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Abstract

The RMVN estimator is an easily computed high breakdown robust
√

n consis-

tent estimator of multivariate location and dispersion, and the estimator is obtained

by scaling the classical estimator applied to the “RMVN subset” that contains at

least half of the cases. The applications for this estimator are numerous, and a

simple method for performing robust principal component analysis, canonical cor-

relation analysis and factor analysis is to apply the classical method to the “RMVN

subset.”
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1. Introduction

Multivariate location and dispersion considers estimation of a p×1 population location

vector µ and a p×p symmetric positive definite population dispersion matrix Σ. Let the

ith case xi be a p × 1 random vector, and suppose the n cases are collected in an n × p

matrix X with rows xT
1 , ...,xT

n . The classical estimator (x,S) of multivariate location

and dispersion is the sample mean and sample covariance matrix where

x =
1

n

n∑

i=1

xi and S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T. (1.1)

An important model is the elliptically contoured ECp(µ,Σ, g) distribution with prob-

ability density function f(z) = kp|Σ|−1/2g[(z − µ)TΣ−1(z − µ)] where kp > 0 is some

constant and g is some known function. The multivariate normal (MVN) Np(µ,Σ)

distribution is a special case, and x is “spherical about µ” if x has an ECp(µ, cIp, g)

distribution where c > 0 is some constant and Ip is the p × p identity matrix. For

these distributions, the covariance matrix Cov(x) = cXΣ if second moments exist where

cX > 0, and a dispersion estimator estimates d Σ for some d > 0. Many classical

procedures originally meant for the Np(µ,Σ) distribution are semiparametric in that the

procedures also perform well on a much larger class of elliptically contoured distributions.

Let the p × 1 column vector T (X) be a multivariate location estimator, and let the

p × p symmetric positive definite matrix C(X) be a dispersion estimator. Then the ith

squared sample Mahalanobis distance is the scalar

D2
i = D2

i (T (X),C(X)) = (xi − T (X))T C−1(X)(xi − T (X)) (1.2)

for each observation xi. Notice that the Euclidean distance of xi from the estimate of

center T (X) is Di(T (X), Ip). The classical Mahalanobis distance uses (T,C) = (x,S).
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Following Johnson (1987, pp. 107-108), the population squared Mahalanobis distance

U ≡ D2(µ,Σ) = (x − µ)TΣ−1(x − µ), (1.3)

and for elliptically contoured distributions, U has density

h(u) =
πp/2

Γ(p/2)
kpu

p/2−1g(u). (1.4)

Olive and Hawkins (2009) provided the first practical estimators of multivariate loca-

tion and dispersion that have been shown to be both high breakdown and
√

n consistent.

Competing estimators with theory have high computational complexity. The minimum

covariance determinant (MCD) estimator has O(nv) complexity where v = 1+p(p+3)/2.

The minimum volume ellipsoid (MVE) complexity is far higher, and there may be no

known method for computing the S, τ , projection based, constrained M, MM, and Stahel-

Donoho estimators described in Maronna, Martin and Yohai (2006, ch. 6).

In the literature, the above competing estimators are replaced by practical estimators,

but none of the practical estimators have been shown to be both high breakdown and

consistent. For example, the Rousseeuw and Van Driessen (1999) FAST-MCD (FMCD)

estimator is used to replace the MCD estimator. Olive and Hawkins (2009) show that

FAST-MCD is not a high breakdown estimator. Maronna and Zamar (2002, p. 309)

claim, without proof, that their orthogonalized Gnanadesikan-Kettenring (OGK) esti-

mator is consistent and high breakdown.

Many practical “robust estimators” generate a sequence of K trial fits called attrac-

tors: (T1,C1), ..., (TK,CK). Then the attractor (TA,CA) that minimizes some criterion

is used to obtain the final estimator. One way to obtain attractors is to generate trial

fits called starts, and then use the concentration technique. Let (T−1,j,C−1,j) be the jth
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start and compute all n Mahalanobis distances Di(T−1,j,C−1,j). At the next iteration,

the classical estimator (T0,j,C0,j) is computed from the cn ≈ n/2 cases corresponding

to the smallest distances. This iteration can be continued for k steps resulting in the

sequence of estimators (T−1,j,C−1,j), (T0,j,C0,j), ..., (Tk,j,Ck,j). Then (Tk,j,Ck,j) is the

jth attractor for j = 1, ...,K. Using k = 10 often works well, and the basic resampling

algorithm is a special case k = −1 where the attractors are the starts.

