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Abstract

A robust multivariate linear regression estimator can be obtained by replac-

ing the least squares estimator with the robust hbreg estimator. Then the robust

multivariate linear regression estimator is asymptotically equivalent to the classical

multivariate linear regression estimator since the probability that the robust esti-

mator is equal to the classical estimator goes to one in probability as the sample

size n → ∞ for a large class of iid zero mean error distributions. This paper dis-

cusses the robust estimator and some tests and prediction regions using the robust

estimator that are asymptotically equivalent to those using the classical estimator.

A second robust estimator that is useful for outlier detection is derived.
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1 INTRODUCTION

Olive (2013b), using results from Su and Cook (2012) and Kakizawa (2009), derived a
useful prediction region for the classical multivariate linear regression model, and gave
F approximations to the widely used Wilk, Pillai, and Hotelling Lawley test statistics.
This paper will show that these large sample tests and prediction regions also work for
the robust multivariate linear regression estimator that replaces least squares with the
hbreg estimator. This section reviews the multivariate linear regression model and the
results from Olive (2013b). Section 2 reviews the hbreg estimator and derives the robust
estimator and section 3 gives some examples and simulations. Section 4 derives a robust
estimator that is useul for outlier detection.

1.1 The Multivariate Linear Regression Model

The multivariate linear regression model yi = BT xi+εi for i = 1, ..., n hasm ≥ 2 response
variables Y1, ..., Ym and p predictor variables x1, x2, ..., xp. The ith case is (xT

i ,y
T
i ) =

(xi1, xi2, ..., xip, Yi1, ..., Yim) where the constant xi1 = 1 could be omitted from the case.
The model is written in matrix form as Z = XB + E where the matrices are defined
below. The model has E(εk) = 0 and Cov(εk) = Σε = (σij) for k = 1, ..., n. Also
E(ei) = 0 while Cov(ei, ej) = σijIn for i, j = 1, ..., mwhere In is the n×n identity matrix

and ei is defined below. Then the p × m coefficient matrix B =
[

β1 β2 . . . βm

]

and the m × m covariance matrix Σε are to be estimated, and E(Z) = XB while
E(Yij) = xT

i βj.

The n ×m matrix of response variables

Z =
[

Y 1 Y 2 . . . Y m

]
=





yT
1
...

yT
n



 .

The n × p design matrix of predictor variables

X =
[

v1 v2 . . . vp

]
=




xT
1
...

xT
n




where v1 = 1.
The n ×m matrix of errors

E =
[

e1 e2 . . . em

]
=




εT
1
...

εT
n


 .

Least squares is the classical method for fitting the multivariate linear model. The
least squares estimators are B̂ = (XTX)−1XT Z =

[
β̂1 β̂2 . . . β̂m

]
. The predicted
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values or fitted values Ẑ = XB̂ =
[

Ŷ 1 Ŷ 2 . . . Ŷ m

]
. The residuals

Ê = Z − Ẑ = Z − XB̂ =




ε̂
T
1

ε̂T
2
...

ε̂T
n




=
[

r̂1 r̂2 . . . r̂m

]
.

These quantities can be found from the m multiple linear regressions of Yj on the pre-

dictors: β̂j = (XTX)−1XTY j, Ŷ j = Xβ̂j and r̂j = Y j − Ŷ j for j = 1, ..., m. Hence

ε̂i,j = Yi,j − Ŷi,j where Ŷ j = (Ŷ1,j, ..., Ŷn,j)
T . Finally,

Σ̂ε,d =
(Z − Ẑ)T (Z − Ẑ)

n− d
=

(Z − XB̂)T (Z − XB̂)

n − d
=

Ê
T
Ê

n− d
=

1

n− d

n∑

i=1

ε̂iε̂
T
i .

The choices d = 0 and d = p are common. If d = 1, then Σ̂ε,d=1 = Sr, the sample
covariance matrix of the residual vectors ε̂i since the sample mean of the ε̂i is 0. Let
Σ̂ε = Σ̂ε,p be the unbiased estimator of Σε.

The εi are assumed to be iid. Some important joint distributions for ε are completely
specified by an m × 1 population location vector µ and an m × m symmetric positive
definite population dispersion matrix Σ. An important model is the elliptically contoured
ECm(µ,Σ, g) distribution with probability density function

f(z) = km|Σ|−1/2g[(z − µ)T Σ−1(z − µ)]

where km > 0 is some constant and g is some known function. The multivariate normal
(MVN) Nm(µ,Σ) distribution is a special case.

Some additional notation will be useful. Assume that x1, ..., xn are iid from a
multivariate distribution. The classical estimator (x,S) of multivariate location and
dispersion is the sample mean and sample covariance matrix where

x =
1

n

n∑

i=1

xi and S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T. (1)

Let the p× 1 column vector T be a multivariate location estimator, and let the p× p
symmetric positive definite matrix C be a dispersion estimator. Then the ith squared
sample Mahalanobis distance is the scalar

D2
i = D2

i (T,C) = (xi − T )TC−1(xi − T ) (2)

for each observation xi. Notice that the Euclidean distance of xi from the estimate of
center T is Di(T, Ip). The classical Mahalanobis distance uses (T,C) = (x,S). Following
Johnson (1987, pp. 107-108), the population squared Mahalanobis distance

U ≡ D2(µ,Σ) = (x − µ)TΣ−1(x − µ), (3)

and for elliptically contoured distributions, U has probability density function (pdf)

h(u) =
πp/2

Γ(p/2)
kpu

p/2−1g(u). (4)
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1.2 A Prediction Region

Following Olive (2013b), given n cases of training or past data (x1,y1), ..., (xn,yn) and
a vector of predictors xf , suppose it is desired to predict a future vector yf . Then a
large sample (1− δ)100% prediction region is a set An such that P (yf ∈ An) → 1− δ as
n→ ∞, and is asymptotically optimal if the volume of the region converges in probability
to the volume of the population minimum volume covering region.

