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Abstract

The applicability of a regression model of the form Y = m(x) + e can be

expanded by allowing a response transformation of the form Y = tλ0(Z) = m(x)+e.

A graphical method for selecting the transformation is given. Note that models with

additive errors include linear models such as multiple linear regression and many

experimental design models, nonlinear and nonparametric regression, generalized

additive models and single index models.
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1 INTRODUCTION

Regression is the study of the conditional distribution Y |x of the scalar response Y given

the p × 1 vector of predictors x. An important regression model is

Yi = m(xi) + ei (1)

for i = 1, ..., n where m is a function of xi and the errors ei are iid. Many of the

most important regression models have this form, including the multiple linear regression

model, experimental design models, nonlinear regression, nonparametric regression and

many time series and semiparametric models. If m̂ is an estimator of m, then the ith

residual is ri = Yi − m̂(xi) = Yi − Ŷi.

The single index model with additive error has the form Y = g(α + xTβ) + e =

g(SP ) + e where the sufficient predictor SP = α + xTβ. The linear model is a special

case with Y = α + xT β + e = SP + e. The generalized additive model (GAM) analog

of the linear model is Y = AP + e where the additive predictor AP = α +
∑p

j=1 Sj(xj)

for some functions Sj. See Hastie and Tibshirani (1990), Wood (2006) and Zuur, Ieno,

Walker, Saveliev and Smith (2009). Note that the linear model is a special case of the

GAM where Sj(xj) = xjβj. A nonlinear regression has m(x) = gθ(x), a known function

except for k unknown parameters (θ1, ..., θk)
T = θ.

Response plots are like residual plots but replace the residuals ri by the response

variable Yi on the vertical axis. For single index models, the estimated sufficient predictor

ESP = α̂ + β̂
T
x while the estimated additive predictor EAP = α̂ +

∑p
j=1 Ŝj(xj) is used

for the GAM. For single index models and the GAM, the response plot is the plot of

ESP or EAP versus Y , and is used to visualize the model in the background of the data
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since regression is the study of Y |SP or Y |AP . This type of response plot is also called

an estimated sufficient summary plot, and often the estimated conditional model mean

function and a scatterplot smoother are added as visual aids. See Brillinger (1983), Cook

(1998, p. 10). Cook and Weisberg (1997, 1999: ch. 18), and Olive and Hawkins (2005).

A second type of response plot is a plot of Ŷi = m̂(xi) versus Yi. For the linear model

and the GAM, the two types of response plot coincide, while a residual plot of the ESP

or EAP versus the residuals is used to visualize e|SP or e|AP .

Suppose the zero mean constant variance errors e1, ..., en are iid from a unimodal

distribution that is not highly skewed. For the linear model and the GAM analog of a

linear model, the estimated mean function is the identity line with unit slope and zero

intercept. Suppose the ESP or EAP take on many values. For both models and large

sample size n, the plotted points should scatter about the identity line and the residual

= 0 line in an evenly populated band for the response and residual plots, with no other

pattern. For linear models, the two plots often look good if n > 5p.

For alternative models, often need much larger n. Also even if the model is a good

approximation to the data, for moderate n there are often cases with rather large or rather

small Ŷ that tend to be influential with small absolute residuals. Then the plotted points

do not scatter about the reference line in an evenly populated band, and for moderate

n the assumption of constant error variance for the model can be difficult to check with

response or residual plots.

For some experimental design models, including the one way anova model, the ESP

does not take on many values. Consider the one way fixed effects anova model. The

response plot is a plot of Ŷij ≡ µ̂i versus Yij and the residual plot is a plot of Ŷij ≡ µ̂i
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versus rij.

For the one way anova model, the points in the response plot scatter about the

identity line and the points in the residual plot scatter about the r = 0 line, but the

scatter need not be in an evenly populated band. A dot plot of Z1, ..., Zm consists of an

axis and m points each corresponding to the value of Zi. The response plot consists of

p dot plots, one for each value of µ̂i. The dot plot corresponding to µ̂i is the dot plot of

Yi1, ..., Yi,ni. The p dot plots should have roughly the same amount of spread, and each

µ̂i corresponds to level ai. Similarly, the residual plot consists of p dot plots, and the dot

plot corresponding to µ̂i is the dot plot of ri1, ..., ri,ni.

Assume that each ni ≥ 10. Under the assumption that the Yij are from the same

location scale family with different parameters µi, each of the p dot plots should have

roughly the same shape and spread. This assumption is easier to judge with the residual

plot.

Section 1 extends the Olive (2004) graphical method for linear model response trans-

formations to response transformations for regression models with additive errors, and

section 2 gives examples.

