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Abstract

Two high breakdown estimators that are asymptotically equivalent to a se-

quence of trimmed means are introduced. They are easy to compute and their

asymptotic variance is easier to estimate than the asymptotic variance of standard

high breakdown estimators.
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1 INTRODUCTION

Consider the location model

Xi = µ + ei, i = 1, . . . , n (1)

where X1, . . . ,Xn are independent and identically distributed (iid) with cumulative dis-

tribution function (cdf) F , median MED(X), mean E(X), median absolute deviation

MAD(X), and variance V (X) if they exist. This model is often summarized by obtain-

ing point estimates and confidence intervals for a location parameter. The natural choice

for the location parameter is µ if the errors are symmetric about 0 but when the errors

are asymmetric, there are many other reasonable choices.

The classical point and interval estimators use the sample mean x̄ and standard

deviation S. If a graph of the data indicates that the classical assumptions are violated,

then an alternative estimator should be considered. Robust estimators can be obtained

by giving zero weight to some cases and applying classical methods to the remaining data.

Bickel (1965) and Stigler (1973) consider trimmed means while Davies and Gather (1993),

Hampel (1985), Kim (1992), and Simonoff (1987) consider metrically trimmed means.

Shorack (1974) and Shorack and Wellner (1986, section 19.3) derive the asymptotic theory

for a large class of robust procedures for the iid location model. Special cases include

trimmed, Winsorized, metrically trimmed, and Huber type skipped means. Also see

papers in Hahn, Mason, and Weiner (1991).

One of the most popular robust methods is the (α, 1 − β) trimmed mean

Tn = Tn(ln, un) =
1

un − ln

un∑

ln+1

X(i) (2)
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where

X(1) ≤ X(2) ≤ ... ≤ X(n)

are the order statistics,

ln = [nα],

un = [nβ]

and [.] is the “greatest integer function” (eg [7.7] = 7). Note that the proportion of

cases trimmed and the proportion of cases covered is fixed. If α = 1− β, we will call the

estimator the α trimmed mean. Hence the 10% trimmed mean is the (0.1, 0.9) trimmed

mean. The Winsorized mean

Wn = Wn(ln, un) =
1

n
[lnX(ln+1) +

un∑

i=ln+1

X(i) + (n − un)X(un)]. (3)

These estimators have a breakdown point of min(α, 1 − β).

A randomly trimmed mean is

Rn = Rn(Ln, Un) =
1

Un − Ln

Un∑

i=Ln+1

X(i) (4)

where Ln < Un are integer valued random variables. For example, the metrically trimmed

mean Mn discards data outside of the interval

[MED(n) − k1MAD(n),MED(n) + k2MAD(n)]

where MED(n) is the sample median, MAD(n) is the sample median absolute deviation,

k1 ≥ 1, and k2 ≥ 1. The amount of trimming will depend on the distribution of the data.

For example, if k1 = k2 = 5.2 and the data is normal (Gaussian), about 1% of the data

will be trimmed while if the data is Cauchy, about 24% of the data will be trimmed. Hence
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the upper and lower trimming points estimate lower and upper population percentiles

L(F ) and U(F ) and change with the distribution F.

A high breakdown analog of the trimmed mean R∗
n(Ln, Un) takes Ln to be the max-

imum of the number of observations which fall to the left of MED(n) − k MAD(n) and

the number of observations which fall to the right of MED(n) + k MAD(n) where k > 1

is fixed in advance. Let Un = n − Ln. (Take R∗
n to be the sample median if Un ≤ Ln.)

That is, first metrically trim, then symmetrically trim by increasing the smaller trimming

proportion to equal the larger trimming proportion.

An even simpler estimator is the two stage trimmed mean T ∗
2,n. In the first stage, find

Ln as defined for R∗
n. Then round 100Ln/n up to the nearest integer, say Jn. Then T ∗

2,n

is the Jn% trimmed mean. Again let T ∗
2,n = MED(n) if Jn ≥ 50. For example, suppose

that there are n = 205 cases and Mn trims the smallest 15 cases and the largest 20 cases.

Then Ln = 20 and Jn = 10. Thus R∗
n is the 9.7561% trimmed mean while T ∗

2,n is the

10% trimmed mean.

The following section reviews the asymptotic theory of the trimmed mean and shows

that R∗
n is asymptotically equivalent to the trimmed mean when the errors are symmetric.

The theory of the two stage mean does not require symmetric errors.

2 ASYMPTOTICS

Truncated and Winsorized random variables are important because they simplify the

asymptotic theory of location estimators. Let X be a random variable with cdf F and
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let α = F (a) < F (b) = β. The truncated random variable XT (a, b) = XT has cdf

FXT
(x|a, b) = G(x) =

F (x)− F (a−)

F (b)− F (a−)
(5)

for a ≤ x ≤ b. Also G is 0 for x < a and G is 1 for x > b. Below we will assume that F

is continuous at a and b.