If the εi are iid from an ECm(0,Σ, g) distribution with continuous decreasing g and
nonsingular covariance matrix Σε = cΣ for some constant c > 0, then the popula-
tion asymptotically optimal prediction region is {y : Dy(BTxf ,Σε) ≤ D1−δ} where

P (Dy(BTxf ,Σε) ≤ D1−δ) = 1 − δ. For example, if the iid εi ∼ Nm(0,Σε), then

D1−δ =
√
χ2

m,1−δ. If the error distribution is not elliptically contoured, then the above

region still has 100(1 − δ)% coverage, but prediction regions with smaller volume may
exist.

Theorem 1, see Olive (2013b). Suppose yi = E(yi) + εi = ŷi + ε̂i where Cov(εi) =
Σε > 0, and where the zero mean εf and the εi are iid for i = 1, ..., n. Given xf , suppose

the fitted model produces ŷf and nonsingular Σ̂ε. Let ẑi = ŷf + ε̂i and

D2
i (ŷf , Σ̂ε) = (ẑi − ŷf )

T Σ̂
−1

ε (ẑi − ŷf)

for i = 1, ..., n. Let qn = min(1 − δ + 0.05, 1 − δ +m/n) for δ > 0.1 and

qn = min(1 − δ/2, 1 − δ + 10δm/n), otherwise.

If qn < 1 − δ + 0.001, set qn = 1 − δ. Let 0 < δ < 1 and h = D(Un) where D(Un) is the
qnth sample quantile of the Di. Let the nominal 100(1 − δ)% prediction region for yf be

given by {z : (z − ŷf )
T Σ̂

−1

ε (z − ŷf ) ≤ D2
(Un)} = {z : D2

z(ŷf , Σ̂ε) ≤ D2
(Un)} =

{z : Dz(ŷf , Σ̂ε) ≤ D(Un)}. (5)

a) Consider the n prediction regions for the data where (yf,i,xf,i) = (yi,xi) for
i = 1, ..., n. If the order statistic D(Un) is unique, then Un of the n prediction regions
contain yi where Un/n → 1 − δ as n→ ∞.

b) If (ŷf , Σ̂ε) is a consistent estimator of (E(yf ),Σε), then (5) is a large sample
100(1 − δ)% prediction region for yf .

c) If (ŷf , Σ̂ε) is a consistent estimator of (E(yf ),Σε), and the εi come from an ellip-
tically contoured distribution such that the highest density region is {z : Dz(0,Σε) ≤
D1−δ}, then the prediction region (5) is asymptotically optimal.

Notice that for the data (x1,y1), ..., (xn,yn), if Σ̂
−1

ε exists, then 100qn% of the n
cases are in their corresponding prediction region, and qn → 1− δ even if (ŷi, Σ̂ε) is not
a good estimator. Hence the coverage qn of the training data is robust to model assump-
tions. Of course the volume of the prediction region could be large if a poor estimator
(ŷi, Σ̂ε) is used or if the εi do not come from an elliptically contoured distribution. The
nonparametric region uses (ŷf , Σ̂ε) = (ŷf ,Sr) from the classical estimator in (5).
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1.3 Testing

Following Olive (2013b), next consider testing a linear hypothesis H0 : LB = 0 versus

H1 : LB 6= 0 where L is a full rank r×p matrix. Let H = B̂
T
LT [L(XTX)−1LT ]−1LB̂.

Let the error or residual sum of squares and cross products matrix be

W e = Ê
T
Ê = (Z − Ẑ)T (Z − Ẑ) = ZTZ − ZTXB̂ = ZT [In −X(XT X)−1XT ]Z.

Then W e/(n− p) = Σ̂ε. Let λ1 ≥ λ2 ≥ · · · ≥ λm be the ordered eigenvalues of W−1
e H .

Then there are four commonly used test statistics.
The Roy’s maximum root statistic is λmax(L) = λ1.

The Wilk’s Λ statistic is Λ(L) = |(H +W e)
−1W e| = |W−1

e H +I|−1 =
m∏

i=1

(1+λi)
−1.

The Pillai’s trace statistic is V (L) = tr[(H + W e)
−1H ] =

m∑

i=1

λi

1 + λi
.

The Hotelling-Lawley trace statistic is U(L) = tr[W−1
e H ] =

m∑

i=1

λi.

Theorem 2, Olive (2013b). The Hotelling-Lawley trace statistic

U(L) =
1

n− p
[vec(LB̂)]T [Σ̂

−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)]. (6)

Some notation is useful to show (6) and to show that (n − p)U(L)
D→ χ2

rm under
mild conditions if H0 is true. Following Henderson and Searle (1979), let matrix A =
[a1 a2 . . . ap]. Then the vec operator stacks the columns of A on top of one another
so

vec(A) =




a1

a2
...

ap



.

Let A = (aij) be an m × n matrix and B a p× q matrix. Then the Kronecker product
of A and B is the mp× nq matrix

A ⊗ B =




a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

... · · · ...
am1B am2B · · · amnB



.

An important fact is that if A and B are nonsingular square matrices, then [A⊗B]−1 =
A−1 ⊗B−1. The following assumption is important.

Assumption D1: Let hi be the ith diagonal element of X(XTX)−1XT . Assume
max1≤i≤n hi → 0 as n → ∞, assume that the zero mean iid errors have finite fourth

moments, and assume that
1

n
XT X

P→ W −1.

Then for the least squares estimator, Su and Cook (2012) show that if assumption

D1 holds, then Σ̂ε is
√
n consistent and

√
n vec(B̂ − B)

D→ Npm(0,Σε ⊗ W ).
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Theorem 3, Olive (2013b). If assumption D1 holds and if H0 is true, then

(n− p)U(L)
D→ χ2

rm.

