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Abstract

In analogy with the method of moments, the parameters of a location scale

family can be estimated robustly by equating the population and sample medians

and median absolute deviations. Asymptotically efficient robust estimators can be

made using the cross checking technique.

A robust method is also given for estimating the parameters of distributions that

are simple transformations of location scale families. The lognormal, Weibull and

Pareto distributions are used to illustrate the method for the log transformation.
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1 Introduction

The population median MED(Y ) is a measure of location and the population median

absolute deviation MAD(Y ) is a measure of scale. The population median is any value

MED(Y ) such that

P (Y ≤ MED(Y )) ≥ 0.5 and P (Y ≥ MED(Y )) ≥ 0.5 (1)

while

MAD(Y ) = MED(|Y − MED(Y )|). (2)

Since MAD(Y ) is a median distance, MAD(Y ) is any value such that

P (Y ∈ [MED(Y ) −MAD(Y ),MED(Y ) + MAD(Y )]) ≥ 0.5,

and

P (Y ∈ (MED(Y ) − MAD(Y ),MED(Y ) + MAD(Y )) ≤ 0.5.

These population quantities can be estimated from the sample Y1, . . . , Yn. Let Y(1) ≤

· · · ≤ Y(n) be the order statistics. The sample median

MED(n) = Y((n+1)/2) if n is odd, (3)

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(Y1, ..., Yn) = MED(Yi, i = 1, . . . , n) will be useful for the

following definition: the sample median absolute deviation

MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n). (4)

In analogy with the method of moments, robust point estimators can be obtained

by solving MED(n) = MED(Y ) and MAD(n) = MAD(Y ). This procedure is simple

if the distribution of Y is a 1 parameter family, a 2 parameter symmetric family or

a location scale family. The method is also useful if Y is a 1 or 2 parameter family

such that W = t(Y ) has a distribution that is from a location scale family. Estimate the

parameters of Y using functions of MED(W1, ...,Wn) and MAD(W1, ...,Wn). Similar (but
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nonrobust) estimators can usually be obtained from the method of moments estimators

based on W1, ...,Wn as long as the moments exist.

The above “MAD method” has been suggested by several authors when t(Y ) = Y

is the the identity transformation, e.g., see Marazzi and Ruffieux (1999); however, the

theory given in Falk (1997) showing that these estimators are asymptotically normal for

asymmetric distributions is recent. The He and Fung (1999) “method of medians” is

actually a very different procedure. These estimators are found by equating the sample

median and population median for the score function of the model.

The He and Fung (1999) “cross checking” technique can be used to make asymp-

totically efficient robust estimators. The basic idea is to compute a robust estimator

(θ̂R, λ̂R) and an asymptotically efficient estimator (θ̂, λ̂). Then the cross checking esti-

mator (θ̂C, λ̂C) is the efficient estimator if the robust and efficient estimators are “close”,

otherwise, (θ̂C, λ̂C) is the robust estimator. The cross checking estimator is asymptoti-

cally efficient, and tends to have greater outlier resistance than competing highly efficient

robust estimators (such as M-estimators) if (θ̂R, λ̂R) is good.

Section 2 suggests simple highly outlier resistant estimators (θ̂R, λ̂R) for 21 “brand

name” distributions. Section 3 shows how to use the estimators for right or left cen-

sored data, and Section 4 presents a simple proof of
√

n and almost sure convergence of

MAD(n).

2 Examples

The following remark is useful for computing MED(Y ) and MAD(Y ). Assume that Y has

a continuous distribution with cumulative distribution function (cdf) F (y) = P (Y ≤ y).

Let yα be the α percentile of Y so that F (yα) = α for 0 < α < 1. Notice that yα is found

by solving F (yα) = α for yα and that MED(Y ) = y0.5.

Remark 1. a) If Y has a probability density function (pdf) that is continuous and

positive on its support and symmetric about µ, then MED(Y ) = µ and MAD(Y ) =

y0.75 −MED(Y ).

b) Suppose that Y is from a location scale family with standard pdf fZ(z) that is
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continuous and positive on its support. Then Y = µ + σZ where σ > 0. Let M =

MED(Z) and D = MAD(Z). Then find M by solving FZ(M) = 0.5 for M . After finding

M , find D by solving FZ(M + D) − FZ(M − D) = 0.5 for D (often numerically). Then

MED(Y ) = µ + σM and MAD(Y ) = σD.

