
x) for

1D models such as the binary logistic regression model can be useful. If an estimated

nonparametric mean function m̂(α̂ + β̂
T
x) such as lowess follows the parametric curve

closely, then often numerical goodness of fit tests will suggest that the model is good.

Similarly, an ER residual plot is used to visualize the conditional distribution of the

residuals given the ESP. The EE plot can be used to quickly check that the correlation
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is high due to linearity (not due to outliers), that the plotted points fall about some line,

and that the line is the identity line (with unit slope and zero intercept). In the EY plot,

the vertical discrepancies from the identity line are VI,i = yi − α̃I − β̃
T

I xI,i. Section 3

will show that the VV plot is important for understanding how to use the OLS ESP for

variable selection.

Efficient use of the graphical and numerical quantities is very important for variable

selection. Experience suggests that the EY plot should be made for both the full model

and the final submodel. If corr(ESP, ESP(I)) > 0.95, then the two EY plots look nearly

identical. For correlations less than 0.85, sometimes the two plots look very different. If

a lack of fit plot such as a residual plot is available, then it should also be made for both

models. If several competing submodels are available, an EE scatterplot matrix may be

used to compare them compactly. In a binary regression, marking the “successes” and

“failures” with different plotting symbols or colors adds considerable insight without any

chart clutter.

The following rules of thumb may be useful for multiple linear, logistic, and loglin-

ear regression. The submodel should have a small number of predictors subject to the

constraint that SSE(I) or the deviance G2(I) is close to that of the full model in that

the partial F test or change in deviance test should conclude that the submodel is good.

Also the submodel I should not have many variables with large Wald p–values.
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3 Using OLS and Cp for 1D Variable Selection

This section provides theoretical results for the OLS ESP, and the following notation

will be useful. Assume that all models include a constant and that X is the n × p

design matrix for the full model. Let the corresponding vectors of OLS fitted values and

residuals be Ŷ = X(XTX)−1XT Y = HY and r = (I − H)Y , respectively. Suppose

that XI is the n×k design matrix for the candidate submodel and that the corresponding

vectors of OLS fitted values and residuals are Ŷ I = XI(X
T
I XI)

−1XT
I Y = HIY and

rI = (I − HI)Y , respectively. In multiple linear regression, recall that if the candidate

model of xI plus a constant has k terms, then the FI statistic for testing whether the

p − k predictor variables can be deleted is

FI =
SSE(I) − SSE

(n − k) − (n − p)
/

SSE

n − p
=

n − p

p − k
[
SSE(I)

SSE
− 1]

where SSE is the error sum of squares from the full model and SSE(I) is the error sum

of squares from the candidate submodel. Also recall that

Cp(I) =
SSE(I)

MSE
+ 2k − n = (p − k)(FI − 1) + k

where MSE is the error mean square for the full model. Notice that Cp(I) ≤ k if and

only if FI ≤ 1.

When the 1D model is not a multiple linear regression model, the OLS ESP is equal

to the OLS fit and the OLS vertical discrepancies VI,i are equal to the OLS residuals rI,i.

Hence the FY, FF and RR plots should be called EY, EE and VV plots, respectively.

For a plot having w on the horizontal axis and z on the vertical axis, denote the OLS

line by ẑ = a + bw. The following proposition is a property of OLS and holds even if the
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data does not follow a 1D regression model.

Proposition 3.1. Suppose that every submodel contains a constant and that X is

a full rank matrix.

EY or FY Plot:

i) If w = ŷI and z = y, then the OLS line is the identity line.

ii) If w = y and z = ŷI , then the OLS line has slope b = [corr(y, ŷI)]
2 = R2

I and intercept

a = y(1 − R2
I) where y =

∑n
i=1 yi/n and R2

I is the coefficient of multiple determination

from the candidate model.

EE or FF Plot:

iii) If w = ŷI and z = ŷ, then the OLS line is the identity line.

iv) If w = ŷ and z = ŷI, then the OLS line has slope b = [corr(ŷ, ŷI)]
2 = SSR(I)/SSR

and intercept a = y[1 − (SSR(I)/SSR)] where SSR is the regression sum of squares.

VV or RR Plot:

v) If w = r and z = rI , then the OLS line is the identity line.

vi) If w = rI and z = r, then a = 0 and the OLS slope b = [corr(r, rI)]
2 and

corr(r, rI) =

√
SSE

SSE(I)
=

√
n − p

Cp(I) + n − 2k
=

√
n − p

(p − k)FI + n − p
.

Proof: See appendix.

