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Abstract

Resampling algorithms have many applications, including the bootstrap, the

delete-d jackknife and randomization tests. Often theoretical results are given for

the impractical algorithm that uses all possible samples, but the impractical algo-

rithm is replaced by a practical algorithm that uses B = 1000 samples. This paper

shows that using m = max(B, [n log(n)]) samples results in a practical algorithm

that has good theoretical properties.
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1 INTRODUCTION

Resampling algorithms have many applications. See, for example, Chernick (2008), Davi-

son and Hinkley (1997), Efron and Tibshirani (1993), Good (2005) and Polansky (2008).

Although theory for resampling algorithms given in Lehmann (1999, p. 425) and

Sen and Singer (1993, p. 365) has the number of samples m → ∞ as the sample size

n → ∞, much of the literature suggests using m = B between 999 and 10000. This

choice is often justified using simulations and binomial approximations. An exception is

Shao (1989) where n/m → 0 as n → ∞. Let [x] be the integer part of x, so [7.7] = 7.

Then m = [n1.01] may give poor results for n < 900. To combine theory with empirical

results, we suggest using m = max(B, [n log(n)]). Justification for this choice is given

below and in the following section.

Often resampling algorithms are used to provide information about the sampling

distribution of a statistic Tn ≡ Tn(F ) ≡ Tn(Y n) where Y n = (Y1, ..., Yn)
T and the Yi

are iid from a distribution with cumulative distribution function (cdf) F (y) = P (Y ≤

y). Then Tn has a cdf Hn(y) = P (Tn ≤ y). If F (y) is known, then m independent

samples Y ∗
j,n = (Y ∗

j,1, ..., Y
∗
j,n)

T of size n could be generated, where the Y ∗
j,k are iid from

a distribution with cdf F and j = 1, ..., m. Then the statistic Tn is computed for each

sample, resulting in m statistics T1,n(F ), ..., Tm,n(F ) which are iid from a distribution with

cdf Hn(y). Equivalent notation Ti,n(F ) ≡ T ∗
i,n(Y

∗
i,n) is often used, where i = 1, ..., m.

If W1, ..., Wm are iid from a distribution with cdf FW , then the empirical cdf Fm

corresponding to FW is given by

Fm(y) =
1

m

m
∑

i=1

I(Wi ≤ y)
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where the indicator I(Wi ≤ y) = 1 if Wi ≤ y and I(Wi ≤ y) = 0 if Wi > y. Fix m

and y. Then mFm(y) ∼ binomial (m, FW (y)). Thus E[Fm(y)] = FW (y) and V [Fm(y)] =

FW (y)[1− FW (y)]/m. By the central limit theorem,

√
m(Fm(y)− FW (y))

D→ N(0, FW (y)[1 − FW (y)]).

Thus Fm(y)−FW (y) = OP (m−1/2), and Fm is a reasonable estimator of FW if the number

of samples m is large.

Let Wi = Ti,n(F ). Then Fm ≡ H̃m,n is an empirical cdf corresponding to Hn. Let

Wi = Yi and m = n. Then Fn is the empirical cdf corresponding to F . Let yn =

(y1, ..., yn)
T be the observed data. Now Fn is the cdf of the population that consists

of y1, ..., yn where the probability of selecting yi is 1/n. Hence an iid sample of size d

from Fn is obtained by drawing a sample of size d with replacement from y1, ..., yn. If

d = n, let Y ∗
j,n = (Y ∗

j,1, ..., Y
∗
j,n) be an iid sample of size n from the empirical cdf Fn.

Hence each Y ∗
j,k is one of the y1, ..., yn where repetition is allowed. Take m independent

samples from Fn and compute the statistic Tn for each sample, resulting in m statistics

T1,n(Fn), ..., Tm,n(Fn) where Ti,n(Fn) ≡ T ∗
i,n(Y

∗
i,n) for i = 1, ..., m. This type of sampling

can be done even if F is unknown, and if Tn(Fn) ≈ Tn(F ), then the empirical cdf based

on the Ti,n(Fn) may be a useful approximation for Hn.