The mean and variance of XT are

µT = µT (a, b) =
∫ ∞

−∞
xdG(x) =

∫ b
a xdF (x)

β − α

and

σ2
T = σ2

T (a, b) =
∫ ∞

−∞
(x− µT )2dG(x) =

∫ b
a x2dF (x)

β − α
− µ2

T .

See Cramer (1946, p. 247).

Another type of truncated random variable is the Winsorized random variable

XW = XW (a, b) =





a, X ≤ a

X, X ≤ b

b, X ≥ b.

If the cdf of XW (a, b) = XW is FW , then

FW (x) =





0, X < a

F (a), X = a

F (x), a < X < b

1, X ≥ b.

Since XW is a mixture distribution with a point mass at a and at b, the mean and variance

of XW are

µW = µW (a, b) = αa + (1 − β)b +
∫ b

a
xdF (x)
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and

σ2
W = σ2

W (a, b) = αa2 + (1 − β)b2 +
∫ b

a
x2dF (x)− µ2

W .

Wilcox (1997, p. 141-181) replaces ordinary population means by truncated popula-

tion means and uses trimmed means to create analogs of one, two, and three way anova,

multiple comparisons, random comparisons, and split plot designs.

Shorack and Wellner (1986, section 19.3) develops the theory of randomly trimmed

(and Winsorized) means and uses empirical process theory in the derivations. A key

concept in empirical process theory is the quantile function

Q(t) = inf{x : F (x) ≥ t}. (6)

Note that Q(t) is the left continuous inverse of F and if F is strictly increasing and

continuous, then F has an inverse F−1 and F−1(t) = Q(t). The following conditions on

the cdf are used.

Regularity Conditions. R1) Let X1, . . . ,Xn be iid with cdf F , and let Ln and Un

be integer valued random variables such that 0 ≤ Ln < Un ≤ n.

R2) Let a = Q(α) and b = Q(β).

R3) Suppose Q is continuous at α and β and that

R4)

Ln

n
= α + OP (n−1/2),

and R5)

Un

n
= β + OP (n−1/2).

Thus
√

n((Un/n)−β) is “tight” or bounded in probability. Note that R2) and R3) imply

that F (a) = α and F (b) = β.
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Under these conditions with Ln = ln and Un = un,

√
n(Tn − µT (a, b)) → N [0,

σ2
W (a, b)

(β − α)2
]. (7)

The asymptotic variance can be consistently estimated with the scaled sample Winsorized

variance

VW (n) =
(1/n)[lnX

2
(ln+1) +

∑un
i=ln+1 X2

(i) + (n − un)X2
(un)] − [Wn(ln, un)]

2

[(un − ln)/n]2
. (8)

This result is a special case of the following two lemmas. We will say

Xn
a
= Yn

if Xn − Yn
P→ 0 as n → ∞. Note that the trimmed mean Tn = Rn(ln, un), and

ln
n

− α = oP (n−1/2), and
un

n
− β = oP (n−1/2).

Hence
√

n((ln/n) − α) converges to zero in probability.

Lemma 1. Shorack and Wellner (1986, p. 681). Assume that the regularity

conditions hold. Then

Sn =
√

n[
1

n

Un∑

i=Ln+1

X(i) −
∫ Un/n

Ln/n
Q(t)dt]

d→ N [0, σ2
W (a, b)].

Lemma 2. Shorack and Wellner (1986, p. 678-679). Assume that the regular-

ity conditions hold. Then

√
n(Rn − µT )

a
=

1

β − α
[Sn + (µT − a)

√
n(

Ln

n
− α) + (b − µT )

√
n(

Un

n
− β)]. (9)

A consequence of these two lemmas is that Rn and Tn will be asymptotically equivalent

if

Ln

n
− α = oP (n−1/2) and

Un

n
− β = oP (n−1/2).
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R∗
n is a very robust estimator that has simple asymptotic theory under symmetry.

The key idea is that the choice Un = n−Ln causes the last two terms in lemma 2 to sum

to zero. Shorack and Wellner (1986, p. 282-283) show that the regularity conditions R4)

and R5) hold for the metrically trimmed mean provided that

√
n(MED(n) −MED(X)) = OP (1) (10)

and

√
n(MAD(n) − MAD(X)) = OP (1). (11)

This result is used to show that the metrically trimmed mean is asymptotically equivalent

to a sum of two Gaussian random variables under symmetry. Assume R6) P (Un > Ln) →

1. That is, R∗
n 6= MED(n), with arbitrarily high probability if n is large enough.

Corollary. Let F be symmetric. Assume regularity conditions R1), R2), R3), and

R6) hold. Then

√
n[R∗

n − µT (a, b)] → N(0,
σ2

W (a, b)

(β − α)2
).