In many settings (not all of which meet the quite strict Li-Duan sufficient conditions),

the full model OLS ESP is a good estimator of the sufficient predictor. When this is the

case, if p is fixed and Cp(I) ≤ k or FI ≤ 1, then in the VV plot the plotted points will

cluster about the identity line and the correlation of the plotted points will be large.

Then the same result will hold for the plotted points in the EE plot: OLS ESP ≈ OLS
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ESP(I), and the EY plots based on the full and submodel ESP can both be used to

visualize the conditional distribution of y. (The correlations of the plotted points in the

two EY plots will be nearly the same since
√

R2 ≈
√

R2
I .)

If a 1D model holds, a common assumption made for variable selection is that the fit-

ted full model ESP is a good estimator of the sufficient predictor, and the usual numerical

and graphical checks on this assumption should be made. To see that this assumption is

weaker than the assumption that the OLS ESP is good, notice that if a 1D model holds

but β̂OLS estimates cβ where c = 0, then the Cp(I) criterion could wrongly suggest that

all subsets I have Cp(I) ≤ k. Hence we also need to check that c �= 0.

There are several methods for checking the OLS ESP, including: a) if an ESP from

an alternative fitting method is believed to be useful, check that the ESP and the OLS

ESP have a strong linear relationship – for example that |corr(ESP, OLS ESP)| > 0.95.

b) Often examining the EY plot shows that a 1D model is reasonable. For example,

if the data are tightly clustered about a smooth curve, then a single index model may

be appropriate. c) Verify that x has an elliptically contoured distribution with 2nd

moments and that the mean function m(α+βT x) is not symmetric about the median of

the distribution of α + βT x. Then results from Li and Duan (1989) suggest that c �= 0.

Condition a) is both the most useful (being a direct performance check) and the

easiest to check. A standard fitting method should be used when available (e.g., for

parametric 1D models or the proportional hazards model). Condition c) needs x to have

a continuous multivariate distribution while the predictors can be factors for a) and b).

Olive (2002) gives a graphical procedure for checking that a distribution is elliptically

contoured and gives a weighted ESP that can sometimes cause condition b) to hold when
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c) is violated.

Daniel and Wood (1971, p. 87) suggest using Mallows’ graphical method for screen-

ing subsets by plotting k versus Cp(I) for models close to or under the Cp = k line.

Proposition 3.1 vi) implies that if Cp(I) ≤ k then corr(V, V (I)) and corr(ESP, ESP (I))

both go to 1.0 as n → ∞. Hence models I that satisfy the Cp(I) ≤ k screen will contain

the true model S with high probability when n is large. This result does not guarantee

that the true model S will satisfy the screen, hence overfit is likely (see Shao 1993). Let

d be a lower bound on corr(V, V (I)). Proposition 3.1 vi) implies that if

Cp(I) ≤ 2k + n
[

1

d2
− 1

]
− p

d2
,

then corr(V, V (I)) ≥ d. The simple screen Cp(I) ≤ 2k corresponds to

dn ≡
√

1 − p

n
.

To reduce the chance of overfitting, use the Cp = k line for large values of k, but also

consider models close to or under the Cp = 2k line for small values of k. A referee noted

that the true simulated logistic regression model S satisfied Cp(S) ≤ k for about 60% of

the simulated data sets. We simulated multiple linear regression and single index model

data sets with p = 8 and n = 50, 100, 1000 and 10000. Again the true model S satisfied

Cp(S) ≤ k for about 60% of the simulated data sets, but S satisfied Cp(S) ≤ 2k for about

97% of the data sets. The following example helps illustrate the above discussion.

Example 1. Li (1997) showed that the Boston housing data of Harrison and Rubinfeld

(1978) grossly violates the Li and Duan (1989) conditions. One model for the data is a

response transformation with t(y) = log(y) where the response y = CRIM, the per capita

crime rate by town. The predictors were x1 = proportion of residential land zoned for

12



lots over 25,000 sq.ft., x2 = log(proportion of non-retail business acres per town), x3 =

Charles River dummy variable (= 1 if tract bounds river; 0 otherwise), x4 = NOX =

nitric oxides concentration (parts per 10 million), x5 = average number of rooms per

dwelling, x6 = proportion of owner-occupied units built prior to 1940, x7 = log(weighted

distances to five Boston employment centers), x8 = RAD = index of accessibility to

radial highways, x9 = log(full-value property-tax rate per $10,000), x10 = pupil-teacher

ratio by town, x11 = 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town,

and x12 = log(% lower status of the population).

