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In a 1D regression model, the response variable of interest Y is independent of the
vector of predictors x given a single linear combination xTβ of the predictors, written

Y x|xT β.

See Cook and Weisberg (1999, pp. 414-415).
The main point of this paper is that the estimated sufficient predictor

ESP = xT β̂

should be used to form plots to examine the regression model.
i) For the linear model Y = xT β + e, the residual plot of ESP = xT β̂ = Ŷ vs. the

residual r = Y − Ŷ is widely used. See Draper and Smith (1966), Anscombe (1961) and
Anscombe and Tukey (1963).

ii) An important plot for 1D regression is the response plot of ESP = xT β̂ vs.
the response Y . The response plot is useful for visualizing the regression model in the
background of the data, for description and for outlier detection.

iii) The EE plot is a plot of one estimated sufficient predictor vs. another. For
example, the EE plot can be used to compare the semiparametric Cox proportional
hazards regression model with the parametric Weibull proportional hazards model. The
EE plot can also be used with variable selection or hypothesis testing to compare a
submodel or reduced model with the full model.

iv) To check for goodness of fit of the regression model, order ESP from the smallest
to largest values and divide ESP into several groups of roughly equal size called slices.
For generalized linear models, make the response plot and compare the slice means with
the estimated model conditional mean function. For survival regression models, compute
the estimated model survival function for an x selected from each slice with the Kaplan
Meier estimator computed from all of the censored survival times in the slice.

From the dimension reduction and regression graphics literature, if

Y x|xT β,

then
Y x|(a + c xTβ)

for any constants a and c 6= 0. The quantity a+cβTx is called a sufficient predictor (SP),

and an estimated sufficient predictor (ESP) is α̃ + xT β̃
T

where β̃ is an estimator of dβ
for some nonzero constant d. If Y x|(α + xTβ), then often the ESP = α̂ + xT β̂ will
be used. An estimated sufficient summary plot of ESP vs. Y is a response plot, and is
used to study the conditional distribution of Y |x. See Cook (1998, p. 10) and Cook and
Weisberg (1999, p. 417).

If there is one predictor x, then the widely used scatterplot of x vs. Y is a response
plot, where the estimated model conditional mean function is often added to the plot.
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See, for example, the cover of Agresti (2002) for logistic regression and the cover of Cook
and Weisberg (1999) for simple linear regression.

For more than one nontrivial predictor, the response plot has long been used to
visualize the coefficient of determination R2 in multiple linear regression. See Chambers,
Cleveland, Kleiner and Tukey (1983, p. 280). Brillinger (1983) recognized that the
response plot can be used to visualize the conditional mean function E(Y |SP ) = m(SP )
of an additive error single index model

Y = m(SP ) + e.

Also see Chang and Olive (2010). Response plots are called marginal model plots and
model checking plots by Cook and Weisberg (1997, 1999, p. 396). Also see Sheather
(2009, pp. 193-195).

Next, linear models such as multiple linear regression and experimental design models;
response transformation models; generalized least squares; generalized linear models such
as binary logistic regression, binomial logistic regression and Poisson regression; survival
regression models such as the Cox proportional hazards regression, Weibull proportional
hazards regression and Weibull accelerated failure time models give 1D regression exam-
ples. See Cook and Olive (2001), Olive (2004, 2009ab) and Olive and Hawkins (2005,
2010). R software is described in Olive (2008, 2010). Also see Sheather (2009). The Cook
and Weisberg (1999) Arc software can be used for multiple linear, binary and Poisson
regression.

Linear models: Y = xT β + e. Assume that the conditional distribution Y |xTβ
has unknown pdf f(y − xTβ), a location family with location parameter = SP = xT β.
Then Y |SP has pdf f(y − SP ), the error distribution has pdf f(y), and the linear
model is Y = SP + e with conditional mean function E(Y |SP ) = SP . The constant
variance assumption is that the conditional variance function V (Y |SP ) ≡ σ2. If the error
distribution is normal, e ∼ N(0, σ2), then Y |SP ∼ N(SP, σ2). The estimated sufficient
predictor ESP = xT β̂ = Ŷ is the fitted value, and the residual r = Y − Ŷ where β̂
is an estimator of β. Note that Y = ESP + r, and the estimated conditional mean
function is Ê(Y |x) = Ê(Y |SP ) = ESP = Ŷ = xT β̂. The estimated mean function
Ê(Y |SP ) = ESP is the identity line with unit slope and zero intercept.