Kakizawa (2009) shows, under stronger assumptions than Theorem 3, that for a large
class of iid error distributions, the following test statistics have the same χ2

rm limiting
distribution when H0 is true, and the same noncentral χ2

rm(ω2) limiting distribution with
noncentrality parameter ω2 when H0 is false under a local alternative. Hence the three
tests are robust to the assumption of normality. The limiting null distribution is well
known when the zero mean errors are iid from a multivariate normal distribution. See
Khattree and Naik (1999, p. 68): (n − p)U(L)

D→ χ2
rm, (n − p)V (L)

D→ χ2
rm, and

−[n − p − 0.5(m − r + 3)] log(Λ(L))
D→ χ2

rm. Results from Kshirsagar (1972, p. 301)
suggest that the chi-square approximation is very good if n ≥ 3(m2 +p2) for multivariate
normal errors.

Theorems 2 and 3 are useful for relating multivariate tests with the partial F test
for multiple linear regression that tests whether a reduced model that omits some of the
predictors can be used instead of the full model that uses all p predictors. The partial F
test statistic is

FR =

[
SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F )

where the residual sums of squares SSE(F ) and SSE(R) and degrees of freedom dfF

and dfr are for the full and reduced model while the mean square error MSE(F ) is for
the full model. Let the null hypothesis for the partial F test be H0 : Lβ = 0 where L

sets the coefficients of the predictors in the full model but not in the reduced model to
0. Seber and Lee (2003, p. 100) shows that

FR =
[Lβ̂]T (L(XTX)−1LT )−1[Lβ̂]

rσ̂2

is distributed as Fr,n−p if H0 is true and the errors are iid N(0, σ2). Note that for multiple

linear regression with m = 1, FR = (n − p)U(L)/r since Σ̂
−1

ε = 1/σ̂2. Hence the scaled
Hotelling Lawley test statistic is the partial F test statistic extended to m > 1 predictor
variables by Theorem 2.

By Theorem 3, for example, rFR
D→ χ2

r for a large class of nonnormal error distribu-

tion. If Zn ∼ Fk,dn
, then Zn

D→ χ2
k/k as dn → ∞. Hence using the Fr,n−p approximation

gives a large sample test with correct asymptotic level, and the partial F test is robust
to nonnormality.

Similarly, using an Frm,n−pm approximation for the following test statistics gives large
sample tests with correct asymptotic level by Kakizawa (2009) and similar power for large
n. The large sample test will have correct asymptotic level as long as the denominator
degrees of freedom dn → ∞ as n→ ∞, and dn = n− pm reduces to the partial F test if
m = 1 and U(L) is used. Then the three test statistics are

−[n− p− 0.5(m− r + 3)]

rm
log(Λ(L),

n− p

rm
V (L), and

n − p

rm
U(L).

Following Khattree and Naik (1999, p. 67) for the Roy’s largest root test, if h =
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max(r,m), use
n− p− h+ r

h
λmax(L) ≈ F (h, n− p− h + r).

Simulations in Olive (2013b) suggest that this approximation is good for r = 1 but poor
for r > 1. Anderson (1984, p. 333) states that Roy’s largest root test has the greatest
power if r = 1 but is an inferior test for r > 1.

Multivariate analogs of tests for multiple linear regression can be derived with appro-
priate choice of L. Assume a constant x1 = 1 is in the model. The analog of the ANOVA
F test for multiple linear regression is the MANOVA F test that uses L = [0 Ip−1] to
test whether the nontrivial predictors are needed in the model.

The Fj test of hypotheses uses Lj = [0, ..., 0, 1, 0, ..., 0], where the 1 is in the jth
position, to test whether the jth predictor is needed in the model given that the other
p− 1 predictors are in the model. This test is an analog of the t tests for multiple linear
regression.

The MANOVA partial F test is used to test whether a reduced model is good where
the reduced model deletes r of the variables from the full model. For this test, the ith
row of L has a 1 in the position corresponding to the ith variable to be deleted. Omitting
the jth variable corresponds to the Fj test while omitting variables x2, ..., xp corresponds
to the MANOVA F test. Using L = [0 Ik] tests whether the last k predictors are needed
in the multivariate linear regression model given that the remaining predictors are in the
model.

2 Robust Estimators

2.1 Resistant Regression Estimators for Multiple Linear Re-

gression

Consider the multiple linear regression model, written in matrix form as Y = Xβ + e.
This model is a special case of the multivariate linear regression model with m = 1.

Resistant estimators are useful for detecting certain types of outliers. Resistant esti-
mators are often created by computing several trial fits bi that are estimators of β. Then
a criterion is used to select the trail fit to be used in the resistant estimator. Suppose
c ≈ n/2. The LMS(c) criterion is QLMS(b) = r2

(c)(b) where r2
(1) ≤ · · · ≤ r2

(n) are the or-

dered squared residuals, and the LTS(c) criterion is QLTS(b) =
∑c

i=1 r
2
(i)(b). The LTA(c)

criterion is QLTA(b) =
∑c

i=1 |r(b)|(i) where |r(b)|(i) is the ith ordered absolute residual.
Three impractical high breakdown robust estimators are the Hampel (1975) least median
of squares (LMS) estimator, the Rousseeuw (1984) least trimmed sum of squares (LTS)
estimator, and the Hössjer (1991) least trimmed sum of absolute deviations (LTA) esti-
mator. These estimators correspond to the β̂L ∈ Rp that minimizes the corresponding
criterion.