Following Olive and Hawkins (2009), note that (Tt,j,Ct,j) = (xt,j,St,j) is the clas-

sical estimator applied to the “half set” of cases satisfying {xi : D2
i (xt−1,j,St−1,j) ≤

D2
(cn)(xt−1,j,St−1,j)} for t ≥ 0. Hence (Tt,j,Ct,j) is estimating (µt,Σt), the population

mean and covariance matrix of the truncated distribution covering half of the mass corre-

sponding to {x : (x−µt−1)
TΣ−1

t−1(x−µt−1) ≤ D2
(0.5)(µt−1,Σt−1)} where D2

(0.5)(µt−1,Σt−1)

is the population median of the population squared distances D2(µt−1,Σt−1). Here

(µ−1,Σ−1) is the population analog of (T−1,j,C−1,j).

The Devlin, Gnanadesikan and Kettenring (1981) DGK estimator (Tk,D,Ck,D) uses

the classical estimator (T−1,D,C−1,D) = (x,S) as the only start. Thus (µ−1,D,Σ−1,D) is

the population mean and covariance matrix. For an elliptically contoured distribution

with a nonsingular covariance matrix and for t ≥ 0, (µt,D,Σt,D) is the population mean

and covariance matrix of the truncated distribution corresponding to the highest density

region covering half the mass. Hence µt,D = µ and Σt,D = cΣ for some c > 0. Atkinson,

Riani and Cerioli (2009) find the population mean and covariance matrices for such

truncated multivariate normal distributions. We conjecture that the DGK estimator is

a
√

n consistent estimator of (µk,D,Σk,D) under mild conditions.

The Olive (2004) median ball (MB) estimator (Tk,M ,Ck,M ) uses (T−1,M ,C−1,M) =
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(MED(X), Ip) as the only start where MED(X) is the coordinatewise median. Hence

(T0,M,C0,M) is the classical estimator applied to the “half set” of data closest to MED(X)

in Euclidean distance while (µ0,M ,Σ0,M) is the population mean and covariance matrix of

the truncated distribution corresponding to the hypersphere centered at the population

median that contains half the mass. For a distribution that is spherical about µ and for

t ≥ 0, (µt,M ,Σt,M) = (µ, cIp) for some c > 0. For nonspherical ellliptically contoured

distributions, Σt,M 6= cΣ. However, the bias seems to be small even for t = 0, and to get

smaller as k increases. If the median ball estimator is iterated to convergence, we do not

know whether Σ∞,M = cΣ. We conjecture that the MB estimator is a high breakdown

√
n consistent estimator of (µk,M ,Σk,M ) under mild conditions.

The FCH estimator uses the DGK estimator (Tk,D,Ck,D) and the MB estimator

(Tk,M ,Ck,M ) as attractors. Let the “median ball” be the hypersphere containing the half

set of data closest to MED(X) in Euclidean distance. The FCH estimator uses the MB

attractor if the DGK location estimator TDGK is outside of the median ball, and the

attractor with the smallest determinant, otherwise. Let (TA,CA) be the attractor used.

Then the estimator (TFCH ,CFCH ) takes TFCH = TA and

CFCH =
MED(D2

i (TA,CA))

χ2
p,0.5

CA (1.5)

where χ2
p,0.5 is the 50th percentile of a chi–square distribution with p degrees of freedom.

