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Abstract

A response plot of the fitted values versus the response simultaneously displays

the fitted values, response and residuals. The plot is also used to visualize the

model and to check whether the model is reasonable. The plot can be used to

select a response transformation Y = t(Z) since the plotted points will scatter

about a line with unit slope and zero intercept if the transformation is reasonable.
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1 INTRODUCTION

A model for an experimental design is Yi = E(Yi) + ei for i = 1, ..., n where the error

ei = Yi −E(Yi) and E(Yi) ≡ E(Yi|xi) is the expected value of the response Yi for a given

vector of predictors xi. Many models can be fit with least squares (OLS) and have the

form

Yi = xi,1β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei

for i = 1, . . . , n. Often xi,1 ≡ 1 for all i. In matrix notation, these n equations become

Y = Xβ + e,

where Y is an n × 1 vector of dependent variables, X is an n × p design matrix of

predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1 vector of

unknown errors. If the fitted values are Ŷi = xT
i β̂, then Yi = Ŷi + ri where the residuals

ri = Yi − Ŷi.

A response plot is a plot of the fitted values on the horizontal axis versus the response

on the vertical axis. Ignoring the residuals gives the line Y = Ŷ , so the plotted points

scatter about the identity line with unit slope and zero intercept. Since the vertical

deviations from the identity line are the residuals ri = Yi − Ŷi, the response plot simul-

taneously shows the response, fitted values and residuals. The response plot should be

used as well as the residual plot of Ŷi versus the residuals ri.

If the residual degrees of freedom is not too small, these plots are useful for visualizing

the model and for checking whether the model is reasonable. Section 2 gives some exam-

ples and Section 3 shows how to use response plots to select a response transformation.
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2 Examples
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b) Residual Plot
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d) Jittered Residual Plot

Figure 1: Plots for Crab Data

Example 1. Kuehl (1994, p. 128) gives data for counts of hermit crabs on 25

different transects in each of six different coastline habitats. Let C be the count. Then

the response variable Y = log10(C + 1/6). Although the counts C varied greatly, each

habitat had several counts of 0 and often there were several counts of 1, 2 or 3. Hence Y is

not a continuous random variable. The one way Anova model Yij = µi + eij = η + τi + eij

was fit for i = 1, ..., 6 with ni = 25, and j = 1, ..., ni. Each of the six habitats was a level.

Figure 1a and b shows the response plot and residual plot. There are 6 dot plots in each

plot. Because several of the smallest values in each plot are identical, it does not always

look like the identity line is passing through the six sample means Y i0 for i = 1, ..., 6. In

particular, examine the dot plot for the smallest mean (look at the 25 dots furthest to

the left that fall on the vertical line FIT ≈ 0.36). Random noise (jitter) has been added

to the response and residuals in Figure 1c and d. Now it is easier to compare the six dot

plots. They seem to have roughly the same spread.
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A design matrix for this model consists of indicator variables for each treatment, and

values of xT
i β̂ other than the observed six values Y i0 may not have much meaning. The

plots still contain a great deal of information. The response plot can be used to explain

the model, check that the sample from each population (treatment) has roughly the same

shape and spread, and to see which populations have similar means. Since the response

plot closely resembles the residual plot in Figure 1, there may not be much difference

in the six populations. Linearity seems reasonable since the samples scatter about the

identity line. The residual plot makes the comparison of “similar shape” and “spread”

easier.
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Figure 2: Plots for Textile Data

In industry, the levels are often fixed values of a continuous variable such as tem-

perature. Then values of Ŷ = xT β̂ are interesting even for unobserved values of x if

x is in the factor space. That is, interpolation is informative although extrapolation is

dangerous. If hx = xT (XTX)−1x, then a rule of thumb is that x is in the factor space

and interpolation is being done if hx ≤ max(hx1, ..., hxn).
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For testing to be informative and for the response and residual plots to be informative,

the residual degrees of freedom should not be too small. Large interactions can be omitted

from the OLS design matrix, perhaps after making a normal plot of the effects. See Box,

Hunter and Hunter (2005, p. 203).

Example 2. In their pioneering paper on response transformations, Box and Cox

(1964) analyze data from a 33 experiment on the behavior of worsted yarn under cycles

of repeated loadings. The response Y = log(Z) where Z is the number of cycles to

failure and the three predictors are the length, amplitude and load. To make Figure 2,

a constant was used in the design matrix, but no interactions. For this data set, there is

one value of the response for each of the 27 treatment level combinations.

Figure 2 shows that linearity with constant variance is reasonable, and that the signal

to noise ratio is high. To use the response plot to visualize the conditional distribution of

Y |xTβ, use the fact that the fitted values Ŷ = xT β̂. For example, suppose that log(cycles

to failure) given fit = 6 is of interest. Mentally examine the plot about a narrow vertical

strip about fit = 6, perhaps from 5.75 to 6.25. The cases in the narrow strip have a

mean close to 6 since they fall close to the identity line. Similarly, when the fit = w for

w between 4.5 and 8.5, the cases have log(cycles to failure) near w, on average. Notice

that cases 19 and 20 had the largest time until failure. These cases correspond to wool

specimens with long length, short amplitude of loading cycle and low load. Cases 8 and

9 had the shortest times with low length, high amplitude and high load.
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3 Response Transformations

The applicability of an experimental design model can be expanded by allowing response

transformations. An important class of response transformation models adds an addi-

tional unknown transformation parameter λo, such that

Yi = tλo(Zi) ≡ Z
(λo)
i = E(Yi) + ei = xT

i β + ei.