A good resistant estimator is the Olive (2005) median ball algorithm (MBA or mbareg).
The Euclidean distance of the ith vector of predictors xi from the jth vector of predictors
xj is

Di(xj) =
√

(xi − xj)T (xi − xj).
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For a fixed xj consider the ordered distancesD(1)(xj), ..., D(n)(xj). Next, let β̂j(α) denote
the OLS fit to the min(p+ 3 + bαn/100c, n) cases with the smallest distances where the
approximate percentage of cases used is α ∈ {1, 2.5, 5, 10, 20, 33, 50}. (Here bxc is the
greatest integer function so b7.7c = 7. The extra p+ 3 cases are added so that OLS can
be computed for small n and α.) This yields seven OLS fits corresponding to the cases
with predictors closest to xj. A fixed number K of cases are selected at random without
replacement to use as the xj . Hence 7K OLS fits are generated. We use K = 7 as the
default. A robust criterion Q is used to evaluate the 7K fits and the OLS fit to all of
the data. Hence 7K + 1 OLS fits are generated and the MBA estimator is the fit that
minimizes the criterion. The median squared residual is a good choice for Q.

Three ideas motivate this estimator. First, x-outliers, which are outliers in the pre-
dictor space, tend to be much more destructive than Y -outliers which are outliers in the
response variable. Suppose that the proportion of outliers is γ and that γ < 0.5. We
would like the algorithm to have at least one “center” xj that is not an outlier. The
probability of drawing a center that is not an outlier is approximately 1 − γK > 0.99
for K ≥ 7 and this result is free of p. Secondly, by using the different percentages of
coverages, for many data sets there will be a center and a coverage that contains no
outliers. Thirdly, the MBA estimator is a

√
n consistent estimator.

The Olive and Hawkins (2011) hbreg estimator is a robust estimator that is asymp-
totically equivalent to the least squares estimator for many error distributions. Assume
that the multiple linear regression model contains an intercept and that the median ab-
solute deviation (MAD) of the Y values from their median is finite. Make an OLS fit to
the cn cases whose Y values are closest to the median Y , and use this fit as the start for
concentration: find the cn cases with the smallest squared residuals and fit OLS to these
cases. Use 10 concentration steps and let the attractor be the final estimator, denoted
by β̂B . It can be shown that β̂B is a high breakdown estimator.

With these preliminaries, we now define our high breakdown procedure. This is made
up of three components.
1) The OLS estimator β̂C that is consistent for clean data.
2) The practical

√
n consistent mbareg estimator β̂A that is effective for outlier identifi-

cation.
3) The practical high-breakdown estimator β̂B.

By selecting one of these three estimators according to the features each of them
uncovers in the data, we may inherit the good properties of each of them.

The hbreg estimator β̂H is defined as follows. Pick a constant a > 1 and set β̂H =
β̂C. If aQL(β̂A) < QL(β̂C), set β̂H = β̂A. If aQL(β̂B) < min[QL(β̂C), aQL(β̂A)], set
β̂H = β̂B .

That is, find the smallest of the three scaled criterion values QL(β̂C), aQL(β̂A),
aQL(β̂B). According to which of the three estimators attains this minimum, set β̂H to
β̂C, β̂A or β̂B respectively.

Large sample theory for hbreg is simple and given in the following theorem. Let
β̂L be the LMS, LTS or LTA estimator that minimizes the criterion QL. Note that the
impractical estimator β̂L is never computed. The following theorem shows that β̂H is
asymptotically equivalent to β̂C = β̂OLS. The clean data are in general position if any p
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clean cases give a unique estimate of β̂. The LTA criterion will be used in the simulations.

Theorem 4, Olive and Hawkins (2011). Assume the clean data are in general position,
and suppose that both β̂L and β̂C are consistent estimators of β where the regression
model contains a constant. Then the hbreg estimator β̂H is high breakdown and is
asymptotically equivalent to β̂C since the probability that β̂H = β̂C goes to one as
n→ ∞.

2.2 Robust Multivariate Linear Regression

The classical multivariate linear regression estimator is found from m least squares mul-
tiple linear regressions of Yj on the predictors. The robust multivariate linear regression
estimator is found from m hbreg multiple linear regressions of Yj on the predictors. By
Theorem 4, the probability that the robust estimator is equal to the classical estimator
goes to one as n→ ∞ for a large class of error distributions.

Hence the large sample nonparametric prediction region and the large sample Wilk’s
test, Pillai’s test and Hotelling Lawley test using the robust estimator are asymptotically
equivalent to their analogs using the classical estimator for a large class of error distri-
butions. The next section investigates whether reasonable sample sizes result in good
results for the robust estimator.

3 Plots, Examples and Simulations

3.1 Plots

A response plot for the jth response variable is a plot of the fitted values Ŷij versus the
response Yij where i = 1, ..., n. The identity line with slope one and zero intercept is
added to the plot as a visual aid. A residual plot corresponding to the jth response
variable is a plot of Ŷij versus rij.

Make the m response and residual plots for the multivariate linear regression model.
In a response plot, the vertical deviations from the identity line are the residuals rij =

Yij − Ŷij. The plotted points in the response plot should cluster about the identity line
in each of the m response plots. If outliers are present or if the plot is not linear, then
the current model or data need to be changed or corrected. The response and residual
plots are used just as for multiple linear regression where m = 1. See Olive and Hawkins
(2005) and Cook and Weisberg (1999, p. 432).

The Rousseeuw and Van Driessen (1999) DD plot is a plot of classical Mahalanobis
distances versus robust Mahalanobis distances. Results from Olive (2002) suggest the
plotted points in the DD plot will cluster about the identity line if the εi are iid from a
multivariate normal Nm(0,Σε) distribution and about some line through the origin with
slope greater than one for a large class of elliptically contoured distributions. Make a DD
plot of the residuals ε̂i to check the error distribution. Make a DD plot of the continuous
predictor variables to check for x-outliers.
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The Olive and Hawkins (2010) RMVN estimator (TRMV N ,CRMV N ) is an easily com-
puted

√
n consistent estimator of (µ, cΣ) under regularity conditions (E1) that include a

large class of elliptically contoured distributions, and c = 1 for the Np(µ,Σ) distribution.
The RMVN estimator also gives useful estimates of (µ,Σ) for Np(µ,Σ) data even when
certain types of outliers are present, and will be the robust estimator used in the DD
plots. Also see Zhang, Olive and Ye (2012).