The following examples illustrate the MAD method for the identity transformation.

Example 1. Suppose the Y ∼ N(µ, σ2). Then Y = µ + σZ where Z ∼ N(0, 1).

The standard normal random variable Z has a pdf that is symmetric about 0. Hence

MED(Z) = 0 and MED(Y ) = µ + σMED(Z) = µ. Let D = MAD(Z) and let P (Z ≤

z) = Φ(z) be the cdf of Z. Remark 1a) implies that D = z0.75 − 0 = z0.75 where P (Z ≤

z0.75) = 0.75. Numerically, D ≈ 0.6745. Since MED(Y ) = µ and MAD(Y ) ≈ 0.6745σ,

µ̂ = MED(n) and σ̂ ≈ MAD(n)/0.6745 ≈ 1.483MAD(n).

Example 2. If Y is exponential (λ), then the cdf of Y is FY (y) = 1− exp(−y/λ) for

y > 0 and FY (y) = 0 otherwise. Since exp(log(1/2)) = exp(− log(2)) = 0.5, MED(Y ) =

log(2)λ. Since the exponential distribution is a scale family with scale parameter λ,

MAD(Y ) = Dλ for some D > 0. Hence

0.5 = FY (log(2)λ + Dλ) − FY (log(2)λ − Dλ), or

0.5 = 1 − exp[−(log(2) + D)] − (1 − exp[−(log(2) −D)]) = exp(− log(2))[eD − e−D].

Thus 1 = exp(D) − exp(−D) which needs to be solved numerically.

Table 1 provides the pdf, MED(Y ) and MAD(Y ) (except for the power and TEV

distributions) for the Cauchy C(µ, σ), double exponential DE(θ, λ), exponential EXP(λ),

two parameter exponential EXP(θ, λ), half Cauchy HC(µ, σ), half logistic HL(µ, σ), half

normal HN(µ, σ), largest extreme value LEV(θ, σ), logistic L(µ, σ), Maxwell Boltzmann

MB(µ, σ), normal N(µ, σ2), power POW(λ), Rayleigh R(µ, σ), smallest extreme value

SEV(θ, σ), truncated extreme value TEV(λ) and uniform U(θ1, θ2) distributions. Table

2 provides the robust point estimators for these distributions.

All of the above two parameter distributions are location scale families and only the

C(µ, σ), DE(θ, λ), L(µ, σ), N(µ, σ2) and U(θ1, θ2) distributions are symmetric. The Table

2 results are well known for the N(µ, σ2) family and Rousseeuw and Croux (1993) was
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Table 1: MED(Y ) and MAD(Y ) for some useful random variables.

Name f(y) MED(Y ) MAD(Y )

C(µ, σ) 1/(πσ[1 + (y−µ
σ

)2]) µ σ

DE(θ, λ) 1
2λ

exp (− |y−θ|
λ

) θ 0.6931λ

EXP(λ) 1
λ

exp (− y
λ
) I(y ≥ 0) 0.6931λ λ/2.0781

EXP(θ, λ) 1
λ

exp (− (y−θ)
λ

) I(y ≥ θ) θ + 0.6931λ λ/2.0781

HC(µ, σ) 2
πσ[1+( y−µ

σ
)2]

I(y ≥ µ) µ + σ 0.73205σ

HL(µ, σ) 2exp (−(y−µ)/σ)
σ[1+exp (−(y−µ)/σ)]2

I(y ≥ µ) µ + log(3)σ 0.67346σ

HN(µ, σ) 2√
2π σ

exp (−(y−µ)2

2σ2 ) I(y ≥ µ) µ + 0.6745σ 0.3991 σ

LEV(θ, σ) 1
σ

exp(−(y−θ
σ

)) exp[− exp(−(y−θ
σ

))] θ + 0.3665σ 0.767049σ

L(µ, σ) exp (−(y−µ)/σ)
σ[1+exp (−(y−µ)/σ)]2

µ 1.0986 σ

MB(µ, σ)
√

2(y−µ)2 exp( −1

2σ2 (y−µ)2)