The RMVN estimator uses two reweighting steps. Let (µ̂1, Σ̃1) be the classical esti-

mator applied to the n1 cases with D2
i (TFCH ,CFCH) ≤ χ2

p,0.975. Let

q1 = min{0.5(0.975)n/n1, 0.995}, and

Σ̂1 =
MED(D2

i (µ̂1, Σ̃1))

χ2
p,q1

Σ̃1.
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Then let (TU ,CU) ≡ (TRMV N , Σ̃2) be the classical estimator applied to the n2 cases with

D2
i (µ̂1, Σ̂1)) ≤ χ2

p,0.975. Let q2 = min{0.5(0.975)n/n2, 0.995}, and

CRMV N =
MED(D2

i (TRMV N , Σ̃2))

χ2
p,q2

Σ̃2.

Note that (TU ,CU ) is the unscaled RMVN estimator, and is the classical estimator

applied to the “RMVN subset” of n2 ≥ n/2 cases. The RMVN subset tends to be a large

clean subset even if certain types of outliers are present.

If the bulk of the data is Np(µ,Σ), the RMVN estimator can give useful estimates

of (µ,Σ) for certain types of outliers where FCH estimates (µ, dΣ) for d > 1. To see

this claim, let 0 ≤ γ < 0.5 be the outlier proportion. If γ = 0, then ni/n
P→ 0.975 and

qi
P→ 0.5. If γ > 0, suppose the outlier configuration is such that the D2

i (TFCH ,CFCH)

are roughly χ2
p for the clean cases, and the outliers have larger D2

i than the clean cases.

Then MED(D2
i ) ≈ χ2

p,q where q = 0.5/(1− γ). For example, if n = 100 and γ = 0.4, then

there are 60 clean cases and the q = 5/6 quantile χ2
p,q is being estimated instead of χ2

p,0.5.

Now ni ≈ n(1 − γ)0.975, and qi estimates q. Thus CRMV N ≈ Σ. Of course consistency

cannot generally be claimed when outliers are present.

The following assumption (E1) gives a class of distributions where Olive (2008, ch.

10) and Olive and Hawkins (2009) showed that the FCH and RMVN estimators are

high breakdown
√

n consistent estimators of (µ, dRΣ) where R is the FCH or RMVN

estimator, dR > 0 and dR = 1 for multivariate normal data. A similar result holds

for (TU ,CU), but dR 6= 1 for Np(µ,Σ) data. Lopuhaä (1999) showed that DGK is
√

n

consistent while Cator and Lopuhaä (2009) showed that MCD is consistent provided that

the MCD functional is unique. Distributions where the functional is unique are called
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“unimodal,” and rule out, for example, a spherically symmetric uniform distribution.

Assumption (E1): The x1, ...,xn are iid from a “unimodal” ECp(µ,Σ, g) distribution

with nonsingular covariance matrix Cov(xi) where g is continuously differentiable with

finite 4th moment:
∫

(xTx)2g(xTx)dx < ∞.

Since the Olive and Hawkins (2009) estimators such as (TU ,CU), FCH and RMVN

are the only practical estimators of multivariate location and dispersion that have been

shown to be both high breakdown and
√

n consistent, they are the default estimators for

high breakdown inference. The OGK complexity is O[p3 + np2 log(n)] while that of the

FCH and RMVN estimators is O[p3 +np2 +np log(n)]. FCH and RMVN are roughly 100

times faster than FAST-MCD. Section 2 considers robust principal component analysis,

Section 3 gives a diagnostic for the Hotelling’s T 2 test, and Section 4 presents a small

simulation study.

2. Robust Principal Component Analysis

Principal component analysis (PCA) is used to explain the dispersion structure with

a few uncorrelated linear combinations of the original variables, called principal compo-

nents. The analysis is used for data reduction and interpretation.

For classical principal component analysis, assume that the sample covariance ma-

trix S has eigenvalue eigenvector pairs (λ̂1, ê1), (λ̂2, ê2), ..., (λ̂p, êp) where λ̂1 ≥ λ̂2 ≥

· · · ≥ λ̂p ≥ 0. Then the principal components corresponding to the jth case are Ŷ1j =

êT
1 xj, ..., Ŷpj = êT

p xj. The estimated proportion of the total population variance due to

the ith principal component is λ̂i/
∑p

j=1 λ̂j. The population analogs use the covariance

matrix Cov(X) = Σx with eigenvalue eigenvector pairs (λi,ei) for i = 1, ..., p. The

analysis can also be based on the p eigenvalue eigenvector pairs (λ̂i, êi) of the sample
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correlation matrix R. A robust “plug in” method uses an analysis based on the (λ̂i, êi)

computed from a robust dispersion estimator C. See Croux and Haesbroeck (2000).