2 A Graphical Method for Response Transforma-

tions

The applicability of the regression model (1) can be expanded by allowing response trans-

formations. An important class of response transformation models adds an additional
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unknown transformation parameter λo, such that

Yi = tλo(Zi) ≡ Z
(λo)
i = m(xi) + ei. (2)

If λo was known, then Yi = tλo(Zi) would follow model (1). The function m depends on

λo, the p predictors xj are assumed to be measured with negligible error, and the zero

mean constant variance errors ei are assumed to be iid from a unimodal distribution that

is not highly skewed.

Next, two important response transformation models are given. Assume that all

of the values of the “response” Zi are positive. A power transformation has the form

Y = tλ(Z) = Zλ for λ 6= 0 and Y = t0(Z) = log(Z) for λ = 0 where

λ ∈ ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1}.

The modified power transformation family

tλ(Zi) ≡ Z
(λ)
i =

Zλ
i − 1

λ
(3)

for λ 6= 0 and Z
(0)
i = log(Zi). Often Z

(1)
i is replaced by Zi for λ = 1. Generally λ ∈ Λ

where Λ is some interval such as [−1, 1] or a coarse subset such as ΛL. This family is a

special case of the response transformations considered by Tukey (1957).

A graphical method for response transformations computes the “fitted values” Ŵi

using Wi = tλ(Zi) as the “response.” Then a transformation plot of Ŵi versus Wi is made

for each of the seven values of λ ∈ ΛL. If the plotted points follow the identity line for

λ∗, then take λ̂o = λ∗, that is, Y = tλ∗(Z) is the response transformation. After selecting

the transformation, the usual checks should be made. In particular, the transformation

plot for the selected transformation is a response plot, and a residual plot should also be
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made. This technique is very simple and Olive (2004) suggested the method for linear

models.

Each transformation plot is a “response plot” for the seven values of W = tλ(Z),

and the method chooses the “best response plot” where the model (1) seems “most

reasonable.” If more than one value of λ ∈ ΛL gives a linear plot, take the simplest

or most reasonable transformation or the transformation that makes the most sense to

subject matter experts. Also check that the corresponding “residual plots” of Ŵ versus

W − Ŵ look reasonable. According to Mosteller and Tukey (1977, p. 91), the values of

λ in decreasing order of importance are 1, 0, 1/2,−1 and 1/3. So the log transformation

would be chosen over the cube root transformation if both transformation plots look

equally good. Note that this procedure can be modified to create a graphical diagnostic

for a numerical estimator λ̂ of λo by adding λ̂ to ΛL. For linear models, Box and Cox

(1964) is widely used.

There are several reasons to use a coarse grid of powers. First, several of the powers

correspond to simple transformations such as the log, square root, and cube root. These

powers are easier to interpret than λ = .28, for example. Secondly, if the estimator

λ̂n can only take values in ΛL, then sometimes λ̂n will converge (e.g. in probability) to

λ∗ ∈ ΛL. Thirdly, Tukey (1957) showed that neighboring power transformations are often

very similar, so restricting the possible powers to a coarse grid is reasonable. Note that

powers can always be added to the grid ΛL. Useful powers are ±1/4,±2/3,±2, and ±3.

Powers from numerical methods can also be added.
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Figure 1: Transformation Plots for Crab Data

3 Examples

In the following examples, the plots show tλ(Z) on the vertical axis. The label “TZHAT”

of the horizontal axis is for the fitted values that result from using tλ(Z) as the “response”

in the software.

Example 1. For experimental design models, often use five transformations instead

of seven: Λ = {−1,−1/2, 0, 1/2, 1}. Kuehl (1994, p. 128) gives data for counts of hermit

crabs in six different coastline habitats, where C is the count of crabs and the “response”

Z = C + 1/6. Each habitat had several counts of 0 and often there were several counts

of 1, 2 or 3. The one way anova model Wij = tλ(Zij) = µi + eij = η + τi + eij was

fit for i = 1, ..., 6 with ni = 25, and j = 1, ..., ni. Each of the six habitats was a level

with 25 replicates. Figure 1 shows the five transformation plots. The transformation

Y = log(Z) is used since the six dot plots have roughly the same shape and spread. The

transformations 1/Z and 1/
√

Z do not handle the 0 counts well, while the transformations

√
Z and Z have variance that increases with the mean.
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Figure 2: Transformation Plots for Textile Data

Example 2. Box and Cox (1964) analyze data from a 33 experiment on the behavior

of yarn under cycles of repeated loadings. Here Z = number of cycles until failure while

the three predictors are the length, amplitude and load. A constant and the three main

effects were used. For this data set, there is one value of the response for each of the

27 treatment level combinations. Figure 2 shows four of the transformation plots. The

plotted points curve away from the identity line in three of the four plots. The plotted

points for the log transformation follow the identity line with roughly constant variance.