σ3
√

π
I(y ≥ µ) µ + 1.5381722σ 0.460244σ

N(µ, σ2) 1√
2πσ2

exp (−(y−µ)2

2σ2 ) µ 0.6745σ

POW(λ) 1
λ
y

1
λ
−1I(0 < y < 1) (0.5)λ MAD(Y)

R(µ, σ) y−µ
σ2 exp

[
−1

2

(
y−µ

σ

)2
]

I(y ≥ µ) µ + 1.1774σ 0.4485σ

SEV(θ, σ) 1
σ

exp(w−θ
σ

) exp[− exp(w−θ
σ

)] θ − 0.3665σ 0.767049σ

TEV(λ) 1
λ

exp
(
y − ey−1

λ

)
I(y > 0) log(1 + λ log(2)) MAD(Y)

U(θ1, θ2)
1

θ2−θ1
I(θ1 ≤ y ≤ θ2) (θ1 + θ2)/2 (θ2 − θ1)/4
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Table 2: Robust point estimators for some useful random variables.

C(µ, σ) µ̂ = MED(n) σ̂ = MAD(n)

DE(θ, λ) θ̂ = MED(n) λ̂ = 1.443 MAD(n)

EXP(λ) λ̂1 = 1.443 MED(n) λ̂2 = 2.0781 MAD(n)

EXP(θ, λ) θ̂ = MED(n) − 1.440 MAD(n) λ̂ = 2.0781 MAD(n)

HC(µ, σ) µ̂ = MED(n) − 1.3660MAD(n) σ̂ = 1.3660MAD(n)

HL(µ, σ) µ̂ = MED(n) − 1.6313MAD(n) σ̂ = 1.4849MAD(n)

HN(µ, σ) µ̂ = MED(n) − 1.6901MAD(n) σ̂ = 2.5057 MAD(n)

LEV(θ, σ) θ̂ = MED(n) − 0.4778 MAD(n) σ̂ = 1.3037 MAD(n)

L(µ, σ) µ̂ = MED(n) σ̂ = 0.9102 MAD(n)

MB(µ, σ) µ̂ = MED(n) − 3.3421 MAD(n) σ̂ = 2.17276 MAD(n)

N(µ, σ2) µ̂ = MED(n) σ̂ = 1.483 MAD(n)

POW(λ) λ̂ = log(MED(n))/ log(0.5)

R(µ, σ) µ̂ = MED(n) − 2.6255 MAD(n) σ̂ = 2.230 MAD(n)

SEV(θ, σ) θ̂ = MED(n) + 0.4778MAD(n) σ̂ = 1.3037MAD(n)

TEV(λ) λ̂ = [exp(MED(n)) − 1]/ log(2)

U(θ1, θ2) θ̂1 = MED(n) − 2 MAD(n) θ̂2 = MED(n) + 2 MAD(n)
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used for the EXP(θ, λ) family. Pewsey (2002) provides maximum likelihood estimators

for the HN(µ, σ) family.

Next, 5 examples of the MAD method are given when Y has a distribution such that

W = t(Y ) = log(Y ) has a location scale family. McKane, Escobar, and Meeker (2005)

say that Y has a log-location-scale distribution.

Example 3. If Y has a lognormal (µ, σ2) distribution, then W = log(Y ) ∼ N(µ, σ2).

Thus µ̂ = MED(W1, ...,Wn) and σ̂ = 1.483MAD(W1, ...,Wn). This estimator is also given

by He and Fung (1999). See Toma (2003) for related methods and Serfling (2002) for

M-estimators.

Example 4. Suppose that Y has a Pareto(σ, λ) distribution with pdf

f(y) =
1
λ
σ1/λ

y1+1/λ

where y ≥ σ, σ > 0, and λ > 0. Then W = log(Y ) ∼ EXP (θ = log(σ), λ). Let

θ̂ = MED(W1, ...,Wn) − 1.440MAD(W1, ...,Wn). Then σ̂ = exp(θ̂) and

λ̂ = 2.0781 MAD(W1, ...,Wn).

See Brazauskas and Serfling (2000,2001) for alternative robust estimators.