To illustrate the potential of the OLS ESP, consider the full model with the response y

untransformed (that is, on the natural, and not the logarithmic scale) and predictors x2,

x3, x4, x5, x7, x8, x9 and x12. If a multiple linear regression of log(y) on x is appropriate,

then this model is a nonlinear 1D model. (As pointed out by a referee, some readers

may disagree that the multiple linear regression model is appropriate, but our method

can still produce interesting subsets since Proposition 3.1 holds even if the data does not

follow a 1D regression model.)

The essentially unique “interesting” Cp value (searching all subsets with the branch

and bound algorithm) is the value 5.7 obtained using x2, x4, x7, x8 and x12 as predictors.

Figure 1 shows the VV and EE plots for this minimum Cp submodel. Notice the similarity

of the EY plots for the full model and submodel. Since Cp(I) = 5.7 < k = 6, the

correlation of the plotted points in the VV plot is high, as expected.

Despite the nonlinearity in the model, using fast OLS subsetting technology leads to a

good model of the relationship. Further exploration of this data suggests that NOX and

RAD are the most important predictors. A plot of NOX vs. RAD reveals two clusters
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of locales with high NOX and high RAD that correspond to the cases with the highest

per capita crime rate.

4 A Graphical Aid for Multiple Linear Regression

In this section we assume that the multiple linear regression model holds and that the

full model uses all p − 1 predictor variables plus a constant. Cases that have atypical

leverage and/or deviation often have substantial impact on numerical variable selection

methods, and the subsets identified from the “cleaned data” that excludes these cases

may be very different from those using the full data set, a situation that should cause

concern. This result suggests running the numerical variable selection procedure on the

entire data set and on the cleaned data set, keeping track of interesting models from both

data sets. For a candidate submodel I , let Cp(I, c) denote the value of the Cp statistic

for the cleaned data.

The RC plot of the residuals ri versus the Cook’s distances CDi is useful for finding

the influential cases. Recall that

CDi =
r2
i

pσ̂2

hi

(1 − hi)2
, (3.1)

where hi is the leverage and σ̂2 is the usual estimate of the error variance.

Though two-dimensional, the RC plot is attractive because it shows three case diag-

nostics, giving the cases’ residuals, leverage, and influence together. Cases with the same

leverage define a parabola in the RC plot; this parabola is steep if the leverage is large,

and flat if it is small. In an ideal setting with no outliers or undue case leverage, this

plot should be an evenly-populated parabola. This leads to a graphical approach of mak-
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ing the RC plot, temporarily deleting cases that depart from this ideal shape (through

extreme lateral or radial location), refitting the model and regenerating the plot to see

whether it now conforms to the desired shape. The following example illustrates the

approach.

Example 2. Gladstone (1905-1906) attempts to estimate y = weight of the human

brain (in grams, measured after death) using simple linear regression with a variety of

predictors including x1 = age in years, x2 = height in inches, x3 = head height in mm,

x4 = head length in mm, x5 = head breadth in mm, x6 = head circumference in mm,

and x7 = cephalic index. The predictor x8 = sex (coded as 0 for females and 1 for

males) of each subject was also included. Head size, the product of the head length, head

breadth, and head height, is a volume measurement. Hence x9 = (size)1/3 was also used

as a predictor with the same physical dimensions as the other lengths. Thus there are 9

nontrivial predictors and one response, and all models will also contain a constant. Of

the original 276 cases, nine were deleted because of missing values, leaving 267 cases.

Table 1 shows the summary statistics of the more interesting subset regressions. The

smallest Cp value came from the subset x1, x5, x8, x9, and in this regression x5 has a t

value of 1.76. Deleting a single predictor from an adequate regression changes the Cp by

approximately t2−2, where t stands for that predictor’s Student’s t in the regression – as

illustrated by the increase in Cp from 4.4 to 6.3 following deletion of x5. Analysts must

choose between the larger regression with its smaller Cp but a predictor that does not pass

the conventional screens for statistical significance, and the smaller, more parsimonious,

regression using only apparently statistically significant predictors, but (as assessed by
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Cp) possibly less accurate predictive ability.

Figure 2 shows a sequence of RC plots used to identify cases 118, 234, 248 and 258

as atypical; deleting them leads to an RC plot that is a reasonably evenly-populated

parabolic band. There is nothing particularly striking about these four atypical cases

other than their incompatibility with the main sweep of the data, but data capture

errors are a possible factor.