The RPCA method performs the classical principal component analysis on the RMVN

subset, using either the sample covariance matrix CU = SU or the sample correlation

matrix RU . Under (E1), CU and RU are
√

n consistent high breakdown estimators of

cΣ = dCov(X) and the population correlation matrix DCov(X)D, respectively, where

D = diag(1/
√

σ11, ..., 1/
√

σpp) and the σii are the diagonal entries of Cov(X) = Σx.

Theorem 1. Under (E1), the correlation of the eigenvalues computed from the

classical PCA and RPCA converges to 1 in probability.

Proof: The eigenvalues are continuous functions of the dispersion estimator, hence

consistent estimators of dispersion give consistent estimators of the population eigenval-

ues. See Eaton and Tyler (1991) and Bhatia, Elsner and Krause (1990). Under (E1), S

estimates Σx and CU estimates d Σx. If Σx e = λe, then

d Σx e =
d

c
λce.

Hence the population eigenvalues of Σx and d Σx differ by some positive multiple d/c,

and the population correlation is equal to one. The proof for R and RU is similar. �

For principal components, a scree plot is a plot of component number versus eigen-

value, and often there is a sharp bend in the plot when the components are no longer

important. See Cattell (1966). The above theorem suggests making the robust scree plot

and the classical scree plot.

The eigenvectors are not continuous functions of the dispersion estimator, and the

sample size may need to be massive before the robust and classical eigenvectors or prin-
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cipal components have high absolute correlation. In the software, sign changes in the

eigenvectors are common, since Σx e = λe implies that Σx (−e) = λ(−e).

The literature for robust PCA is large, but the “high breakdown” methods are im-

practical or not backed by theory. Some of these methods may be useful as outlier

diagnostics. Spherical principal components is a bounded influence approach suggested

by Locantore, Marron, Simpson, Tripoli, Zhang and Cohen (1999). Boente and Fraiman

(1999) claim that basis of the eigenvectors is consistently estimated by spherical principal

components for elliptically contoured distributions. Also see Maronna, Martin and Yohai

(2006, pp. 212-213).

3. A diagnostic for the Hotelling’s T 2
H test

The Hotelling’s T 2
H test is used to test H0 : µ = µ0 versus HA : µ 6= µ0. The test

rejects H0 if

T 2
H = n(x − µ0)

T S−1(x − µ0) >
(n − 1)p

n − p
Fp,n−p,1−α

if H0 holds and the data are iid from a distribution with a nonsingular covariance matrix.

If a location estimator T satisfies

√
n(T − µ)

D→ Np(0,D),

then a competing test rejects H0 if

T 2
C = n(T − µ0)

TD̂
−1

(T − µ0) >
(n − 1)p

n − p
Fp,n−p,1−α

if H0 holds and D̂ is a consistent estimator of D. The F cutoff can be used since

(n − 1)p

n − p
Fp,n−p,1−α → χ2

p,1−α
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as n → ∞. This idea is used for small p by Srivastava and Mudholkar (2001) where T is

the coordinatewise trimmed mean.

Now the RMVN estimator is asymptotically equivalent to a scaled DGK estimator

that uses k = 5 concentration steps and two “reweight for efficiency” steps. Lopuhaä

(1999, pp. 1651-1652) shows that if (E1) holds, then for k = 0, the DGK estimator

(T0,D,C0,D) is asymptotically normal with

√
n(T0,D − µ)

D→ Np(0, κpΣ).

We conjecture that a similar result holds after concentration:

√
n(TRMV N − µ)

D→ Np(0, τpΣ)

for a wide variety of elliptically contoured distributions where τp depends on both p

and the underlying distribution. Since the test is based on a conjecture, it is ad hoc,

and should be used as an outlier diagnostic rather than for inference. Willems, Pison,

Rousseeuw, and Van Aelst (2002) use similar reasoning to present a diagnostic based on

the FMCD estimator.

