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Abstract

A common technique for robust dispersion estimators is to apply the classical

estimator to some subset U of the data. Applying principal component analysis

to the subset U can result in a robust principal component analysis with good

properties.
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1 INTRODUCTION

Principal component analysis (PCA) is used to explain the dispersion structure with a

few linear combinations of the original variables, called principal components. These

linear combinations are uncorrelated if the sample covariance matrix S or the sample

correlation matrix R is used as the dispersion matrix. The analysis is used for data

reduction and interpretation. The notation ej will be used for orthonormal eigenvectors:

eT
j ej = 1 and eT

j ek = 0 for j 6= k. The eigenvalue eigenvector pairs of a symmetric

matrix Σ will be (λ1, e1), ..., (λp, ep) where λ1 ≥ λ2 ≥ · · · ≥ λp. The eigenvalue eigen-

vector pairs of a matrix Σ̂ will be (λ̂1, ê1), ..., (λ̂p, êp) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p. The

generalized correlation matrix defined below is the population correlation matrix when

second moments exist if Σ = c Cov(x) for some constant c > 0 where Cov(x) is the

population covariance matrix.

Let Σ = (σij) be a positive definite symmetric p× p dispersion matrix. A generalized

correlation matrix ρ = (ρij) where ρij =
σij√
σiiσjj

.

PCA is applied to data x1, ..., xn which are iid from some distribution. If a p × 1

random vector x has joint pdf

f(z) = kp|Σ|−1/2g[(z − µ)TΣ−1(z − µ)], (1)

then x has an elliptically contoured ECp(µ,Σ, g) distribution.

The following theorem holds since the eigenvalues and generalized correlation matrix

are continuous functions of Σ. When the distribution of the xi is unknown, then a good

dispersion estimator estimates cΣ on a large class of distributions where c > 0 depends

on the unknown distribution of xi. For example, if the xi ∼ ECp(µ,Σ, g), then the
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sample covariance matrix S estimates Cov(x) = cXΣ.

Theorem 1. Suppose the dispersion matrix Σ has eigenvalue eigenvector pairs

(λ1, e1), ..., (λp, ep) where λ1 ≥ λ2 ≥ · · · ≥ λp. Suppose Σ̂
P→ cΣ for some constant c > 0.

Let the eigenvalue eigenvector pairs of Σ̂ be (λ̂1, ê1), ..., (λ̂p, êp) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p.

Then λ̂j(Σ̂)
P→ cλj(Σ) = cλj, ρ̂ P→ ρ and λ̂j (ρ̂) P→ λj (ρ) where λj(A) is the jth

eigenvalue of A for j = 1, ..., p.

Eigenvectors ej are not continuous functions of Σ, and if ej is an eigenvector of Σ

then so is −ej . The software produces êj which sometimes approximates ej and some-

times approximates −ej if the eigenvalue λj is unique, since then the set of eigenvectors

corresponding to λj has the form aej for any nonzero constant a. The situation becomes

worse if some of the eigenvalues are equal, since the possible eigenvectors then span a

space of dimension equal to the multiplicity of the eigenvalue. Hence if the multiplic-

ity is two and both ej and ek are eigenvectors corresponding to the eigenvalue λi, then

ei = xi/‖xi‖ is also an eigenvector corresponding to λi where xi = ajej + akek for con-

stants aj and ak which are not both equal to 0. The software produces êj and êk that

are approximately in the span of ej and ek for large n by the following theorem, which

also shows that êi is asymptotically an eigenvector of Σ in that (Σ − λi)êi
P→ 0. It is

possible that êi,n is arbitrarily close to ei for some values of n and arbitrarily close to

−ei for other values of n so that êi ≡ êi,n oscillates and does not converge in probability

to either ei or −ei.

Theorem 2. Assume the p × p symmetric dispersion matrix Σ is positive definite.

a) If Σ̂
P→ Σ, then Σ̂ei − λ̂iei

P→ 0.
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b) If Σ̂
P→ Σ, then Σêi − λiêi

P→ 0.

If Σ̂− Σ = OP (n−δ) where 0 < δ ≤ 0.5, then

c) λiei − Σ̂ei = OP (n−δ), and

d) λ̂iêi − Σêi = OP (n−δ).

e) If Σ̂
P→ cΣ for some constant c > 0, and if the eigenvalues λ1 > · · · > λp > 0 of

Σ are unique, then the absolute value of the correlation of êj with ej converges to 1 in

probability: |corr(êj, ej)| P→ 1.