This transformation plot is the response plot where Y = log(Z). To visualize the

conditional distribution of Y |xT β, use the fact that the fitted values Ŷ = xT β̂. For

example, suppose that log(cycles to failure) given fit = 6 is of interest. Mentally examine

the plot about a narrow vertical strip about Ŷ = 6, perhaps from 5.75 to 6.25. The

cases in the narrow strip have a mean close to 6 since they fall close to the identity line.

Similarly, when Ŷ = ŷ for ŷ between 4.5 and 8.5, the cases have log(cycles to failure)

near ŷ, on average. Cases 19 and 20 had the largest Y values with long length, short
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Figure 3: Transformation Plots for Lynx Data

amplitude of loading cycle and low load. Cases 8 and 9 had the smallest Y values with

low length, high amplitude and high load.

For experimental design models, interest is often in finding the combination of predic-

tors that result in the largest or smallest values of the response. This example illustrates

that the response plot is useful for finding combinations of levels with desirable values of

the response.

Example 3. The Moran (1953) lynx data is a well known time series of n = 114

cases concerning the number Zt of lynx trapped in a section of Northwest Canada from

1821 to 1934. Autoregressive time series was used, and several of the transformation

plots in Figure 3 look linear. The residual plots in Figure 4 suggest that the log, square

root and cube root transformations are adequate.

Although the AR(2) model with log(lynx) suggested by Moran (1953) has been heavily
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Figure 4: Residual Plots for Lynx Data
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Figure 5: The AR(2) Model May Be Reasonable
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Figure 6: Transformation Plots for Ozone Data

criticized in the literature, the AR(2) model gives a good response plot and a better

residual plot than those shown in Figure 4. See Figure 5.

Example 4. Chambers and Hastie (1993, pp. 251, 516) examine an environmental

study that measured the four variables Z = ozone concentration, solar radiation, tem-

perature, and wind speed for 111 consecutive days. Generalized additive models are fit

using Z and Z1/3 as the response. Figure 6 shows the four best transformation plots.

The residual plots in Figure 7 suggest that no transformation, Y = Z may be best since

the other transformations do not fit the case in the lower left corner poorly.

4 Conclusions

To show that a transformation Y = t(Z) = m(x) + e is good, make a response plot of

Ŷ = m̂(x) versus Y and the residual plot of r = Y − Ŷ versus Ŷ . Also display at least

three additional transformation plots. If more than one transformation plot is linear,

display the corresponding “resdidual plots.”
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Figure 7: Residual Plots for Ozone Data

Cook and Olive (2001) used a similar graphical method for linear models where the

“transformation plot” of Ẑi versus Wi is made for each of the seven values of λ ∈ ΛL.

Cook and Weisberg (2004) give a graphical method for multiple linear regression, noting

that an inverse response plot of Z versus Ẑ can often be used to visualize tλ0. Then the

transformation plot of Ẑ versus Z can be used to visualize t−1
λ0

. An advantage of this

procedure is that the family of transformations need not be picked in advance, but the

predictors need to be well behaved, and it may be difficult to generalize this method

beyond the multiple linear regression model.

There is a massive literature on response transformations for the multiple linear re-

gression model, but there is much less work for alternative models. The Box and Cox

(1964) numerical procedure also works for many experimental design models. Hastie and

Tibshirani (1990, ch. 7) give some numerical methods for fitting response transforma-

tions for the GAM, including the Breiman and Friedman (1985) ACE algorithm. Also

see references in Carroll and Ruppert (1988), Castillo, Hadi, Lacruz and Pruneda (2008)
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and Ruppert, Wand and Carroll (2003, section 2.9).

Once Y = t(Z) and m are chosen by a numerical method, the response plot of

Ŷ = m̂(x) versus Y is useful for checking whether the numerical method gave a reasonable

model.

The graphical method is also very useful for outlier detection for linear models. Using

the graphical method with the GAM is attractive for checking the linear model. Suppose

the method gives Y = t(Z) = α+
∑p

j=1 Sj(xj). If the response plot is linear and each plot

of Ŝj is linear, then use the simpler linear model Y = α + xTβ. If the functional form of

the Ŝj is quadratic, then replace Sj(xj) by β1jxj + β2jx
2
j .
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