Consider the DD plot applied to the ẑi based on the robust estimator. The non-
parametric region based on the robust estimator uses the sample mean and sample co-
variance matrix applied to the ẑi. The DD plot will have a vertical line at the cutoff
D(Un). Hence points to the left of the line correspond to cases that are in the non-
parametric region. The RMVN estimator can be applied to the ẑi. The region that
uses Di(TRMV N ,CRMV N ) ≤ D(Un)(TRMV N ,CRMV N ) will be called the semiparametric

region, while the parametric MVN region uses Di(TRMV N ,CRMV N ) ≤
√
χ2

p,qn
where

P (W ≤ χ2
p,qn

) = qn if W ∼ χ2
p. These two regions are only conjectured to be large

sample prediction regions, but are added to the DD plot as visual aids. Cases below
the horizontal line that crosses the identity line correspond to the semiparametric region
while cases below the horizontal line that ends at the identity line correspond to the
parametric MVN region. A vertical line dropped down from this point of intersection
does correspond to a large sample prediction region for multivariate normal data. Note
that ẑi = ŷf + ε̂i, and adding a constant ŷf to all of the residual vectors does not change
the Mahalanobis distances, so the DD plot of the residual vectors can be used to display
the prediction regions.

3.2 Examples and Simulations

Example 1. Cook and Weisberg (1999, p. 351, 433, 447) give a data set on 82 mussels
sampled off the coast of New Zealand. Let Y1 = log(S) and Y2 = log(M) where S is the
shell mass and M is the muscle mass. The predictors are X2 = L, X3 = log(W ) and
X4 = H: the shell length, log(width) and height. Figures 1 and 2 give the response and
residual plots for Y1 and Y2. For Y1, case 79 sticks out while for Y2, cases 8, 25 and 48 are
not fit well. Figure 3 shows the DD plot of the residual vectors. The nonparametric 90%
prediction region for the residuals consists of the points to the left of the vertical line
MD = 2.60. Cases 8, 48 and 79 have especially large distances. For this data set, the
classical and robust estimators were identical, and hence the Cook (1977) distances can
be computed. Highlighted cases had Cook’s distance > min(0.5, 2p/n). The response,
residual and DD plots are effective for finding influential cases, for checking linearity and
whether the error distribution is multivariate normal or some other elliptically contoured
distribution, and for displaying the nonparametric prediction region. Note that cases to
the right of the vertical line correspond to cases that are not in their prediction region.
These are the cases corresponding to residual vectors with large Mahalanobis distances.
Also adding a constant does not change the distance, so the DD plot for the residuals is
the same as the DD plot for the ẑi.

Example 2. Buxton (1920) gives various measurements of 88 men. Head length
and person’s height were the response variables while an intercept, nasal height, bigonal
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Figure 1: Plots for Y1 = log(S).
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Figure 2: Plots for Y2 = log(M).
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Figure 3: DD Plot of the Residual Vectors.

breadth, and cephalic index were used as predictors in the multiple linear regression model.
Observation 9 was deleted since it had missing values. Five individuals, numbers 62–66,
were reported to be about 0.75 inches tall with head lengths well over five feet! Figure 4
shows the response and residual plots corresponding to Y1 for the robust estimator. The
response plot for the classical estimator, not shown, has the identity line tilted slightly
above most of the plotted points in the lower part of the plot, while the plotted points in
the lower part of the residual plot follow a line with negative slope instead of the r = 0
line. Figure 5 shows the response and residual plots corresponding to Y2 for the robust
estimator. The response plot for the classical estimator, not shown, has the identity line
tilted slightly below most of the plotted points in the upper part of the plot, while the
plotted points in the upper part of the residual plot follow a line with negative slope
instead of the r = 0 line. Figure 6 shows the DD plot. The 90% semiparametric and
nonparametric regions use the 95th percentile which is a linear combination of an outlying
case with a nonoutlying case. The parametric MVN region contains cases below the RD
= 2.448 line, which is obscured by the identity line. The tests of hypotheses for the
robust estimator are not robust to outliers because all n = 87 residual vectors are used
to make Σ̂ε. As is typically the case, outliers can be detected with the plots using the
classical or robust estimator.

A small simulation was used to study the prediction region and the Wilk’s Lambda
test, the Pillai’s trace test, the Hotelling Lawley trace test, and the Roy’s largest root test
for the Fj tests and the MANOVA F test for multivariate linear regression. These test

statistics were computed with the robust estimator B̂ instead of the classical estimator.
The first row of B was always 1T and the last row of B was always 0T . When the null
hypothesis for the MANOVA F test is true, all but the first row corresponding to the
constant are equal to 0T . When p ≥ 3 and the null hypothesis for the MANOVA F test

12
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Figure 4: Plots for Y1 = head length.
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Figure 6: DD Plot of the Residual Vectors for the Buxton Data.

is false, then the second to last row of B is (1, 0, ..., 0), the third to last row is (1, 1,
0, ..., 0) etcetera as long as the first row is not changed from 1T . First m iid errors wi

are generated such that the m errors are iid with variance σ2. Let the m × m matrix
A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j. Then εi = Awi so

that Σ̂ε = σ2AAT = (σij) where the diagonal entries σii = σ2[1 + (m − 1)ψ2] and the
off diagonal entries σij = σ2[2ψ + (m − 2)ψ2] where ψ = 0.10. Hence the correlations
(2ψ+ (m− 2)ψ2)/(1 + (m− 1)ψ2). As ψ gets close to 1, the data clusters about the line
in the direction of (1, ..., 1)T . Used wi ∼ Nm(0, I),wi ∼ (1 − τ )Nm(0, I) + τNm(0, 25I)
with 0 < τ < 1 and τ = 0.25 in the simulation, wi ∼ multivariate td with d = 7 degrees
of freedom, or wi ∼ lognormal - E(lognormal): where the m components of wi were iid
with distribution ez − E(ez) where z ∼ N(0, 1). Only the lognormal distribution is not
elliptically contoured.