One of the biggest advantages of using a sequence of RC plots to detect influential

cases is that the sequence tends to be small and there is a stopping criterion. Another

advantage of the RC plot is that there could be a point with a residual near zero but the

Cook’s distance does not stick out (is the 5th largest, for example). This case is likely

to be influential on numerical variable selection methods but can’t be found with an FR

residual plot or an FC plot of fitted values versus Cook’s distances.

Figure 3 shows the FY plots and FR residual plots for the full model and the more

parsimonious choice for a final submodel I – that using a constant, x1 = age, x8 = sex

and x9 = size1/3. A further five cases (230, 254, 255, 256 and 257) are well separated

from the bulk of the data in each of the four plots. These correspond to five infants. They

reflect the age gap between the handful of infants and the bulk of the data. By definition

they must have higher leverage than average, and so good exploratory practice would be

to remove them also to see the effect on the model fitting. The right columns of Table 1

reflect making all 9 deletions. As in the full data set, the subset x1, x5, x8, x9 gives the

smallest Cp, but x5 is of only modest statistical significance and might reasonably be

deleted to get a more parsimonious regression. What is striking after comparing the left

and right columns of Table 1 is that the adequate Cp values for the cleaned data set seem
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substantially smaller than their full-sample counterparts: 1.2 versus 4.4, and 2.3 versus

6.3. Since these Cp for the same p are dimensionless and comparable, this suggests the

otherwise non-obvious fact that these 9 cases are primarily responsible for any additional

explanatory ability in the 6 unused predictors, and so are influential to variable selection.

Multiple linear regression data sets with cases that influence numerical variable se-

lection methods are common, and subsets selected using both the entire data set and the

clean data set should be examined. Two data archives for the Arc software (Cook and

Weisberg 1999) were examined, and Table 2 shows results for seven of the more interesting

data sets. The first five data sets are available from the website (http://www.math.siu.edu

/olive) while the final two data sets come with the Arc software available from the web-

site (http://www.stat.umn.edu/arc/). The first 4 rows of Table 2 correspond to the

Gladstone data of Example 2, with and without the 5 infants.

The full model used p predictors, including a constant. The final submodel I also

included a constant, and the nontrivial predictors are listed in the third column of Table

2. The fourth column lists p, Cp(I) and Cp(I, c) while the second column gives the set

of influential cases. Two rows are presented for each data set. The second row gives

the response variable and any predictor transformations. For example, for the Gladstone

data p = 10 since there were 9 nontrivial predictors plus a constant. Only the predictor

size was transformed, and the final submodel is the one given in Example 2. For the

rat data, the final submodel used a constant but did not use any of the 3 nontrivial

predictors. The major and ais data sets show that deleting the influential cases may

increase the Cp statistic.
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5 CONCLUSIONS

To summarize, if the fitted full 1D model y x|α+βT x is a useful approximation to the

data and if β̂OLS is a good estimator of cβ where c �= 0, then a subset I will produce an

EY plot similar to the EY plot of the full model if corr(OLS ESP, OLS ESP(I)) > 0.95.

Assume that subset I uses k predictors including the intercept, that Cp(I) ≤ 2k and

n ≥ 10p. Then 0.9 ≤ corr(V, V (I)), and both corr(V, V (I)) → 1.0 and corr(OLS ESP,

OLS ESP(I)) → 1.0 as n → ∞. For a fixed value of k, the model I with the smallest

value of Cp(I) maximizes corr(V, V (I)). Notice that within the (large) subclass of 1D

models where the OLS ESP is useful, the OLS partial F test is robust (asymptotically)

to model misspecifications in that FI ≤ 1 correctly suggests that submodel I is good.

A framework for variable selection for models that produce fitted values ŷ for the

response variable y can also be developed. Such models include single and multi–index,

nonlinear regression, nonparametric regression and time series models. For these models

the ESP may not exist, but a subset I is “interesting” if the correlation corr(ŷ, ŷI) of the

fitted values from the full and submodel is higher than 0.95.

For 1D regression models, the OLS ESP variable selection method can often be used

to examine all subsets. The Furnival-Wilson OLS branch and bound algorithm permits

an exhaustive study of up to some 30 predictors and arbitrarily many cases on standard

desktop computers. This problem size far exceeds what can be accommodated in direct

fitting of 1D models in most non-OLS settings.

All of the plots discussed in the paper are easy to produce with good general purpose

regression software since they involve conventional OLS diagnostics. Object-linking soft-
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ware that supports brushing and temporary case deletion with automatic plot updates

is particularly suitable for exploring the interplay between cases and subset selection cri-

teria. The plots used in this paper were produced using both Splus and Arc (Cook and

Weisberg 1999), a public-domain regression system on an Xlisp-Stat base.