For MVN data, simulations suggest that τp is close to 1. The ad hoc test that rejects

H0 if

T 2
R/fn,p = n(TRMV N − µ0)

TĈ
−1

RMV N (TRMV N − µ0)/fn,p >
(n − 1)p

n − p
Fp,n−p,1−α

where fn,p = 1.04 + 0.12/p + (40 + p)/n gave fair results in the simulations described in

the following section for n ≥ 15p and 2 ≤ p ≤ 100.

4. Example and simulations
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A simulation was done to check that RMVN estimates Σ if γ is the percentage of

outliers. The clean cases were MVN: x ∼ Np(0, diag(1, 2, ..., p)). Outlier types were

x ∼ Np((0, ..., 0, pm)T , 0.0001I p), a near point mass at the major axis, and the mean

shift x ∼ Np(pm1, diag(1, 2, ..., p)) where 1 = (1, ..., 1)T . On clean MVN data, n ≥ 20p

gave good results for 2 ≤ p ≤ 100. For the contaminated MVN data, the first nγ cases

were outliers, and the classical estimator Sc was computed on the clean cases. The

diagonal elements of Sc and Σ̂RMV N should both be estimating (1, 2, ..., p)T . The average

diagonal elements of both matrices were computed for 20 runs, and the criterion Q was

the sum of the absolute differences of the p diagonal elements from the two averaged

matrices. Since γ = 0.4 and the initial subsets for the RMVN estimator are half sets,

the simulations used n = 35p. The values of Q shown in Table 1 correspond to good

estimation of the diagonal elements. Values of pm slightly smaller than the tabled values

led to poor estimation of the diagonal elements.

Example. Buxton (1920) gives various measurements on 87 men including height,

head length, nasal height, bigonal breadth and cephalic index. Five heights were recorded to

be about 19mm with the true heights recorded under head length. Performing a classical

principal components analysis on these five variables using the covariance matrix resulted

in a first principal component that was created by the outliers. See Figure 1 where the sec-

ond principal component is plotted versus the first. The robust PCA, or the classical PCA

performed after the outliers are removed, resulted in a first principal component that was

approximately− height with ê1 ≈ (−1.000, 0.002,−0.023,−0.002,−0.009)T while the sec-

ond robust principal component was based on the eigenvector ê2 ≈ (−0.005, 0.848,−0.054,

−0.048, 0.525)T . The plot of the first two robust principal components, with the outliers
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deleted, is shown in Figure 2. These two components explain about 86% of the variance.

In simulations for principal component analysis, FCH, RMVN, OGK and FAST-MCD

seem to estimate cΣx if x = Az + µ where z = (z1, ..., zp)
T and the zi are iid from a

continuous distribution with variance σ2. Here Σx = Cov(x) = σ2AAT . The bias for

the MB estimator seemed to be small. It is known that affine equivariant estimators give

unbiased estimators of cΣx if the distribution of zi is also symmetric. DGK and FAST-

MCD are affine equivariant. FCH and RMVN are asymptotically equivalent to a scaled

DGK estimator. But in the simulations the results also held for skewed distributions.

The simulations used 1000 runs where x = Az and z ∼ Np(0, Ip), z ∼ LN(0, Ip)

where the marginals are iid lognormal(0,1), or z ∼ MV Tp(1), a multivariate t dis-

tribution with 1 degree of freedom so the marginals are iid Cauchy(0,1). The choice

A = diag(
√

1, ...,
√

p) results in Σ = diag(1, ..., p). Note that the population eigenvalues

will be proportional to (p, p − 1, ..., 1)T and the population “variance explained” by the

ith principal component is λi/
∑p

j=1 λj = 2(p + 1 − i)/[p(p + 1)]. For p = 4, these num-

bers are 0.4, 0.3 and 0.2 for the first three principal components. If the “correlation”

option is used, then the population “correlation matrix” is the identity matrix Ip, the

ith population eigenvalue is proportional to 1/p and the population “variance explained”

by the ith principal component is 1/p.