Let the iid error model be the linear model where the zero mean constant variance
errors are iid from a unimodal distribution that is not highly skewed. If the fitted values
take on many values, then the plotted points should scatter about the identity line in
a (roughly) evenly populated band while the plotted points in the residual plot should
scatter about the r = 0 line in a (roughly) evenly plotted band. Deviations from the
evenly populated band suggest that something is wrong with the iid error model. The
response and residual plots are best for n > 5p.

Example 1. Tremearne (1911) presents a data set of about 17 measurements on
112 people of Hausa nationality. We used height as the response variable Y . Along
with a constant xi,1 ≡ 1, the five additional predictor variables used were height when
sitting, height when kneeling, head length, nasal breadth, and span. The OLS response
and residual plots in Figure 1 show that multiple linear regression should be a useful
model for the data since the plotted points in the response plot follow the identity line
while the plotted points in the residual plot follow the r = 0 line with no other pattern.
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To use the response plot to visualize the conditional distribution of Y |xTβ, use the
fact that the fitted values Ŷ = xT β̂. For example, suppose the height given fit = 1700
is of interest. Mentally examine the plot about a narrow vertical strip about fit = 1700,
perhaps from 1675 to 1725. The cases in the narrow strip have a mean close to 1700
since they fall close to the identity line. Similarly, when the fit = w for w between 1500
and 1850, the cases have heights near w, on average.
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Figure 1: Residual and Response Plots for the Tremearne Data

Many experimental design models satisfy the iid error model, but often the fitted
values do not take on many values. Consider the one way anova model with k treatments
and m ≥ 5 replications per treatment. The plotted points still scatter about the identity
or r = 0 line, but there are k dot plots corresponding to the k treatments. The dot
plots should have similar spread and shape if the one way anova model assumptions are
reasonable.

Example 2. SAS Institute (1985, p. 126) uses clover data to illustrate the one
way anova model. The response variable is the nitrogen content of red clover plants
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inoculated with six strains of bacteria, and each strain has five replicates. Figure 2 shows
the response and residual plots. The one way anova F test is approximately correct if
max(R1, ..., Rk) ≤ 2min(R1, ..., Rk) where Ri is the range of the ith dot plot. Linearity
seems reasonable, but the approximately constant variance assumption may not hold.

The response transformation model Y = t(Z) = xT β + e can be checked by making
the response and residual plots. If tλ(Z) = Zλ for λ 6= 0 and t0(Z) = log(Z) for
λ ∈ {−1,−1/3,−1/2, 0, 1/3, 1/2, 1}, make the 7 plots and choose the transformation
with the best response and residual plots.

Generalized least squares (GLS): The GLS model Y = Xβ + e is a linear model
(written in matrix form) with E(e) = 0, but Cov(e) = σ2V where V is a known n × n
positive definite matrix. The weighted least squares (WLS) model with weights w1, ..., wn

is the special case of the GLS model where V is diagonal: V = diag(v1, ..., vn) and
wi = 1/vi. The GLS estimator

β̂GLS = (XTV −1X)−1XT V −1Y .

The fitted values are Ŷ GLS = Xβ̂GLS .

Following Freedman (2005, p. 54), the feasible generalized least squares (FGLS) model
is the same as the GLS estimator except that V = V (θ) is a function of an unknown
q × 1 vector of parameters θ. Let the estimator of V be V̂ = V (θ̂). Then the FGLS
estimator

β̂FGLS = (XT V̂
−1

X)−1XT V̂
−1

Y .

The fitted values are Ŷ FGLS = Xβ̂FGLS . The feasible weighted least squares (FWLS)
estimator is the special case of the FGLS estimator where V = V (θ) is diagonal. Hence
the estimated weights ŵi = 1/v̂i = 1/vi(θ̂).