Example 5. Suppose that Y has a Weibull (φ, λ) distribution with pdf

f(y) =
φ

λ
yφ−1e−

yφ

λ

where λ, y, and φ are all positive. Then W = log(Y ) has a SEV(θ = log(λ1/φ), σ = 1/φ)

distribution, also known as a log-Weibull distribution. Notice that −W ∼ LEV (−θ, σ),

also known as a Gumbel distribution. Let σ̂ = MAD(W1, ...,Wn)/0.767049 and let θ̂ =

MED(W1, ...,Wn) − log(log(2))σ̂. Then φ̂ = 1/σ̂ and λ̂ = exp(θ̂/σ̂). See He and Fung

(1999), Chandra and Chaudhuri (1990), Seki and Yokoyama (1996) and Smith (1977) for

alternative simple or robust estimators.

Example 6. Suppose that Y has a log–Cauchy(µ, σ) distribution with pdf

f(y) =
1

πσy[1 + ( log(y)−µ
σ

)2]

where y > 0, σ > 0 and µ is a real number. See McDonald (1987). Then W = log(Y )

has a Cauchy(µ, σ) distribution. Let µ̂ = MED(W1, ...,Wn) and σ̂ = MAD(W1, ...,Wn).

7



Example 7. Suppose that Y has a log–logistic(φ, τ ) distribution with pdf and cdf

f(y) =
φτ (φy)τ−1

[1 + (φy)τ ]2
and F(y) = 1 − 1

1 + (φy)τ

where y > 0, φ > 0 and τ > 0. Then W = log(Y ) has a logistic(µ = − log(φ), σ = 1/τ )

distribution. Hence φ = e−µ and τ = 1/σ. See Kalbfleisch and Prentice (1980, pp. 27-28).

Then τ̂ = log(3)/MAD(W1, ...,Wn) and φ̂ = 1/MED(Y1, ..., Yn) since MED(Y ) = 1/φ.

3 Robust Estimation for Censored Data

As noted in He and Fung (1999), estimators based on the median may not need to be

adjusted if there are some possibly right or left censored observations present. Suppose

that in a reliability study the Yi are failure times and the study lasts for T hours. Let

Y(R) < T but T < Y(R+1) < · · · < Y(n) so that only the first R failure times are known

and the last n − R failure times are unknown but greater than T (similar results hold if

the first L failure times are less than T but unknown while the failure times T < Y(L+1) <

· · · < Y(n) are known). Then create a pseudo sample Z(i) = Y(R) for i > R and Z(i) = Y(i)

for i ≤ R. Then compute the robust estimators based on Z1, ..., Zn. These estimators will

be identical to the estimators based on Y1, ..., Yn (no censoring) if the amount of right

censoring is moderate. For a one parameter family, nearly half of the data can be right

censored if the estimator is based on the median. If the sample median and MAD are

used for a two parameter family, the proportion of right censored data depends on the

skewness of the distribution. Symmetric data can tolerate nearly 25% right censoring,

right skewed data a larger percentage, and left skewed data a smaller percentage.

Tables 3 and 4 present the results from a small simulation study. For Table 3, samples

of size n = 100 Weibull (φ, λ) observations Y1, ..., Yn were generated. Then the pseudo

data Z(1), ..., Z(100) was created by replacing Y(86), ..., Y(100) by Y(85). Then φ̂ and λ̂ were

estimated as in Example 5 using Wi = log(Zi). Only 15% of the cases were right censored

since the SEV distribution has a longer left tail than right. The means and standard

deviations from 500 runs are given. Notice that φ̂ ≈ φ and that the bias and variability

of λ̂ increases as λ increases.
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Table 3: Results for Right Censored Weibull Data

φ λ mean(φ̂) SD(φ̂) mean(λ̂) SD(λ̂)

1 1 1.0130 0.1216 1.0070 0.1277

1 5 1.0235 0.1167 5.3301 1.2475

1 10 1.0211 0.1240 11.0228 3.6296

1 20 1.0240 0.1313 23.6023 11.2156

20 1 20.4128 2.3712 1.0091 0.1515

20 5 20.6121 2.7800 5.4354 1.5706

20 10 20.4656 2.5651 11.2070 4.5380

20 20 20.5479 2.7082 23.8544 13.3203

Table 4: Results for Right Censored Pareto Data

σ λ mean(σ̂) SD(σ̂) mean(λ̂) SD(λ̂)