Proof. Let a = MED(X) − kMAD(X) and let b = MED(X) + kMAD(X). Then

the result follows from Lemma 2 provided that R4) and R5) hold, that is if equations

(10) and (11) hold, but the left hand sides of these equations are asymptotically normal.

See Falk (1997) or Hall and Welsh (1985). QED

As stated in Shorack and Wellner (1986, p. 680), a natural estimator for the asymp-

totic variance is the scaled sample Winsorized variance

VA(n) =
(1/n)[LnX2

(Ln+1) +
∑Un

i=Ln+1 X2
(i) + (n − Un)X2

(Un)] − [Wn(Ln, Un)]2

[(Un − Ln)/n]2
(12)
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since

VA(n)
P→ σ2

W (a, b)

(β − α)2

if the regularity condition R3) holds and if

Ln

n
P→ α and

Un

n
P→ β.

Thus if the errors are symmetric, any procedure that uses R∗
n and VA is asymptotically

equivalent to a procedure that uses Tn and VW .

The following lemma gives the asymptotic theory for the two stage trimmed mean

and is immediate.

Lemma 3. Assume that MED(n)−kMAD(n) → a and MED(n)+kMAD(n) → b.

Let t = 100max(F (a−), 1−F (b)). Assume that 0 < t < 49, and that t is not integer val-

ued. Let J ∈ {1, ..., 49} be the smallest integer greater than t. Then T2,n is asymptotically

equivalent to the J % trimmed mean.

To find the asymptotic efficiency of these estimators, formulas for the asymptotic

variance

AV =
σ2

W (a, b)

(β − α)2

are useful. Let b = µ + kMAD(X). Suppose that the error distribution is Gaussian. Let

Φ(x) be cdf and let φ(x) be the density of the standard normal. Then

AV = (
1 − 2zφ(z)

2Φ(z)−1

1 − 2α
+

2αz2

(1 − 2α)2
)σ2 (13)

where α = Φ(−z), and z = kΦ−1(0.75). For the two stage estimator, round 100α up to

the nearest integer J. Then use αJ = J/100 and zJ = −Φ−1(αJ ) in equation (13). Then
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the asymptotic efficiency (AE) with respect to the mean is AE = 1/AV. If k = 6, then

AE(R∗
n, x̄) ≈ 1.0. Since J = 1, AE(T2,n, x̄) ≈ 0.996.

Assume that the errors are double exponential DE(0,1). Then AV =

2−(z2+2z+2)e−z

1−e−z

1 − 2α
+

2αz2

(1 − 2α)2
(14)

where z = k log(2) and α = 0.5 exp(−z). For the two stage estimator, compute αJ as

above and let zJ = − log(2αJ ). Then the asymptotic efficiency (AE) with respect to the

mean is AE = 2/AV. If k = 6, then AE(R∗
n, x̄) ≈ 1.054. Since J = 1, AE(T2,n, x̄) ≈ 1.065.

The results from a small simulation are presented in table 1. For each sample size n,

500 samples were generated. The sample mean x̄, sample median, 1% trimmed mean, R∗
n,

and T2,n were computed. The latter two estimators were computed using the trimming

parameter k = 5. Next the sample variance S2(T ) of the 500 values T1, ..., T500 was

computed where T is one of the five estimators. The value in the table is nS2(T ). These

numbers estimate the asymptotic variance, which is reported in the rows n = ∞. The

simulations were performed for normal and double exponential data, and the simulated

values are close to the theoretical values.
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Table 1: Simulated Variance, 500 Runs, k = 5

F n x̄ MED 1% TM R∗
n T ∗

2,n

N(0,1) 10 1.116 1.454 1.116 1.166 1.166

N(0,1) 50 0.973 1.556 0.973 0.974 0.974

N(0,1) 100 1.040 1.625 1.048 1.044 1.044

N(0,1) 1000 1.006 1.558 1.008 1.008 1.010

N(0,1) ∞ 1.000 1.571 1.004 1.000 1.004

DE(0,1) 10 1.919 1.403 1.919 1.646 1.646

DE(0,1) 50 2.003 1.400 2.003 1.777 1.777

DE(0,1) 100 1.894 0.979 1.766 1.595 1.595

DE(0,1) 1000 2.080 1.056 1.977 1.904 1.886

DE(0,1) ∞ 2.000 1.000 1.878 1.834 1.804
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