The GLS estimator can be transformed to a linear model Z = Uβ+ε where E(ε) = 0
and Cov(ε) = σ2In. From the spectral theorem, there is a symmetric, nonsingular n× n
matrix R such that V = RR. Let Z = R−1Y , U = R−1X and ε = R−1e. This
method has better numerical properties than the transformation based on the Cholesky
decomposition.

The response and residual plots can be made for the transformed model to check the
linearity and constant variance assumptions as in the previous section, assuming that the
distribution of ε is not highly skewed. If the plots are good, then the GLS model may be
a reasonable approximation for the data. Similar plots can be made for FGLS since the
FGLS estimator can also be found from the OLS regression (without an intercept) of Z
on U where V (θ̂) = RR. But now U is a random matrix instead of a constant matrix.

The plots based on the transformed model give both a check on linearity and on
whether the model using V (or V̂ ) gives a good approximation of the data, provided
that n > 5(p + q) where q = 0 for GLS.

If the plots for the transformed model show high leverage points or outliers while the
response plot based on OLS is linear without outliers, then the GLS model may be poor.
Then it may be better to use the consistent but inefficient OLS estimator along with the
sandwich estimator.

Sheather (2009, ch. 9, ch. 10) makes the residual plots based on the Cholesky
decomposition and shows that many linear models with serially correlated errors (e.g.
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Figure 2: SAS One Way Anova Data
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AR(1) errors) and many linear mixed models can be fit with FGLS. Houseman, Ryan
and Coull (2004) also use the Cholesky decomposition. Montgomery, Peck and Vining
(2006, pp. 182-183) make residual plots based on the spectral theorem.

Generalized Linear Models (GLM): To check for overdispersion in parametric
models, we suggest using the OD plot of the estimated model variance V̂ (Y |SP ) versus
the squared residuals V̂ = [Y −Ê(Y |SP )]2. For binomial and Poisson regression (Winkel-
mann 2000, p. 110), the OD plot can be used to complement tests and diagnostics for
overdispersion.

For Poisson regression, the evidence of overdispersion increases from slight to high
as the scale of the vertical axis increases from 5 to 10 times that of the horizontal axis.
There is considerable evidence of overdispersion if the scale of the vertical axis is more
than 10 times that of the horizontal, or if the percentage of points above the slope 4 line
through the origin is much larger than 5%. Similar remarks apply to binomial regression
if the counts are neither too big nor too small.

For these two regression models, the deviance G2 is approximately chi-square with
df = n − p − 1. The 98th percentile of the χ2

d distribution is approximately d + 3
√

d. If
G2 > (n − p − 1) + 3

√
n − p − 1, then more complicated models may be needed.

The binary regression model has Y |x ∼ binomial(1, ρ(α + βTx)), or

Y |SP ∼ binomial(1, ρ(SP)).

Note that the conditional mean function E(Y |SP ) = ρ(SP ) and the conditional variance
function V (Y |SP ) = ρ(SP )(1 − ρ(SP )).

The binomial regression model states that Y1, ..., Yn are independent random variables
with

Yi ∼ binomial(mi, ρ(α + βTxi)),

or
Yi|SPi ∼ binomial(mi, ρ(SPi)).

Note that the conditional mean function E(Yi|SPi) = miρ(SPi) and the conditional
variance function V (Yi|SPi) = miρ(SPi)(1 − ρ(SPi)).

The logistic regression (LR) model is the special case of binomial regression where

P (success|xi) = ρ(xi) =
exp(α + βTxi)

1 + exp(α + βTxi)
.

Equivalently,

ρ(SP ) =
exp(SP )

1 + exp(SP )
.