The simulation used 5000 runs, and H0 was rejected if the F statistic was greater
than Fd1,d2

(0.95) where P (Fd1,d2
< Fd1,d2

(0.95)) = 0.95 with d1 = rm and d2 = n −mp
for the test statistics

−[n− p− 0.5(m− r + 3)]

rm
log(Λ(L),

n− p

rm
V (L), and

n − p

rm
U(L)

while d1 = h = max(r,m) and d2 = n − p− h+ r for the test statistic

n − p− h+ r

h
λmax(L).

Denote these statistics by W , P , HL and R. Let the coverage be the proportion of times
that H0 is rejected. Want coverage near 0.05 when H0 is true and coverage close to 1 for
good power when H0 is false. With 5000 runs, coverage outside of (0.04,0.06) suggests
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that the true coverage is not 0.05. Coverages are tabled for the F1, F2, Fp−1, and Fp test
and for the MANOVA F test denoted by FM . The null hypothesis H0 was always true
for the Fp test and always false for the F1 test. When the MANOVA F test was true,
H0 was true for the Fj tests with j 6= 1. When the MANOVA F test was false, H0 was
false for the Fj tests with j 6= p, but the Fp−1 test should be hardest to reject for j 6= p
by construction of B and the error vectors.

The hbreg estimator is asymptotically equivalent to OLS provided that OLS is con-
sistent and the probability that hbreg selects β̂B goes to 0 as n→ ∞. For the simulated
data with symmetric error distributions, β̂B appeared to give biased estimates of the
slopes. However, for the simulated data with right skewed error distributions, β̂B ap-
peared to give good estimates of the slopes but not the constant, and the probability that
the hbreg estimator selected β̂B appeared to go to one. Removing β̂B from the hbreg

estimator results in a
√
n consistent estimator when OLS is

√
n consistent, but massive

sample sizes were still needed to get good estimates of the constants for highly skewed
error distributions. Although the mbareg estimator is a

√
n consistent estimator of β, if

m = 1 and OLS needed n = 1000 to estimate the constant well, mbareg might need n >
one million. Getting all m mbareg estimators to estimate the constant well needs even
larger sample sizes.

This paragraph will explain why mbareg needs large samples to give a good estimate
of the constant for highly skewed error distributions when m = 1. Note that the LMS,
LTA and LMS criteria use half sets. For simplicity, consider the LMS criterion that
minimizes the median squared residual. Heuristically, for highly right skewed data, let
the “left tail half set” shift the constant of the OLS hyperplane down so that the half
set of cases closest to the plane are the half set with the smallest OLS residual values.
These cases will have negative residuals and residuals close to zero, which are roughly
the cases corresponding to the half set of errors in the left tail of the error distribution.
Let the “OLS half set” correspond to the half set of cases with the smallest absolute
OLS residuals, so the cases closest to the OLS hyperplane. Since the distribution is
highly right skewed, the “OLS half set” has much more variability than the “left tail
half set.” (For the location model, OLS is the sample mean which is greater than the
sample median for right skewed data. The “left tail half set” shifts the mean down to
the midpoint c of the minimum value and the median value, and often c ≈ median/2
if the support of the highly right skewed distribution is (0,∞).) A trial fit that uses
the same OLS slope estimates but which shifts the intercept down to use the “left tail
half set” will have a smaller median squared residual than the median squared residual
using OLS. The trial fits for mbareg are

√
n consistent, so estimate the OLS intercept

eventually. However, the trial fit that uses 1% of the data has less than 1% efficiency
since the x values are close in distance rather than spread out. Unless the sample size
is large, the mbareg estimator tends to produce some trial fits that shift the intercept
down, and one of these trial fits is selected to be the final mbareg estimator since it has
a smaller median squared residual than the other trial fits.

In the simulations, hbreg estimated the slopes well for the highly skewed lognormal
data, but not the constant. This results in incorrect residual vectors and test statistics.
The hbreg tests can be used as diagnostics if the plotted points in the DD plot cluster
tightly about a line through the origin. Also compare B̂ for the robust and classical
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Table 1: Test Coverages: MANOVA F H0 is True.

w dist n test F1 F2 Fp−1 Fp FM

MVN 50 W 1 0.051 0.051 0.054 0.029
MVN 50 P 1 0.036 0.033 0.038 0.006
MVN 50 HL 1 0.104 0.110 0.119 0.130
MVN 50 R 1 0.098 0.100 0.110 0.727
MVN 200 W 1 0.044 0.046 0.044 0.044
MVN 200 P 1 0.042 0.042 0.042 0.035
MVN 200 HL 1 0.056 0.056 0.054 0.060
MVN 200 R 1 0.050 0.051 0.050 0.520
MIX 200 W 1 0.043 0.043 0.044 0.034
MIX 200 P 1 0.041 0.040 0.040 0.027
MIX 200 HL 1 0.054 0.053 0.053 0.048
MIX 200 R 1 0.050 0.049 0.048 0.518

MVT(7) 200 W 1 0.040 0.042 0.043 0.036
MVT(7) 200 P 1 0.038 0.040 0.040 0.028
MVT(7) 200 HL 1 0.049 0.049 0.053 0.051
MVT(7) 200 R 1 0.046 0.046 0.049 0.524

estimator. If the slopes are similar but not the intercepts, there may be highly skewed
data or y-outliers.

Hence the simulation for tests of hypotheses used the symmetric elliptically contoured
distributions. In Olive (2013b) for the classical estimator when the null hypothesis H0

was true, simulated values started to get close to nominal levels for n ≥ 0.75(m + p)2,
and were fairly good for n ≥ 1.5(m + p)2. The exception was Roy’s test which rejects
H0 far too often if r > 0. Roy’s test was very good for the Fj tests but very poor for the
MANOVA F test.