Section 4 showed how to use the RC plot for multiple linear regression. In principle,

this same approach can be used in other 1D modeling settings, with the substitution

of model-appropriate definitions of residuals and Cook’s distance. For example, an RC

plot for logistic regression can be made using the standardized Pearson’s residual and

the Cook type distance suggested by Collett (1991, p. 151).

The literature on numerical methods for variable selection in the OLS multiple linear

regression model is enormous, and the literature for other given 1D regression models

is also growing. If the variable selection techniques in these papers are successful, then

the estimated sufficient predictors from the full and candidate model should be highly

correlated. Influential cases will often appear in the VV and EE plots, and the EY plot

is useful for detecting clusters of outliers and for visualizing the conditional distribution

of y. Influential cases may also appear in residual and added variable plots.

The Boston housing data can be obtained from the STATLIB website

(http://lib.stat.cmu.edu/datasets/boston).
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APPENDIX

Proof of Proposition 3.1: Several authors (e.g., Draper and Smith 1981, p. 140;

Chambers, Cleveland, Kleiner, and Tukey 1983, p. 280) have suggested using the FY

plot to visualize R2. Hence the proofs of i) and ii) are straightforward modifications of

known full model results.

Recall that H and HI are symmetric idempotent matrices and that HHI = HI .

The mean of OLS fitted values is equal to y and the mean of OLS residuals is equal to

0. If the OLS line from regressing z on w is ẑ = a + bw, then a = z − bw and

b =

∑
(wi − w)(zi − z)∑

(wi − w)2
=

SD(z)

SD(w)
corr(z, w).

Also recall that the OLS line passes through the means of the two variables (w, z).

(*) Notice that the OLS slope from regressing z on w is equal to one if and only if

the OLS slope from regressing w on z is equal to [corr(z, w)]2.

The proofs of ii), iv) and vi) follow from (*) and the proofs of i), iii) and v).

i) The slope b = 1 if
∑

ŷI,iyi =
∑

ŷ2
I,i. This equality holds since Ŷ

T

I Y = Y THIY =

Y T HIHIY = Ŷ
T

I Ŷ I . Since b = 1, a = y − y = 0.

iii) The slope b = 1 if
∑

ŷI,iŷi =
∑

ŷ2
I,i. This equality holds since Ŷ

T
Ŷ I = Y T HHIY

= Y T HIY = Ŷ
T

I Ŷ I . Since b = 1, a = y − y = 0.

v) The OLS line passes through the origin. Hence a = 0. The slope b = rT rI/r
T r.

Since rT rI = Y T (I − H)(I − HI)Y and (I − H)(I − HI) = I − H , the numerator

rTrI = rTr and b = 1.
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Table 1: Some Subsets – Brain Data

All cases Cleaned data

Subset I k RSS ×103 Cp(I) RSS×103 Cp(I, c)

x1, x9 3 1486 12.6 1352 10.8

x8, x9 3 1655 43.5 1516 42.8

x1, x8, x9 4 1442 6.3 1298 2.3

x1, x5, x9 4 1463 10.1 1331 8.7

x1, x5, x8, x9 5 1420 4.4 1282 1.2

All 10 1397 10.0 1276 10.0

Table 2: Summaries for Seven Data Sets

file influential cases submodel I p, Cp(I), Cp(I, c)

file response transformed predictors

cbrain 118, 234, 248, 258 (size)1/3, age, sex 10, 6.337, 3.044

cbrain brnweight (size)1/3

cbrain-5 118, 234, 248, 258 (size)1/3, age, sex 10, 5.603, 2.271

cbrain-5 brnweight (size)1/3

pop 14, 55 log(x2) 4, 12.665, 0.679

pop log(y) log(x1), log(x2), log(x3)

cyp 11, 16, 56 sternal height 7, 4.456, 2.151

cyp height none

major 3, 44 x2, x5 6, 0.793, 7.501

major height none

ais 11, 53, 56, 166 log(LBM), log(Wt), sex 12, −1.701, 0.463

ais %Bfat log(Ferr), log(LBM), log(Wt),
√

Ht

rat 3 no predictors 4, 6.580, −1.700

rat y none
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Figure 1: Boston Housing Data: Nonlinear 1D Regression Model
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Figure 2: RC Plots for the Gladstone Brain Data
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Figure 3: Gladstone data: comparison of the full model and the submodel.
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