Proof. a) Σ̂ei − λ̂iei
P→ Σei − λiei = 0.

b) Note that (Σ − λiI)êi = [(Σ − λiI) − (Σ̂ − λ̂iI)]êi = oP (1)OP (1)
P→ 0.

c) λiei − Σ̂ei = Σei − Σ̂ei = OP (n−δ).

d) λ̂iêi − Σêi = Σ̂êi −Σêi = OP (n−δ).

e) Note that a) and b) hold if Σ̂
P→ Σ is replaced by Σ̂

P→ cΣ. Hence for large n,

êi ≡ êi,n is arbitrarily close to either ei or −ei, and the result follows.

Let the p × 1 column vector T (W ) be a multivariate location estimator, and let

the p × p symmetric positive definite matrix C(W ) be a dispersion estimator. The ith

squared Mahalanobis distance is

D2
i = D2

i (T (W ), C(W )) = (xi − T (W ))T C−1(W )(xi − T (W )) (2)

for each point xi. The population squared Mahalanobis distance corresponding to a

population location vector µ and nonsingular dispersion matrix Σ is D2
x(µ,Σ) = D2

x =

(x − µ)TΣ−1(x − µ).

The trace of a matrix A is the sum of the diagonal elements of A, and if A is a

p × p matrix, then trace(A) = tr(A) =
∑p

i=1 Aii =
∑p

i=1 λi. Note that tr(Cov(x)) =
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σ2
1 + · · · + σ2

p and tr(ρ̂) = p.

Let dispersion estimator Σ̂ have eigenvalue eigenvector pairs (λ̂1, ê1), ..., (λ̂p, êp) where

λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p. Then the p principal components corresponding to the jth case xj

are Zj1 = êT
1 xj, ..., Zjp = êT

p xj. Let the vector zj = (Zj1, ..., Zjp)
T . The proportion of the

trace explained by the first kth principal components is
∑k

i=1 λ̂i/
∑p

j=1 λ̂j =
∑k

i=1 λ̂i/tr(Σ̂).

When a correlation or covariance matrix is being estimated, “trace” is replaced by “vari-

ance.” The population analogs use the dispersion matrix Σ with eigenvalue eigenvector

pairs (λi, ei) for i = 1, ..., p. The population principal components corresponding to the

j case are Yji = eT
i xj, and Zji = Ŷji for i = 1, ..., p.

The scree plot of component number versus eigenvalue is also useful for choosing k

since often there is a sharp bend in the scree plot when the components are no longer

important. See Cattell (1966).

2 Robust Principal Component Analysis

A robust “plug in” method uses an analysis based on the (λ̂i, êi) computed from a robust

dispersion estimator C. The RPCA method performs the classical principal component

analysis on the RMVN subset U of cases that are given weight 1, using either the sample

covariance matrix CU = SU or the sample correlation matrix RU .

The following assumption (E1) gives a class of distributions where the Olive and

Hawkins (2010) FCH, RFCH and RMVN robust estimators can be proven to be
√

n

consistent. Cator and Lopuhaä (2010, 2012) show that MCD is consistent provided that

the MCD functional is unique. Distributions where the functional is unique are called
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“unimodal,” and rule out, for example, a spherically symmetric uniform distribution.

Assumption (E1): The x1, ..., xn are iid from a “unimodal” ECp(µ,Σ, g) distribu-

tion with nonsingular covariance matrix Cov(xi) where g is continuously differentiable

with finite 4th moment:
∫
(xT x)2g(xT x)dx < ∞.

Under assumption (E1), CU and RU are
√

n consistent highly outlier resistant es-

timators of cΣ = dCov(x) and the population correlation matrix DCov(x)D = ρ,

respectively, where D = diag(1/
√

σ11, ..., 1/
√

σpp) and the σii are the diagonal entries of

Cov(x) = Σx = cXΣ. Let λi(A) be the eigenvalues of A where λ1(A) ≥ λ2(A) ≥ · · · ≥

λp(A). Let λ̂i(Â) be the eigenvalues of Â where λ̂1(Â) ≥ λ̂2(Â) ≥ · · · ≥ λ̂(Â).

Theorem 3. Under (E1), the correlation of the eigenvalues computed from the

classical PCA and RPCA converges to 1 in probability.

Proof: The eigenvalues are continuous functions of the dispersion estimator, hence

consistent estimators of dispersion give consistent estimators of the population eigenval-

ues. See Eaton and Tyler (1991) and Bhatia, Elsner and Krause (1990). Let λi(Σ) = λi

be the eigenvalues of Σ so cXλi are the eigenvalues of Cov(x) = Σx. Under (E1),

λi(S)
P→ cXλi and λi(CU )

P→ cλi =
c

cX
cXλi = d cX λi. Hence the population eigenvalues

of Σx and d Σx differ by the positive multiple d, and the population correlation of the

two sets of eigenvalues is equal to one.