Note that ρ(x) is the CDF of a logistic(0,1) distribution.
Let Zi = Yi/mi. Then the conditional distribution Zi|xi of the binomial regression

model can be visualized with a plot of the ESP versus Zi with the estimated mean
function of the Zi

Ê(Z|SP ) =
exp(ESP )

1 + exp(ESP )
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added as a visual aid. Cook and Weisberg (1999, p. 515) add a lowess curve to the plot.
Alternatively, divide the ESP into J slices with approximately the same number of cases
in each slice. Then compute ρ̂s =

∑
s Yi/

∑
s mi where the sum is over the cases in slice

s. Then plot the resulting step function. For binary data the step function is simply
the sample proportion in each slice. The plot of the step function and logistic curve is a
graphical approximation of the goodness of fit tests described in Hosmer and Lemeshow
(1980).
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Figure 3: Plots for Museum Data

Example 3. Schaaffhausen (1878) gives data on skulls at a museum. The 1st 47 skulls
are humans while the remaining 13 are apes. The response variable ape is 1 for an ape
skull. The left plot in Figure 3 uses the predictor face length. The model fits very poorly
since the probability of a 1 decreases then increases. The middle plot uses the predictor
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head height and perfectly classifies the data since the ape skulls can be separated from
the human skulls with a vertical line at ESP = 0. The right plot uses predictors lower
jaw length, face length, and upper jaw length. None of the predictors is good individually,
but together provide a good LR model since the observed proportions (the step function)
track the model proportions (logistic curve) closely. For binary regression, overdispersion
is not a problem and residuals behave poorly.
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Figure 4: Visualizing the Death Penalty Data

Example 4. Abraham and Ledolter (2006, pp. 360-364) describe death penalty
sentencing in Georgia. The predictors are aggravation level from 1 to 6 (treated as a
continuous variable) and race of victim coded as 1 for white and 0 for black. There were
362 jury decisions and 12 level–race combinations. The response variable was the number
of death sentences in each combination. The ESS plot in Figure 4a shows that the Yi/mi
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are close to the estimated LR mean function (the logistic curve), and the step function
based on 5 slices tracks the logistic curve well. The horizontal line is ρ̂ =

∑n
i=1 Yi/

∑n
i=1 mi.

Scatter of the step function about this line is analogous to R2 being low. Since the step
function based on 5 slices tracks the logistic curve well, but does not track the horizontal
line, the binomial regression is useful for explaining the variation of Y (analogous to R2

being high). The OD plot is shown in Figure 4b with the identity, slope 4 and OLS lines
added as visual aids. The vertical scale is less than the horizontal scale and there is no
evidence of overdispersion.

The Poisson regression model is

Y |SP ∼ Poisson(µ(SP))

where µ(SP ) = exp(SP ) is both the conditional mean and conditional variance function.
For Poisson regression, the data can be transformed towards a linear model, then make
the response plot and residual plot for the transformed data. The weighted forward

response plot is a plot of
√

ZiESP =
√

Zi(α̂ + β̂
T
xi) versus

√
Zi log(Zi) where Zi = Yi

if Yi > 0, and Zi = 0.5 if Yi = 0. The weighted residual plot is a plot of
√

Zi(α̂ + β̂
T
xi)

versus the “WLS” residuals rWi =
√

Zi log(Zi)−
√

Zi(α̂+ β̂
T
xi). The WLS residuals are

often highly correlated with the deviance residuals. When the counts Yi are small, the
WLS residuals can not be expected to be approximately normal. Often the larger counts
are fit better than the smaller counts and hence the residual plots have a “left opening
megaphone” shape. This fact makes residual plots for Poisson regression rather hard to
use, but cases with large WLS residuals may not be fit very well by the model.

Example 5. Myers, Montgomery and Vining (2002, Example 4.5) give data where
the response variable Y is the number of Ceriodaphnia organisms counted in a container.
The sample size was n = 70 and seven concentrations of jet fuel (x1) and an indicator for
two strains of organism (x2) were used as predictors. The jet fuel was believed to impair
reproduction so high concentrations should have smaller counts. Figure 5 shows the 4
plots for this data. In the ESSP of Figure 5a, the lowess curve is represented as a jagged
curve to distinguish it from the estimated mean function (the exponential curve). The
horizontal line corresponds to the sample mean Y . Scatter about this line is analogous to
R2 being low for linear regression. Since the exponential function gives a good fit to the
data while the horizontal line does not, the Poisson regression is useful for explaining the
variation of Y (analogous to R2 being high). Notice that the lowess curve underestimates
the mean function for large ESP.