1 1 1.0088 0.0619 0.9903 0.1421

1 5 1.1220 0.4119 4.9413 0.6896

1 10 1.4348 1.3947 9.9577 1.4640

1 15 1.9633 3.7377 15.0809 2.2010

1 20 3.3504 8.0171 19.9893 2.8479
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For Table 4, samples of size n = 100 Pareto (σ, λ) observations Y1, ..., Yn were gen-

erated. Then the pseudo data Z(1), ..., Z(100) was created by replacing Y(76), ..., Y(100) by

Y(75). Then σ̂ and λ̂ were estimated as in Example 4 using Wi = log(Zi). The means and

standard deviations from 500 runs are given. Notice that λ̂ ≈ λ and that the bias and

variability of σ̂ increases as λ increases.

4 Theory for the MAD

For theory, the following quantity will be useful:

MD(n) = MED(|Yi − MED(Y )|, i = 1, . . . , n).

Since MD(n) is a median and convergence results for the median are well known, see for

example Serfling (1980 pp. 74-77), it is simple to prove convergence results for MAD(n).

Serfling (1980, pp. 8-9) defines Wn to be bounded in probability, Wn = OP (1), if for every

ε > 0 there exist positive constants Dε and Nε such that

P (|Wn| > Dε) < ε

for all n ≥ Nε, and Wn = OP (n−δ) if nδWn = OP (1). Typically MED(n) = MED(Y ) +

OP (n−1/2) and MAD(n) = MAD(Y )+OP (n−1/2). Equation (5) in the proof of the follow-

ing proposition implies that if MED(n) converges to MED(Y ) almost surely and MD(n)

converges to MAD(Y ) almost surely, then MAD(n) converges to MAD(Y ) almost surely.

Almost sure convergence of MAD(n) was also proven by Hall and Welsh (1985) while

Falk (1997) showed that the joint distribution of MED(n) and MAD(n) is asymptotically

normal. The following proposition gives a weaker result, but the proof is much simpler

since the theory of empirical processes is avoided.

Proposition 1. If MED(n) = MED(Y ) + OP (n−δ) and

MD(n) = MAD(Y ) + OP (n−δ), then MAD(n) = MAD(Y ) + OP (n−δ).

Proof. Let Wi = |Yi − MED(n)| and let Vi = |Yi −MED(Y )|. Then

Wi = |Yi −MED(Y ) + MED(Y ) − MED(n)| ≤ Vi + |MED(Y ) − MED(n)|,
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and MAD(n) = MED(W1, . . . ,Wn) ≤ MED(V1, . . . , Vn)+|MED(Y )−MED(n)|. Similarly

Vi = |Yi − MED(n) + MED(n) − MED(Y )| ≤ Wi + |MED(n) − MED(Y )|

and thus MD(n) = MED(V1, . . . , Vn) ≤ MED(W1, . . . ,Wn)+|MED(Y )−MED(n)|. Com-

bining the two inequalities shows that

MD(n) − |MED(Y ) − MED(n)| ≤ MAD(n) ≤ MD(n) + |MED(Y ) −MED(n)|,

or

|MAD(n) − MD(n)| ≤ |MED(n) − MED(Y )|. (5)

Adding and subtracting MAD(Y ) to the left hand side shows that

|MAD(n) − MAD(Y ) − OP (n−δ)| = OP (n−δ) (6)

and the result follows. QED

5 Conclusions

The robust methods presented in this paper can be computed in closed form for a wide

variety of distributions. They tend to be asymptotically normal with high outlier re-

sistance. A promising two stage estimator is the cross checking estimator that uses an

asymptotically efficient estimator if it is close to the robust estimator but uses the robust

estimator otherwise. If the robust estimator is a high breakdown consistent estimator,

then the cross checking estimator is asymptotically efficient and also has high breakdown.

The bias of the cross checking estimator is greater than that of the robust estimator since

the probability that the robust estimator is chosen when outliers are present is less than

one. However, few two stage estimators will have performance that rivals the statistical

properties and simplicity of the cross checking estimator. See He and Fung (1999).