The robust estimator needed larger values of n, and results are shown in Table 1 for
m = p = 5. Want values for the F1 test to be close to 1 since H0 is false for the F1 test
and want values close to 0.05, otherwise. Results from Berndt and Savin (1977) suggest
that Pillai’s test will reject H0 less often than Wilk’s test which will reject less often than
the Hotelling Lawley test. For Table 2 want values near 1 except for the Fp column.

The same type of data and 5000 runs were used to simulate the prediction regions
for yf given xf for multivariate regression. With n=100, m=2, and p=4, the nominal
coverage of the prediction region is 90%, and 92% of the training data is covered. Fol-
lowing Olive (2013a), consider the prediction region {z : (z − T )TC−1(z − T ) ≤ h2} =
{z : D2

z ≤ h2} = {z : Dz ≤ h}. Then the ratio of the prediction region volumes

hm
i

√
det(Ci)

hm
2

√
det(C2)

was recorded where i = 1 was the nonparametric region, i = 2 was the semiparametric
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Table 2: Test Coverages: MANOVA F H0 is False.

n w dist m = p test F1 F2 Fp−1 Fp FM

30 MVN 5 W 0.807 0.522 0.152 0.000 0.043
30 MVN 5 P 0.000 0.000 0.000 0.000 0.000
30 MVN 5 HL 0.995 0.889 0.570 0.009 0.878
30 MVN 5 R 1 0.956 0.756 0.076 0.999
50 MVN 5 W 1 0.999 0.921 0.057 1
50 MVN 5 P 1 0.998 0.911 0.042 0.997
50 MVN 5 HL 1 0.999 0.943 0.116 1
50 MVN 5 R 1 0.999 0.941 0.107 1

200 MVN 5 W 1 1 1 0.051 1
200 MVN 5 P 1 1 1 0.051 1
200 MVN 5 HL 1 1 1 0.060 1
200 MVN 5 R 1 1 1 0.056 1
50 MIX 5 W 0.803 0.569 0.278 0.010 0.502
50 MIX 5 P 0.747 0.518 0.236 0.006 0.230
50 MIX 5 HL 0.897 0.689 0.392 0.025 0.723
50 MIX 5 R 0.888 0.675 0.377 0.022 0.970
50 MVT 5 W 1 0.997 0.892 0.040 0.998
50 MVT 5 P 1 0.996 0.871 0.025 0.989
50 MVT 5 HL 1 0.999 0.925 0.087 1
50 MVT 5 R 1 0.998 0.922 0.080 1

450 MVN 20 W 1 1 1 0.015 1
450 MVN 20 P 1 1 1 0.013 1
450 MVN 20 HL 1 1 1 0.030 1
450 MVN 20 R 1 1 1 0.053 1
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Table 3: Coverages for 90% Prediction Regions.

w dist n m = p ncov scov mcov nvol mvol
MVN 300 5 0.903 0.899 0.902 1.006 1.017
MIX 300 5 0.897 0.907 0.688 0.885 0.001

MVT(7) 300 5 0.901 0.910 0.775 0.913 0.291
LN 300 5 0.915 0.916 0.592 0.688 0.008

region, and i = 3 was the parametric MVN region. Here h1 and h2 were the cutoff
D(Un)(Ti,Ci) for i = 1, 2, and h3 =

√
χ2

m,qn
.

If, as conjectured, the RMVN estimator is a consistent estimator when applied to the
residual vectors instead of iid data, then the volume ratios converge in probability to 1 if
the iid zero mean errors ∼ Nm(0,Σε), and the volume ratio converges to 1 for i = 1 for
a large class of elliptically contoured distributions. These volume ratios were denoted by
voln and volm for the nonparametric and parametric MVN regions. The coverage was
the proportion of times the prediction region contained yf where ncov, scov and mcov
are for the nonparametric, semiparametric and parametric MVN regions.

In the simulations, took n = 3(m+ p)2 = 300 and m = p = 5. Table 3 shows that the
coverage of the nonparametric region was close to 0.9 in all cases. The volume ratio voln
was fairly close to 1 for the three elliptically contoured distributions. Since the volume
of the prediction region is proportional to hm, the volume can be very small if h is too
small and m is large. Parametric prediction regions usually give poor estimates of h
when the parametric distribution is mispecified. Hence the parametric MVN region only
performed well for multivariate normal data. The results using the robust estimator were
nearly the same as those using the classical estimator. See Table 3 in Olive (2013b).

4 Another Robust Estimator

First we will review some results for multiple linear regression. Let x = (1,wT )T and let

Cov(w) = E[(w − E(w))(w − E(w))T] = Σw

and Cov(w, Y ) = E[(w−E(w))(Y −E(Y ))] = ΣwY . Let β = (α,ηT )T be the population
OLS coefficients from the regression of Y on x (w and a constant), where α is the
constant and η is the vector of slopes. Let the OLS estimator be β̂ = (α̂, η̂T )T . Then
the population coefficients from an OLS regression of Y on x are

α = E(Y ) − ηTE(w) and η = Σ−1
wΣwY. (7)

Then the OLS estimator β̂ = (XTX)−1XTY . The sample covariance matrix of w is

Σ̂w =
1

n− 1

n∑

i=1

(wi −w)(wi − w)T where the sample mean w =
1

n

n∑

i=1

wi.
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Similarly, define the sample covariance vector of w and Y to be

Σ̂wY =
1

n− 1

n∑

i=1

(wi − w)(Yi − Y ).

Suppose that (Yi,w
T
i )T are iid random vectors such that Σ−1

w and ΣwY exist. Then

α̂ = Y − η̂T w
D→ α

and
η̂ = Σ̂

−1

wΣ̂wY
D→ η as n → ∞.