For general resampling algorithms let T ∗
i,n(Y

∗
i,n) be the statistic based on a randomly

chosen sample Y ∗
i,n used by the resampling algorithm. Let HA,n be the cdf of the T ∗

i,n

based on all Jn possible samples, and let Hm,n be the cdf of the T ∗
i,n based on m randomly

chosen samples. Often theoretical results are given for HA,n but are not known for

Hm,n. Let GN,n be a cdf based on a normal approximation for Hn. Central limit type
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theorems are used and GN,n is often first order accurate: Hn(y)− GN,n(y) = OP (n−1/2).

Approximations GE,n based on the Edgeworth expansion (which is not a cdf) and HA,n

are sometimes second order accurate: Hn(y) − HA,n(y) = OP (n−1).

Theory for resampling algorithms such as first order accuracy of the bootstrap and

the power of randomization tests is usually for the impractical algorithm that uses all

Jn samples. See Hall (1988), Hoeffding (1952), Robinson (1973) and Romano (1989).

Practical algorithms use B randomly drawn samples where B is chosen to give good per-

formance when n is small. The following section shows that using m = max(B, [n log(n)])

randomly drawn samples results in a practical algorithm that is asymptotically equiva-

lent to the impractical algorithm up to terms of order n−1/2 while also having good small

sample performance. The following two examples follow DasGupta (2008, pp. 462, 469,

513).

Example 1. Let Y1, ..., Yn be iid with cdf F. Then the ordinary bootstrap distribution

of Tn is HA,n(y) = PFn
(Tn(Y

∗
i,n) ≤ y) where Y ∗

i,n = (Y ∗
i,1, ..., Y

∗
i,n) is an iid sample of size

n from the empirical cdf Fn obtained by selecting with replacement from Y1, ..., Yn. Here

T ∗
i,n(Y

∗
i,n) = Tn(Y

∗
i,n). Note that there are Jn = nn ordered samples and nn/n! unordered

samples from Fn. The bootstrap distribution Hm,n typically used in practice is based on

m samples randomly selected with replacement. Both HA,n and Hm,n are estimators of

Hn, the cdf of Tn.

Example 2. Let X1, ..., Xk1
be iid with probability density function (pdf) f(y) while

Y1, ..., Yk2
are iid with pdf f(y − µ). Let n = k1 + k2 and consider testing H0 : µ = 0.

Let Tn ≡ Tk1,k2
be the two sample t-statistic. Under H0, the random variables in the

combined sample X1, ..., Xk1
, Y1, ..., Yk2

are iid with pdf f(y). Let Zn be any permutation
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of (X1, ..., Xk1
, Y1, ..., Yk2

) and compute Tn(Zn) for each permutation. Then HA,n is the

cdf based on all of the Tn(Zn). H0 is rejected if Tn is in the extreme tails of HA,n. The

number of ordered samples is Jn = n! while the number of unordered samples is
(

n
k1

)

. Such

numbers get enormous quickly. Usually m randomly drawn permutations are selected

with replacement, resulting in a cdf Hm,n used to choose the appropriate cutoffs cL and

cU .

For randomization tests that used a fixed number m = B of permutations, calculations

using binomial approximations suggest that B = 999 to 5000 will give a test similar to

those based on using all permutations. See Dwass (1957), Edgington (1995, p. 50),

Efron and Tibshirani (1993, pp. 208-210), Manly (1997, pp. 81-83) and Marriott (1979).

Jöckel (1986) shows, under regularity conditions, that the power of a randomization

test is increasing and converges as m → ∞. It is suggested that the tests have good

power if m = 999, but the pvalue of such a test is bounded below by 0.001 since the

pvalue = (1 + the number of the m test statistics at least as extreme as the observed

statistic)/(m + 1). Buckland (1984) shows that the expected coverage of the nominal

100(1 − α)% percentile method confidence interval is approximately correct, but the

standard deviation of the coverage is proportional to 1/
√

m. Hence the percentile method

is a large sample confidence interval, in that the true coverage converges in probability

to the nominal coverage, only if m → ∞ as n → ∞. These results are good reasons for

using m = max(B, [n log(n)]) samples, and this choice is explored further in the following

section.
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2 THEORY FOR RESAMPLING ALGORITHMS

The key observation for theory is that Hm,n is an empirical cdf. To see this claim,

recall that HA,n(y) ≡ HA,n(y|Y n) is a random cdf: it depends on the data Y n. Hence

HA,n(y) ≡ HA,n(y|yn) is the observed cdf based on the observed data. HA,n(y|yn) can be

computed by finding T ∗
i,n(Y

∗
i,n) for all Jn possible samples Y ∗

i,n. If m samples are selected

with replacement from all possible samples, then the samples are iid and T ∗
1,n, ..., T

∗
m,n

are iid with cdf HA,n(y|yn). Hence Fm ≡ Hm,n is an empirical cdf corresponding to

F ≡ HA,n(y|yn).