The OD plot in Figure 1b suggests that there is little evidence of overdispersion since
the vertical scale is less than ten times that of the horizontal scale and all but one of
the plotted points are close to the wedge formed by the horizontal axis and slope 4 line.
The plotted points scatter about the identity line in Figure 5c and there are no unusual
points in Figure 5d. The four plots suggest that the Poisson regression model is a useful
approximation to the data. Hence Y |ESP ≈ Poisson(exp(ESP)). For example, when
ESP = 1.61, Y ≈ Poisson(5) and when ESP = 4.5, Y ≈ Poisson(90). Notice that the
Poisson mean can be roughly estimated by finding the height of the exponential curve in
Figure 5a.

Example 6. The ICU data studies the survival of 200 patients following admission
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Figure 5: Plots for Ceriodaphnia Data
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Figure 6: EE Plot Suggests Race is an Important Predictor

to an intensive care unit. The response variable was STA (0 = Lived, 1 = Died). The 19
predictors were primarily indicator variables describing the health of the patient at time
of admission, but two factors had 3 levels including RACE (1 = White, 2 = Black, 3 =
Other). The response plot showed that the full model using the 19 predictors was useful
for predicting survival. Variable selection suggested a submodel using five predictors.
The EE plot of the submodel ESP vs. full model ESP is shown in Figure 6. The plotted
points in the EE plot should cluster tightly about the identity line if the full model
and the submodel are good. This clustering did not occur in Figure 6. The lowest
cluster of points and the case on the right nearest to the identity line correspond to black
patients. The main cluster and upper right cluster correspond to patients who are not
black. When RACE is added to the submodel, all of the points cluster about the identity
line. Although variable selection did not suggest that RACE is important, the above
results suggest that RACE is important. Also the RACE variable could be replaced by
an indicator for black.

Survival Regression: ESP = estimated risk score. The conditional distribution
Y |x is completely determined by pdf fx(t), the survival function

Sx(t) ≡ SY |SP (t) = P (Y > t|SP = βTx),

or the hazard function hx(t) = fx(t)/Sx(t) for t > 0. High hazard implies low survival
times while low hazard implies long survival times.

Survival data is usually right censored so Y is not observed. Instead, the survival
time Ti = min(Yi, Zi) where Yi Zi and Zi is the censoring time. Also δi = 0 if Ti = Zi is
censored and δi = 1 if Ti = Yi is uncensored. Hence the data is (Ti, δi,xi) for i = 1, ..., n.

The Cox proportional hazards (PH) regression model (Cox 1972) is a semiparametric
model with SP = βT

Cx and

hx(t) ≡ hY |SP (t) = exp(βT
Cx)h0(t) = exp(SP )h0(t)
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where the baseline hazard function h0(t) is left unspecified. The survival function is

Sx(t) ≡ SY |SP (t) = [S0(t)]
exp(βT

Cx) = [S0(t)]
exp(SP ).

First βC is estimated by the maximum partial likelihood estimator β̂C, then estimators
ĥ0(t) and Ŝ0(t) can be found (see Breslow 1974), and

Ŝx(t) = [Ŝ0(t)]
exp(

ˆβ
T

Cx) = [Ŝ0(t)]
exp(ESP ). (1)

For parametric proportional hazards regression models, the baseline function is para-
metric and the parameters are estimated via maximum likelihood. Then SP = βT

P x,

hx(t) = exp(βT
P x)h0,P (t),

the survival function is

Sx(t) ≡ SY |SP (t) = [S0,P (t)]exp(β
T

P x) = [S0,P (t)]exp(SP ), (2)

and

Ŝx(t) = [Ŝ0,P (t)]exp(
ˆβ

T

P x) = [Ŝ0,P (t)]exp(ESP ). (3)

For a parametric accelerated failure time (AFT) model,

log(Y ) = α + βT
Ax + σe (4)

where the e are iid from a location scale family. The parameters are again estimated by
maximum likelihood and the survival function is

Sx(t) ≡ SY |x(t) = S0

(
t

exp(βT
Ax)

)
, (5)

and

Ŝx(t) = Ŝ0


 t

exp(β̂
T

Ax)


 (6)

where Ŝ0(t) depends on α̂ and σ̂. If SP = −βT
Ax, then h(t|SP ) = h0(t eSP )eSP .