Now for multivariate linear regression, β̂j = (α̂j , η̂
T
j )T where α̂j = Y j − η̂T

j w and

η̂j = Σ̂
−1

w Σ̂wYj
. Let Σ̂wy = 1

n−1

∑n
i=1(wi − w)(yi − y)T which has jth column Σ̂wYj

for j = 1, ..., m. Let

u =

(
w

y

)
, E(u) = µu =

(
E(w)
E(y)

)
=

(
µw
µy

)
, and Cov(u) = Σu =

(
Σww Σwy
Σyw Σyy

)
.

Let the vector of constants be αT = (α1, ..., αm) and the matrix of slope vectors BS =[
η1 η2 . . . ηm

]
. Then the population least squares coefficient matrix is

B =

(
αT

BS

)

where α = µy − BT
Sµw and BS = Σ−1

wΣwy where Σw = Σww.
If the ui are iid with nonsingular covariance matrix Cov(u), the least squares esti-

mator

B̂ =

(
α̂T

B̂S

)

where α̂ = y − B̂
T

Sw and B̂S = Σ̂
−1

wΣ̂wy. The least squares multivariate linear regres-

sion estimator can be calculated by computing the classical estimator (u,Su) = (u, Σ̂u)
of multivariate location and dispersion on the ui, and then plug in the results into the
formulas for α̂ and B̂S .

Let (T,C) = (µ̃u, Σ̃u) be a robust estimator of multivariate location and dispersion.
If µ̃u is a consistent estimator of µu and Σ̃u is a consistent estimator of c Σu for some
constant c > 0, then a robust estimator of multivariate linear regression is the plug in

estimator α̃ = µ̃y − B̃
T

S µ̃w and B̃S = Σ̃
−1

w Σ̃wy.

If (T,C) is the RMVN estimator applied to the ui, then (T,C) is a
√
n consistent

estimator of (µu, c Σu) if u is from a large class of ECd(µu,Σu, g) distributions where
d = m+ p− 1. Thus the classical and robust estimators of multivariate linear regression
are both

√
n consistent estimator of B if the ui are iid from a large class of elliptically
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contoured distributions. This assumption is quite strong, but the robust estimator is use-
ful for detecting outliers. When there are categorical predictors or the joint distribution
of u is not elliptically contoured, it is possible that the robust estimator is bad and very
different from the good classical least squares estimator.

Now the RMVN estimator computes the classical estimator of multivariate location
and dispersion on the RMVN set of cases in highly concentrated ellipsoidal region, and
then multiplies the dispersion estimator by a constant c. Hence the plug in robust
multivariate linear regression estimator using RMVN is equivalent to the least squares
multivariate linear regression estimator applied to the cases in the RMVN set. Call this
estimator the rmreg2 estimator.

49 50 51 52 53

4
5

5
0

5
5

6
0

fit[, i]

y
[,

 i
]

Response Plot

49 50 51 52 53

−
5

0
5

1
0

fit[, i]

re
s
[,

 i
]

Residual Plot

Figure 7: Plots for Y1 = nasal height using hbreg.

Example 2, continued. The plots for the rmreg2 estimator were very similar to
Figures 5 and 6. Now let Y1 = nasal height and Y2 = height with x2 = head length,
x3 = bigonal breadth and x4 = cephalic index. Then Y1 and x2 have massive outliers.
Then the response and residual plots for the classical estimator and the robust estimator
using hbreg were nearly identical. Figures 7 and 8 show that the fit using hbreg went
right through the outliers. Figures 9 and 10 show that the response and residual plots
corresponding to rmreg2 do not have fits that pass through the outliers.

5 Conclusions

Multivariate linear regression is a semiparametric method that is nearly as easy to use
as multiple linear regression if m is small. The m response and residual plots should be
made as well as the DD plot. For the classical estimator, response and residual plots can
look good for n ≥ 10p, but for testing and prediction regions, may need n ≥ k(m+ p)2
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Figure 8: Plots for Y2 = height using hbreg.
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Figure 9: Plots for Y1 = nasal height using rmreg2.
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Figure 10: Plots for Y2 = height using rmreg2.

where 0.5 ≤ k ≤ 3 even for well behave elliptically contoured error distributions. For the
robust estimator, larger sample sizes are needed, and for highly skewed data, the robust
tests may fail. If the plotted points in the DD plot cluster tightly about a line through
the origin, then an elliptically contoured error distribution may be reasonable, and then
the first row of B̂ corresponding to the intercepts should be similar for both the robust
and classical estimators.

The R software was used to make plots and software. See R Development Core
Team (2011). The programs in the collection of functions mpack.txt are available at
(www.math.siu.edu/olive/mpack.txt). The function rmpredsim was used to simulate
the prediction regions, rmregsim was used to simulate the tests of hypotheses, and
rmregddsim simulated the DD plots for various distributions. The function rmltreg

makes the response and residual plots and computes the Fj, MANOVA F and MANOVA
partial F test pvalues while the function ddplot4 makes the DD plots. Similar functions
for the classical estimator delete the initial “r.” The highly outlier resistant multivariate
linear regression estimator based on RMVN can be computed using the function rmreg2.
When m = 1, this estimator is a highly outlier resistant multiple linear regression esti-
mator.

The two methods for robust multivariate regression were to plug in a robust multiple
linear regression estimator like hbreg in place of OLS, and to use a robust estimator
of multivariate location and dispersion as a plug in estimator. Neither idea is new,
but using practical highly outlier resistant estimators backed by theory, like hbreg and
RMVN, is new. Rousseeuw, Van Aelst, Van Driessen and Agulló (2004) use FLTS and
FMCD. Agulló, Croux and Van Aelst (2008) use the F-MLTS estimator. Kudraszow and
Maronna (2011) use F-MM-type estimators. Also see Maronna and Morgenthaler (1986)
for using a robust estimator of multivariate location and dispersion estimator to make a
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robust regression estimator when m = 1.
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