Thus empirical cdf theory can be applied to Hm,n. Fix n and y. Then

mHm,n(y) ∼ binomial (m, HA,n(y|yn)). Thus E[Hm,n(y)] = HA,n(y|yn) and

V [Hm,n(y)] = HA,n(y|yn)[1 −HA,n(y|yn)]/m. Also

√
m(Hm,n(y)− HA,n(y|yn))

D→ N(0, HA,n(y|yn)[1 − HA,n(y|yn)]).

Thus Hm,n(y) − HA,n(y|yn) = OP (m−1/2). Note that the probabilities and expectations

depend on m and on the observed data yn.

This result suggests that if HA,n is a first order accurate estimator of Hn, then Hm,n

can not be a first order accurate estimator of Hn unless m is proportional to n. If

m = max(1000, [n log(n)]), then Hm,n is asymptotically equivalent to HA,n up to terms of

order n−1/2. Using m = max(1000, [0.1n2 log(n)]) makes Hm,n asymptotically equivalent

to HA,n up to terms of order n−1.

As an application, Efron and Tibshirani (1993, pp. 187, 275) state that percentile

method for bootstrap confidence intervals is first order accurate and that the coefficient

of variation of a bootstrap percentile is proportional to
√

1
n

+ 1
m

. If m = 1000, then the
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percentile bootstrap is not first order accurate. If m = max(1000, [n log(n)]), then the

percentile bootstrap is first order accurate. Similarly, claims that a bootstrap method

is second order accurate are false unless m is proportional to n2. See a similar result in

Robinson (1988).

Practical resampling algorithms often use m = B = 1000, 5000 or 10000. The choice

of m = 10000 works well for small n and for simulation studies since the cutoffs based on

Hm,n will be close to those based on HA,n with high probability since V [H10000,n(y)] ≤

1/40000. For the following theorem, also see DasGupta (2008, p. 6) and Serfling (1981,

pp. 59-61).

Theorem 1: Let Y 1, ..., Y n be iid k × 1 random vectors from a distribution with cdf

F (y) = P (Y1 ≤ y1, ..., Yk ≤ yk). Let

Dn = sup
y∈<k

|Fn(y) − F (y)|.

a) Massart(1990) k = 1: P (Dn > d) ≤ 2 exp(−2nd2) if nd2 ≥ 0.5 log(2).

b) Kiefer (1961) k ≥ 2 : P (Dn > d) ≤ C exp(−(2 − ε)nd2) where ε > 0 is fixed and

the positive constant C depends on ε and k but not on F .

To use Theorem 1a, fix n (and suppressing the dependence on yn), take F = HA,n

computed from the observed data and take Fm = Hm,n. Then

Dm = sup
y∈<

|Hm,n(y)− HA,n(y)|.

Recalling that the probability is with respect to the observed data, consider the

following choices of m.

i) If m = 10000, then P (Dm > 0.01) ≤ 2e−2 ≈ 0.271.
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ii) If m = max(10000, [0.25n log(n)]), then for n > 5000

P

(

Dm >
1√
n

)

≤ 2 exp(−2[0.25n log(n)]/n) ≈ 2/
√

n.

iii) If m = max(10000, [0.5n2 log(n)]), then for n > 70

P
(

Dm >
1

n

)

≤ 2 exp(−2[0.5n2 log(n)]/n2) ≈ 2/n.

Example 3. Suppose F is the cdf of the N(µ, σ2) distribution and Tn(F ) = Y n ∼

N(µ, σ2/n). Suppose m independent samples (Y ∗
j,1, ..., Y

∗
j,n) = Y ∗

j,n of size n are generated,

where the Y ∗
j,k are iid N(µ, σ2) and j = 1, ..., m. Then let the sample mean T ∗

j,n = Y
∗
j,n ∼

N(µ, σ2/n) for j = 1, ..., m.