Now let λi(ρ) = λi. Under (E1), both R and RU converge to ρ in probability,

so λ̂i(R)
P→ λi and λ̂i(RU)

P→ λi for i = 1, ..., p. Hence the two population sets of

eigenvalues are the same and thus have population correlation equal to one. QED
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Note that if Σx e = λe, then

d Σx e = dλe.

Thus λ̂i(S)
P→ λi(Σx) and λ̂i(CU)

P→ dλi(Σx) for i = 1, ..., p. Since plotting software

fills space, two scree plots of two sets of eigenvalues that differ by a constant positive

multiple will look nearly the same, except for the labels of the vertical axis, and the “trace

explained” by the largest k eigenvalues will be the same for the two sets of eigenvalues.

Theorem 2 implies that for a large class of elliptically contoured distributions and for

large n, the classical and robust scree plots should be similar visually, and the “trace

explained” by the classical PCA and the robust PCA should also be similar.

The eigenvectors are not continuous functions of the dispersion estimator, and the

sample size may need to be massive before the robust and classical eigenvectors or prin-

cipal components have high absolute correlation. In the software, sign changes in the

eigenvectors are common, since Σx e = λe implies that Σx (−e) = λ(−e).

3 Examples and Simulations

The robust estimator used was the RMVN estimator of Olive and Hawkins (2010) and

Zhang, Olive and Ye (2012). This estimator was shown to be
√

n consistent and highly

outlier resistant for a large class of elliptically contoured distributions.

Example 1. Buxton (1920) gives various measurements on 87 men including height,

head length, nasal height, bigonal breadth and cephalic index. Five heights were recorded

to be about 19mm with the true heights recorded under head length. Performing a

classical principal components analysis on these five variables using the covariance matrix
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Figure 1: First Two Principal Components for Buxton data
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Figure 2: First Two Robust Principal Components with Outliers Omitted
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resulted in a first principal component corresponding to a major axis that passed through

the outliers. See Figure 1 where the second principal component is plotted versus the

first. The robust PCA, or the classical PCA performed after the outliers are removed,

resulted in a first principal component that was approximately − height with ê1 ≈

(−1.000, 0.002,−0.023,−0.002,−0.009)T while the second robust principal component

was based on the eigenvector ê2 ≈ (−0.005, 0.848,−0.054,−0.048, 0.525)T . The plot of

the first two robust principal components, with the outliers deleted, is shown in Figure

2. These two components explain about 86% of the variance.
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Figure 3: Robust Scree Plot

Figure 3 shows the robust scree plot which suggests that the last principal component

can be deleted.

The outliers are known from the DD plot so the robust principal component analysis

can be done with and without the outliers. The data matrix zw is the clean data without

the outliers.

zw <-z[-c(61,62,63,64,65),]
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zzcorc <- prcomp(zw,scale=T)

# clean data with corr matrix

> zzcorc

Standard deviations:

[1] 1.3184358 1.1723991 1.0155266 0.7867349 0.4867867

Rotation:

PC1 PC2 PC3 PC4 PC5

buxy 0.01551 0.71466 0.02247 -0.68890 -0.11806

len 0.70308 -0.06778 0.07744 -0.16901 0.68302

nasal 0.15038 0.68868 0.02042 0.70385 0.08539

bigonal 0.11646 -0.04882 0.96504 0.02261 -0.22855

cephalic -0.68502 0.08950 0.24854 -0.03071 0.67825

zrcor <- rprcomp(z,cor=T)

> zrcor

$out

Standard deviations:

[1] 1.3323400 1.1548879 0.9988643 0.8182741 0.4730769

Rotation:

PC1 PC2 PC3 PC4 PC5

buxy -0.10724 -0.69431 -0.11325 0.69184 -0.12238

len 0.69909 -0.06324 0.02560 0.17129 0.69085

nasal 0.04094 -0.70310 -0.08718 -0.70093 0.07123

bigonal 0.02638 -0.13994 0.98660 0.01120 -0.07884
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cephalic -0.70527 -0.00317 0.07443 0.02432 0.70460

> zrcorc <- rprcomp(zw,cor=T)

> zrcorc

$out

Standard deviations:

[1] 1.3369152 1.1466891 1.0016463 0.8123854 0.4842482

Rotation:

PC1 PC2 PC3 PC4 PC5

buxy -0.21306 0.67557 -0.01727 -0.68852 -0.15446

len 0.67272 0.21639 0.05560 -0.15178 0.68884

nasal -0.22213 0.66958 0.05174 0.68978 0.15441

bigonal -0.01374 -0.02995 0.99668 -0.03546 -0.06543

cephalic -0.67270 -0.21807 0.02363 -0.16076 0.68813

Note that the square roots of the eigenvalues, given by “Standard deviations,” do not

change much for the following three estimators: the classical estimator applied to the

clean data, and the robust estimator applied to the full data or the clean data. The first

eigenvector is roughly proportional to length − cephalic while the second eigenvector is

roughly proportional to buxy + nasal. The third principal component is highly correlated

with bigonal, the fourth principal component is proportional to buxy − nasal, and the

fifth principal component to length + cephalic.

Consider several estimators described in Olive and Hawkins (2010). In simulations for

principal component analysis, FCH, RMVN, OGK and Fake-MCD seem to estimate cΣx
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if x = Az + µ where z = (z1, ..., zp)
T and the zi are iid from a continuous distribution

with variance σ2. Here Σx = Cov(x) = σ2AAT . The bias for the MB estimator seemed

to be small. It is known that affine equivariant estimators give unbiased estimators of

cΣx if the distribution of zi is also symmetric. DGK and Fake-MCD (with fixed random

number seed) are affine equivariant. FCH and RMVN are asymptotically equivalent

to a scaled DGK estimator. But in the simulations the results also held for skewed

distributions.

The simulations used 1000 runs where x = Az and z ∼ Np(0, Ip), z ∼ LN(0, Ip)

where the marginals are iid lognormal(0,1), or z ∼ MV Tp(1), a multivariate t dis-

tribution with 1 degree of freedom so the marginals are iid Cauchy(0,1). The choice

A = diag(
√

1, ...,
√

p) results in Σ = diag(1, ..., p). Note that the population eigenvalues

will be proportional to (p, p − 1, ..., 1)T and the population “variance explained” by the

ith principal component is λi/
∑p

j=1 λj = 2(p+1− i)/[p(p+1)]. For p = 4, these numbers

are 0.4, 0.3 and 0.2 for the first three principal components. If the “correlation” option

is used, then the population “correlation matrix” is the identity matrix Ip, the ith pop-

ulation eigenvalue is proportional to 1/p and the population “variance explained” by the

ith principal component is 1/p.

Table 2 shows the mean “variance explained” (M) along with the standard deviations

(S) for the first three principal components. Also ai and pi are the average absolute value

of the correlation between the ith eigenvectors or the ith principal components of the

classical and robust methods. Two rows were used for each “n–data type” combination.

The ai are shown in the top row while the pi are in the lower row. The values of ai and

pi were similar. The standard deviations were slightly smaller for the classical PCA for
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Table 1: Variance Explained by PCA and RPCA, p = 4

n type M/S vexpl rvexpl a1/p1 a2/p2 a3/p3

40 N M 0.445,0.289,0.178 0.472,0.286,0.166 0.895 0.821 0.825

S 0.050,0.037,0.032 0.062,0.043,0.037 0.912 0.813 0.804

100 N M 0.419,0.295,0.191 0.425,0.293,0.189 0.952 0.926 0.963

S 0.033,0.030,0.024 0.040,0.032,0.027 0.956 0.923 0.953

400 N M 0.404,0.298,0.198 0.406,0.298,0.198 0.994 0.991 0.996

S 0.019,0.017,0.014 0.021,0.019,0.015 0.995 0.990 0.994

40 C M 0.765,0.159,0.056 0.514,0.275,0.147 0.563 0.519 0.511

S 0.165,0.112,0.051 0.078,0.055,0.040 0.776 0.383 0.239

100 C M 0.762,0.156,0.060 0.455,0.286,0.173 0.585 0.527 0.528

S 0.173,0.112,0.055 0.054,0.041,0.034 0.797 0.377 0.269

400 C M 0.756,0.162,0.060 0.413,0.296,0.194 0.608 0.562 0.575

S 0.172,0.113,0.054 0.030,0.025,0.022 0.796 0.397 0.308

40 L M 0.539,0.256,0.139 0.521,0.268,0.146 0.610 0.509 0.530

S 0.127,0.075,0.054 0.099,0.061,0.047 0.643 0.439 0.398

100 L M 0.482,0.270,0.165 0.459,0.279,0.172 0.647 0.555 0.566

S 0.180,0.063,0.052 0.077,0.047,0.041 0.654 0.492 0.474

400 L M 0.437,0.282,0.185 0.416,0.290,0.194 0.748 0.639 0.739

S 0.080,0.048,0.044 0.049,0.035,0.033 0.727 0.594 0.690

10000 L M 0.400,0.301,0.200 0.402,0.300,0.199 0.982 0.967 0.991

S 0.027,0.023,0.018 0.013,0.011,0.009 0.976 0.967 0.989
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normal data. The classical method failed to estimate (0.4,0.3,0.2) for the Cauchy data.