Chen and Jewell (2001) suggest the accelerated hazards model h(t|SP ) = h0(t eSP )

and the 2D regression model h(t|x) = h0(t eβ
T

1 x)eβ
T

2 x.
For Weibull regression, the AFT has ei ∼ SEV (0, 1). Thus

log(Y )|x ∼ SEV (α + βT
Ax, σ), and as a proportional hazards model,

Y |x ∼ W (γ = 1/σ, λx) where

λx = exp

[
−
(

α

σ
+

βT
Ax

σ

)]
= λ0 exp(βT

P x)

with λ0 = exp(−α/σ) and βP = −βA/σ. Thus for t > 0, P (Y > t|x) = Sx(t)

= exp(−λxtγ) = exp(−λ0 exp(βT
P x)tγ) = [exp(−λ0t

γ)]exp(βT

P x) = [S0,P (t)]exp(βT

Px).
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Exponential regression is the special case where σ = 1.
Grambsch and Therneau (1994) give a useful graphical check for the proportional

hazards model. For each variable, a plot based on scaled Schoenfeld residuals is made
with the loess curve added. If the loess curve is approximately horizontal for each of
the p plots, then the proportional hazards assumption is reasonable. Alternatively, fit a
line to each plot and test that each of the p slopes is equal to 0. The R/Splus function
cox.zph makes both the plots and tests.

The slice survival plot divides the ESP into J groups of roughly the same size. For
each group j, Ŝj(t) is computed using an x corresponding to the middle ESP of the
group. (The “middle ESP” is the kth order statistic of the ESP in group j, where
k = 1 + floor[(nj − 1)/2] and nj is the number of cases in group j.) Let ŜKMj(t) be
the Kaplan Meier estimator computed from the survival times (Ti, δi) in the jth group.
For each group, Ŝj(t) is plotted and ŜKMj(ti) as circles at the uncensored event times ti.
The survival regression model is reasonable if the circles “track the curve well” in each
of the J plots.

For the Cox model, if pointwise confidence interval (CI) bands are added to the plot,
then ŜKMj “tracks Ŝj well” if most of the plotted circles do not fall very far outside the
pointwise CI bands since these pointwise bands are not as wide as simultaneous bands.
Collett (2003, pp. 241-243) places several observed Kaplan Meier curves with fitted
curves on the same plot.

The slice survival plot tailored to the Cox model is closely related to May and Hosmer
(1998) test, and the plot has been suggested by several authors with x divided into J
groups instead of the ESP. For example, see Miller (1981, p. 168). Hosmer and Lemeshow
(1999, pp. 141–145) suggests making plots based on the quartiles of the ith predictor
xi, and note that a problem with Cox survival curves is that they may use inappropriate
extrapolation. Using the ESP results in narrow slices with many cases, and adding
Kaplan Meier curves shows if there is extrapolation.

A censored response plot is a plot of the ESP versus T with plotting symbol 0 for
censored cases and + for uncensored cases. Slices in this plot correspond to the slices
used in the slice survival plot. Suppose the ESP is a good estimator of the SP. Consider a
narrow vertical slice taken in the censored response plot about ESP = w. The points in
the slice are a censored sample with SY |SP (t) ≈ SY |w(t). For proportional hazards models,
hY |SP (t) ≈ exp(ESP )h0(t), and the hazard increases while the survival decreases as the
ESP increases. Gentleman and Crowley (1991) make this plot for 1 predictor.

Let log(Ti) = α̂+β̂
T

Axi+ri. For accelerated failure time models, a log censored response

(LCR) plot is a plot of α̂ + β̂
T

Axi versus log(Ti) with plotting symbol 0 for censored cases
and + for uncensored cases. The identity line with unit slope and zero intercept is added
to the plot, and the vertical deviations from the identity line = ri.