We want to examine, for a given m and n, how well do the sample quantiles T ∗
(dm ρe) =

Y
∗
(dm ρe),n of the Y

∗
j,n estimate the quantiles ξρ,n of the N(µ, σ2/n) distribution and how

well does (T ∗
(dm 0.025e), T

∗
(dm 0.975e)) perform as a 95% CI for µ. Here P (X ≤ ξρ,n) = ρ if

X ∼ N(µ, σ2/n). Note that ξρ,n = µ + zρσ/
√

n where P (Z ≤ zρ) = ρ if Z ∼ N(0, 1).

Fix n and let fn be the pdf of the N(µ, σ2/n) distribution. By theory for quantiles

such as Serfling (1980, p.80), as m → ∞

√
m(Y

∗
(dm ρe),n − ξρ,n)

D→ N(0, τ 2
n)

where

τ 2
n ≡ τ 2

n(ρ) =
ρ(1 − ρ)

[fn(ξρ)]2
=

ρ(1 − ρ)2πσ2

n exp(−z2
ρ)

.

Since the quantile ξρ,n = µ + zρσ/
√

n, need m fairly large for the estimated quantile

to be good. To see this claim, suppose we want m so that

P (ξ0.975,n − 0.04σ/
√

n < Y
∗

(dm 0.975e),n < ξ0.975,n − 0.04σ/
√

n) > 0.9.

(For N(0, 1) data, this would be similar to wanting the estimated 0.975 quantile to be
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between 1.92 and 2.00 with high probability.) Then 0.9 ≈

P (
−0.04σ

√
m

τn

√
n

< Z <
0.04σ

√
m

τn

√
n

) ≈ P (−0.01497
√

m < Z < 0.01497
√

m )

or

m ≈
(

z0.05

−0.01497

)2

≈ 12076.

With m = 1000, the above probability is only about 0.36. To have the probability go to

one, need m → ∞ as n → ∞.

Note that if m = B = 1000, say, then the sample quantile is not a consistent estimator

of the population quantile ξρ,n. Also, (Y
∗
(dm ρe),n − ξρ,n) = OP (n−δ) needs m ∝ n2δ where

δ = 1/2 or 1 are the most interesting cases. For good simulation results, typically need

m larger than a few hundred, eg B = 1000, for small n. Hence m = max(B, n log(n))

combines theory with good simulation results.

The CI length behaves fairly well for large n. For example, the 95% CI length will

be close to 3.92/
√

n since roughly 95% of the Y
∗
j,n are between µ − 1.96σ/

√
n and µ +

1.96σ/
√

n. The coverage is conservative (higher than 95%) for moderate m. To see this,

note that the 95% CI contains µ if T ∗
(dm 0.025e) < µ and T ∗

(dm 0.975e) > µ. Let W ∼ binomial

(m, 0.5). Then

P (T ∗
(dm 0.975e)) > µ) ≈ P (W > 0.025m) ≈ P (Z >

0.025m − 0.5m

0.5
√

m
) = P (Z > −0.95

√
m)

→ 1 as m → ∞. (Note that if m = 1000, then T ∗
(dm 0.975e) > µ if 225 or more Y

∗

j,n > µ or

if fewer than 975 Y
∗
j,n < µ.)

Since F is not known, we can not sample from Tn(F ), but sampling from Tn(Fn)

can at least be roughly approximated using computer generated random numbers. The
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bootstrap replaces m samples from Tn(F ) by m samples from Tn(Fn), that is, there

is a single sample Y1, ..., Yn of data. Take a sample of size n with replacement from

Y1, ..., Yn and compute the sample mean Y
∗

1,n. Repeat to obtain the bootstrap sample

Y
∗
1,n, ..., Y

∗
m,n. Expect the bootstrap estimator of the quantile to perform less well than

that based on samples from Tn(F ). So still need m large so that the estimated quantiles

are near the population quantiles.