For the lognormal data, RPCA gave better estimates, and the pi were not high except

for n = 10000.

To compare affine equivariant and non-equivariant estimators, Maronna and Zamar

(2002) suggest using Ai,i = 1 and Ai,j = ρ for i 6= j and ρ = 0, 0.5, 0.7, 0.9, and 0.99.

Then Σ = A2. If ρ is high, or if p is high and ρ ≥ 0.5, then the data are concentrated

about the line with direction 1 = (1, ..., 1)T . For p = 50 and ρ = 0.99, the population

variance explained by the first principal component is 0.999998. If the “correlation”

option is used, then there is still one extremely dominant principal component unless

both p and ρ are small.

Table 2: Variance Explained by PCA and RPCA, SSD = 107 SD, p = 50

n type vexpl SSD rvexpl SSD a1

200 N 0.999998 1.958 0.999998 2.867 0.687

1000 N 0.999998 0.917 0.999998 0.971 0.944

1000 C 0.999996 161.3 0.999998 1.482 0.112

1000 L 0.999998 0.919 0.999998 1.508 0.175

Table 3 shows the mean “variance explained” along with the standard deviations

multiplied by 107 for the first principal component. The a1 value is given but p1 was

always 1.0 to many decimal places even with Cauchy data. Hence the eigenvectors from

the robust and classical methods could have low absolute correlation, but the data was

so tightly clustered that the first principal components from the robust and classical
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methods had absolute correlation near 1.

4 Conclusions

To use PCA, assume the DD plot of classical versus robust Mahalanobis distances and

the subplots of the scatterplot matrix are linear. Want n > 10p for classical PCA and

n > 20p for robust PCA that uses the FCH, RFCH or RMVN estimators described in

Olive and Hawkins (2010). For classical PCA, use the correlation matrix R instead of

the covariance matrix S if maxi=1,...,p S2
i /mini=1,...,p S2

i > 2. If S is used, also do a PCA

using R.

Jolliffe (2010) is an authoritative text on PCA. Cattell (1966) and Bentler and Yuan

(1998) are good references for scree plots. Mφller, von Frese and Bro (2005) discuss PCA,

principal component regression and drawbacks of M estimators. Waternaux (1976) gives

some large sample theory for PCA. In particular, if the xi are iid from a multivariate

distribution with fourth moments and a covariance matrix Σx such that the eigenvalues

are distinct and positive, then
√

n(λ̂i − λi)
D→ N(0, κi + 2λ2

i ) where κi is the kurtosis of

the marginal distribution of xi, for i = 1, ..., p.

The literature for robust PCA is large, but the “high breakdown” methods are im-

practical or not backed by theory. Some of these methods may be useful as outlier di-

agnostics. The theory of Boente (1987) for mildly outlier resistant principal components

is not based on DGK estimators since the weighting function on the Di is continuous.

Spherical principal components is a mildly outlier resistant bounded influence approach

suggested by Locantore, Marron, Simpson, Tripoli, Zhang and Cohen (1999). Boente and
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Fraiman (1999) claim that basis of the eigenvectors is consistently estimated by spherical

principal components for elliptically contoured distributions. Also see Maronna, Martin

and Yohai (2006, p. 212-213) and Taskinen, Koch and Oja (2012).

Simulations were done in R. The MASS library was used to compute FMCD and the

robustbase library was used to compute OGK. The mpack function covrmvn computes

the FCH, RMVN and MB estimators while covfch computes the FCH, RFCH and MB

estimators. The following functions were used in the three simulations and have more

outlier configurations than the two described in the simulation. Function covesim was

used to produce Table 1 and pcasim for Tables 2 and 3. See Zhang (2011) for more

extensive simulations.

For a nonsingular matrix, the inverse of the matrix, the determinant of the matrix

and the eigenvalues of the matrix are continuous functions of the matrix. Hence if Σ̂

is a consistent estimator of Σ, then the inverse, determinant and eigenvalues of Σ̂ are

consistent estimators of the inverse, determinant and eigenvalues of Σ. See, for example,

Bhatia, Elsner and Krause (1990), Stewart (1969) and Severini (2005, p. 348-349).
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