Since the cross checking estimator is asymptotically efficient, the robust estimator

should be highly outlier resistant. If the data are iid from a location scale family, the

robust estimators of location and scale based on the sample median and median absolute

deviation should be
√

n consistent and should have very high resistance to outliers. An
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M-estimator, for example, will have both lower efficiency and outlier resistance than the

cross checking estimator.

Hence for location scale families and for the lognormal family, the cross checking

estimator based on the methods in this paper is in some sense optimal. For the Weibull

distribution, there may exist robust estimators that are more resistant than the method

suggested in this paper. In this case the more resistant method should be used in the

cross checking estimator.

The methods described in this paper can be used to detect outliers and as starting

values for iterative methods such as maximum likelihood or M-estimators even if the

data is left or right censored. Since they are simple to compute, software manufacturers

could use the simple robust estimators as initial values and then print a warning that

the parametric model may not hold if the simple and final estimators disagree greatly.

Robust methods are not often used by applied statisticians, perhaps because they are

often difficult to compute and understand. Often applied statisticians will use maximum

likelihood and then attempt to find outliers graphically. This procedure is very useful

for detecting gross outliers but can fail for moderate outliers. The estimators presented

in this paper can be used by statistical consultants to demonstrate the merits of using

robust estimators. Then the clients may be persuaded to use more complex but also

more efficient alternative robust estimators.

6 References

Brazauskas, V. and Serfling, R., Robust estimation of tail parameters for two-parameter

Pareto and exponential models via generalized quantile statistics, Extremes 3, 231-

249, (2000).

Brazauskas, V. and Serfling, R., Small sample performance of robust estimators of tail

parameters for Pareto and exponential models, J. Statist. Computat. Simulat. 70,

1–19, (2001).

Chandra, N.K. and Chaudhuri, A., On the efficency of a testimator for the Weibull

shape parameter, Commun. Statist. Theory Methods 19, 1247–1259, (1990).

12



Falk, M., Asymptotic independence of median and mad, Statist. Probab. Lett. 34,

341–345, (1997).

Hall, P. and Welsh, A.H., Limit theorems for the median deviation, Annals Instit.

Statist. Mathematics, Part A 37, 27–36, (1985).

He, X. and Fung, W.K., Method of medians for lifetime data with Weibull models,

Statistics Medicine 18, 1993–2009, (1999).

Kalbfleisch, J.D. and Prentice, R.L., The Statistical Analysis of Failure Time Data,

John Wiley and Sons, New York, (1980).

Marazzi, A. and Ruffieux, C., The truncated mean of an asymmetric distribution, Com-

putat. Statist. Data Analys. 32, 79-100, (1999).

McKane, S.W., Escobar, L.A. and Meeker, W.Q., Sample size and number of failure

requirements for demonstration tests with log-location-scale distributions and failure

censoring, Technom. 47, 182–190, (2005).

McDonald, J.B., Model selection: some generalized distributions, Commun. Statist.

Theory Methods 16, 1049–1074, (1987).

Pewsey, A., Large-sample inference for the half-normal distribution, Commun. Statist.

Theory Methods 31, 1045–1054, (2002).

Rousseeuw, P.J. and Croux, C., Alternatives to the median absolute deviation, J. Amer.

Statist. Assoc. 88, 1273–1283, (1993).

Seki, T. and Yokoyama, S., Robust parameter-estimation using the bootstrap method

for the 2-parameter Weibull distribution, IEEE Transactions Reliability 45, 34–41,

(1996).

Serfling, R.J., Approximation Theorems of Mathematical Statistics, John Wiley and

Sons, New York, (1980).

Serfling, R., Efficient and robust fitting of lognormal distributions, North Amer. Actu-

arial Journal 6, 95–109, (2002).

Smith, R.M., Some results on interval estimation for the two–parameter Weibull or

extreme–value distribution, Communic. Statist. Theory Methods A6, 1311–1321,

(1977).

Toma, A., Robust estimators for the parameters of multivariate lognormal distribution,

13



Commun. Statist. Theory Methods 32, 1405–1417, (2003).

14