If λo was known, then Yi = tλo(Zi) would follow the experimental design model.

Two families of transformations are frequently used. Assume that all of the values of

the “response” Zi are positive. A power transformation has the form Y = tλ(Z) = Zλ

for λ 6= 0 and Y = t0(Z) = log(Z) for λ = 0 where λ ∈ ΛL = {−1,−1/2, 0, 1/2, 1}. The

modified power transformation family

Yi = tλ(Zi) ≡ Z
(λ)
i =

Zλ
i − 1

λ

for λ 6= 0 and t0(Zi) = log(Zi) for λ = 0 where λ ∈ ΛL. See Box, Hunter and Hunter

(2005, p. 321).

There are several reasons to use a coarse grid ΛL of powers. First, several of the

powers correspond to simple transformations such as the log, square root, and reciprocal.

These powers are easier to interpret than λ = .28, for example. Secondly, if the estimator

λ̂n can only take values in ΛL, then sometimes λ̂n will converge in probability to λ∗ ∈ ΛL.

Thirdly, Tukey (1957) showed that neighboring modified power transformations are often

very similar, so restricting the possible powers to a coarse grid is reasonable.

Box and Cox (1964) give a numerical method for selecting the response transformation

for the modified power transformations. Although the method gives a point estimator
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λ̂o, often an interval of “reasonable values” is generated (either graphically or using a

profile likelihood to make a confidence interval), and λ̂ ∈ ΛL is used if it is also in the

interval.

A graphical method for response transformations computes the fitted values Ŵi from

the experimental design model using Wi = tλ(Zi) as the “response” for each of the five

values of λ ∈ ΛL. The plotted points follow the identity line in a (roughly) evenly

populated band if the model is reasonable for (Ŵ ,W ). If more than one value of λ ∈ ΛL

gives a linear plot, consult subject matter experts and use the simplest or most reasonable

transformation. Olive (2004) gives a similar method for linear models, and alternative

methods are given in Cook and Olive (2002) and Box and Fung (1995).

After selecting the transformation, the usual checks should be made. A variant of the

method would plot the residual plot or both the response and the residual plot for each

of the five values of λ. Residual plots are also useful, but they no not distinguish between

nonlinear monotone relationships and nonmonotone relationships. See Fox (1991, p. 55).
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Figure 3: Transformation Plots for Crab Data
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Figure 4: Transformation Plots for Textile Data

In the two following examples, the plots show tλ(Z) on the vertical axis. The label

“TZHAT” of the horizontal axis are the fitted values that result from using tλ(Z) as the

“response” in the software.

Example 1 continued. Following Kuehl (1994, p. 128), let C be the count of

crabs and let the “response” Z = C + 1/6. Figure 3 shows the five transformation plots.

The transformation log(Z) results in dot plots that have roughly the same shape and

spread. The transformations 1/Z and 1/
√

Z do not handle the 0 counts well, while the

transformations
√

Z and Z have variance that increases with the mean.

Example 2 continued. For the textile data, Z = number of cycles until failure.

Figure 4 shows four of the five transformation plots. The plotted points curve away from

the identity line in three of the four plots. The plotted points for the log transformation

follow the identity line with roughly constant variance.
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4 Summary

The analysis of the response, not that of the residuals, is of primary importance. The

response plot can be used to analyze the response in the background of the fitted model.

For linear models such as experimental designs, the estimated mean function is the iden-

tity line and should be added as a visual aid.

Assume that the residual degrees of freedom are large enough for testing. Then the

response and residual plots contain much information. Linearity and constant variance

may be reasonable if the plotted points scatter about the identity line in a (roughly)

evenly populated band. Then the residuals should scatter about the r = 0 line in an

evenly populated band. It is easier to check linearity with the response plot and constant

variance with the residual plot. Curvature is often easier to see in a residual plot, but

the response plot can be used to check whether the curvature is monotone or not. The

response plot is more effective for determining whether the signal to noise ratio is strong

or weak, and for detecting outliers, influential cases or a critical mix.

Transformation plots of Ŵ versus W = t(Z) can be used to assess the success of a

transformation or used to choose a transformation.

The response plots and transformation plots are simple to make, and useful for ex-

plaining the experimental design (linear model) to clients and students.

Experts in experimental design should be able to find many more applications of

fitted values and the response. For example, suppose there are three response variables,

and three fits using (xi, Yij) are found for j = 1, 2, 3 and i = 1, ..., n. Then a scatterplot

matrix of the three variables and the three fits may be useful.
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