For parametric proportional hazards models, an EE plot is a plot of the parametric

ESP β̂
T

P x versus the Cox semiparametric ESP β̂
T

Cx. If the parametric proportional
hazards model is good, then the plotted points should track the identity line with unit
slope and zero intercept. As n → ∞, the correlation of the plotted points goes to 1
in probability for any finite interval, e.g., from the 1st percentile to the 99th percentile

of β̂
T

Cx. Lack of fit is suggested if the plotted points do not cluster tightly about the
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Figure 7: Censored Response Plot for R Lung Cancer Data

identity line. For the Exponential regression model, σ = 1 and βC = −βA, and the
Exponential EE plot is a plot of

ESPE = −β̂
T

Ax versus ESPC = β̂
T

Cx.

For the Weibull regression model, βC = −βA/σ, and the Weibull EE plot is a plot of

ESPW =
−1

σ̂
β̂

T

Ax versus ESPC = β̂
T

Cx.

Example 7. R contains a data set lung where the response variable Y is the time
until death for patients with lung cancer. See MathSoft (1999, p. 268). Consider the
data set for males with predictors ph.ecog = Ecog performance score 0-4, ph.karno = a
competitor to ph.ecog, pat.karno = patient’s assessment of their karno score and wt.loss
= weight loss in last 6 months. Figure 7 shows the censored response plot. Notice that
the survival times decrease rapidly as the ESP increases and that there is one time that
is unusually large for ESP ≈ 1.8. Figure 8 shows the slice survival plots. The ESP was
divided into 4 groups and correspond to the upper left, upper right, lower right and lower
left corners of the plot where Ŝ(400) ≈ (0.70, 0.60, 0.55, 0.30). The circles corresponding
to the Kaplan Meier estimator are “close” to the Cox survival curves in that the circles
do not fall very far outside the pointwise CI bands.
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Figure 8: Slice Survival Plots for R Lung Cancer Data

15



7 9 11

7
8

9
10

11

ESPW

E
S

P
C

a) Weibull

5 6 7 8

7
8

9
10

11

ESPE

E
S

P
C

b) Exponential

Figure 9: EE Plots for Ovarian Cancer Data
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Figure 10: Slice Survival Plots for Ovarian Cancer Data

Example 8. The ovarian cancer data is from Collett (2003, pp. 187-190). The
response variable is the survival time of n = 26 patients in days with predictors age
in years and treat (1 for cyclophosphamide alone and 2 for cyclophosphamide combined
with adriamycin). Figure 9 shows the Weibull and Exponential regression EE plots.
Notice that the estimated risk scores from the Cox regression and Weibull regression are
nearly the same with correlation = 0.997. The points from the Exponential regression
do not cluster about the identity line. Hence Exponential regression should not be used.
Figure 10 gives the slice survival plot for the Cox model with the Weibull survival function

Ŝx(t) = exp[− exp(−γ̂β̂
T

Ax) exp(−γ̂α̂) tγ̂ ] represented by crosses where γ̂ = 1/σ̂. Notice
that the Weibull and Cox estimated survival functions are close and thus similar. Again
the circles corresponding to the Kaplan Meier estimator are “close” to the Cox survival
curves in that the circles do not fall very far outside the pointwise CI bands.

Example 9. R contains a data set nwtco where the response variable Y is the time
until relapse with n = 4028. The model used predictors histol = tumor histology from
central lab, instit = tumor histology from local institution, age in months, and stage of
disease from 1 to 4 (treated as an continuous variable). Figure 11 shows the Grambsch
and Therneau (1994) plots which look fairly flat, but with such a large sample, all slopes
are significantly different from zero, and the global test has p-value ≈ 5.66 × 10−11.
The slice survival plot in Figure 12 shows that the Cox survival estimators and Kaplan
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Figure 11: Grambsch and Therneau Plots for NWTCO Data
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Meier estimators are nearly identical in the six slices, suggesting that the Cox model is
a reasonable approximation to the data.
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