Simulated coverage for the bootstrap percentile 95% CI tends to be near 0.95 for

moderate m, and we expect the length of the 95% CI to again be near 3.92/
√

n. The

bootstrap sample tends to be centered about the observed value of Y . If there is a

“bad sample” so that Y is in the left or right tail of the sampling distribution, say

Y > µ+1.96σ/
√

n or Y < µ−1.96σ/
√

n, then the coverage may be much less that 95%.

But the probability of a “bad sample” is 0.05 for this example.

As a final remark, two tail tests with nominal level α and confidence intervals with

nominal coverage 1−α tend to use the lower and upper α/2 percentiles from Hm,n. This

procedure corresponds to an interval covering 100(1 − α)% of the mass. The interval

is short if the distribution corresponding to Hm,n is approximately symmetric. Shorter

intervals can be found if the distribution is skewed by using the shorth(c) estimator

where c = dm(1 − α)e and dxe is the smallest integer ≥ x, e.g., d7.7e = 8. See Grübel

(1988). That is, let T ∗
(1), ..., T

∗
(m) be the order statistics of the T ∗

1,n, ..., T
∗
m,n computed

by the resampling algorithm. Compute T ∗
(c) − T ∗

(1), T
∗
(c+1) − T ∗

(2), ..., T
∗
(m) − T ∗

(m−c+1). Let

[T ∗
(s), T

∗
(s+c−1)] correspond to the closed interval with the smallest distance. Then reject

H0 : θ = θ0 if θ0 is not in the interval.
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Resampling methods can be used in courses on resampling methods, nonparametric

statistics, and experimental design. In such courses it can be stated that it is well known

that Hm,n has good statistical properties (under regularity conditions) if m → ∞ as

n → ∞, but algorithms tend to use m = B between 999 and 10000. Such algorithms

may perform well in simulations, but lead to tests with pvalue bounded away from 0,

confidence intervals with coverage that fails to converge to the nominal coverage, and fail

to take advantage of the theory derived for the impractical all subset algorithms. Since

Hm,n is the empirical cdf corresponding to the all subset algorithm cdf HA,n, taking

m = max(B, [n log(n)]) leads to a practical algorithm with good theoretical properties

(under regularity conditions) that performs well in simulations.
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Jöckel, K. H. (1986), “Finite Sample Properties and Asymptotic Efficiency of Monte

Carlo Tests,” The Annals of Statistics, 14, 336-347.

Kiefer, J. (1961), “On Large Deviations of the Empiric D. F. of a Vector of Chance

Variables and a Law of Iterated Logarithm,” Pacific Journal of Mathematics, 11,

649-660.

Lehmann, E. L. (1999), Elements of Large–Sample Theory, New York, NY: Springer.

Manly, B. F. J. (1997), Randomization, Bootstrap and Monte Carlo Methods in Biology,

2nd ed., London, UK: Chapman & Hall/CRC.

Marriott, F. H. C. (1979), “Barnard’s Monte Carlo Tests: How Many Simulations?”

Applied Statistics, 28, 75-77.

Massart, P. (1990), “The Tight Constant in the Dvoretzky-Kiefer-Wolfowitcz Inequal-

ity,” The Annals of Probability, 3, 1269-1283.

Polansky, A. M. (2008), Observed Confidence Levels, Boca Raton, FL: Chapman &

Hall/CRC.

12



Robinson, J. (1973), “The Large Sample Power of Permutation Tests for Randomization

Models,” The Annals of Statistics, 1, 291-296.

Robinson, J. (1988), “Discussion of ‘Theoretical Comparison of Bootstrap Confidence

Intervals’ by P. Hall,” The Annals of Statistics, 16, 962-965.

Romano, J. P. (1989), “Bootstrap and Randomization Tests of Some Nonparametric

Hypotheses,” The Annals of Statistics, 17, 141-159.

Sen, P. K., and Singer, J. M. (1993), Large Sample Methods in Statistics: An Introduc-

tion with Applications, New York, NY: Chapman & Hall.

Serfling, R. J. (1980), Approximation Theorems of Mathematical Statistics, New York,

NY: Wiley.

Shao, J. (1989), “The Efficiency and Consistency of Approximations to the Jackknife

Variance Estimators,” Journal of the American Statistical Association, 84, 114-119.

13