Table 2 shows the mean “variance explained” along with the standard deviations for

the first three principal components. Also ai and pi are the average absolute value of the

correlation between the ith eigenvectors or the ith principal components of the classical

and robust methods. Two rows were used for each “n–data type” combination. The ai

are shown in the top row while the pi are in the lower row. The values of ai and pi were
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similar. The standard deviations were slightly smaller for the classical PCA for normal

data. The classical method failed to estimate (0.4,0.3,0.2) for the Cauchy data. For

the lognormal data, RPCA gave better estimates, and the pi were not high except for

n = 10000.

To compare affine equivariant and non-equivariant estimators, Maronna and Zamar

(2002) suggest using Ai,i = 1 and Ai,j = ρ for i 6= j and ρ = 0, 0.5, 0.7, 0.9, and 0.99.

Then Σ = A2. If ρ is high, or if p is high and ρ ≥ 0.5, then the data are concentrated

about the line with direction 1 = (1, ..., 1)T . For p = 50 and ρ = 0.99, the population

variance explained by the first principal component is 0.999998. If the “correlation”

option is used, then there is still one extremely dominant principal component unless

both p and ρ are small.

Table 3 shows the mean “variance explained” along with the standard deviations

multiplied by 107 for the first principal component. The a1 value is given but p1 was

always 1.0 to many decimal places even with Cauchy data. Hence the eigenvectors from

the robust and classical methods could have low absolute correlation, but the data was

so tightly clustered that the first principal components from the robust and classical

methods had absolute correlation near 1.

For the Hotelling’s T 2
H simulation, the data is Np(δ1, diag(1, 2, ..., p)) where H0 : µ =

0 is being tested with 5000 runs at a nominal level of 0.05. In Table 4, δ = 0 so H0 is

true, while hcv and rhcv are the proportion of rejections by the T 2
H test and by the ad hoc

robust test. Sample sizes are n = 15p, 20p and 30p. The robust test is not recommended

for n < 15p and appears to be conservative except when n = 15p and 75 ≤ p ≤ 100.

If δ > 0, then H0 is false and the proportion of rejections estimates the power of the
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test. Table 5 shows that T 2
H has more power than the robust test, but suggests that the

power of both tests rapidly increases to one as δ increases.

5. Conclusions

The RMVN subset is often a large clean subset of the data even when certain types

of outliers are present. The classical estimator (TU ,CU) applied to this subset is a

√
n consistent high breakdown estimator of (µ, cΣ) on a large class distributions. This

result suggests applying classical methods for principal components, canonical correlation

analysis and factor analysis on the RMVN subset. This method is very simple since it

uses the software available for the classical method.

There are many other applications of (TU ,CU ), FCH and RMVN. The DD plot a plot

of the classical versus robust Mahalanobis distances, can be used to check for outliers.

MVN data scatters about the identity line while elliptically contoured data satisfying

(E1) scatters about some line through the origin. The three robust estimators can be

used as plug in estimators replacing (x,S) to make robust analogs for many multivariate

procedures. RMVN is useful if an estimator of Σ is needed instead of an estimator of

d Σ. Since the MB estimator does not make the expensive O(p3) determinant calculation,

it may be useful if the main concern is outlier detection.

FCH and RMVN need n > 2p to be computed, and n ≥ 10p to produce DD plots

where the plotted points cluster tightly about the identity line for MVN data. RMVN

needs n ≥ 20p before it gives good estimates of Σ for MVN data. The estimators can be

modified so that the initial estimator covers more than half of the cases (e.g. 75% of the

cases) with the price of decreased outlier resistance.

The previous sections illustrated PCA and a robust analog of Hotelling’s T 2 test as
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applications. The robust T 2
R statistic tends not to be as inflated as T 2

H when outliers

are present, as can be demonstrated with the rhotsim program referenced below. Ide-

ally software users would make a DD plot and other checks on the model, but users of

statistical software too often fail to make such checks. Since both statistics are easily

computed, if n ≥ 15n software could produce a warning if the two statistics differ.

Simulations were done in R. The MASS library was used to compute FMCD and the

robustbase library was used to compute OGK. Programs are in the collection of func-

tions rpack.txt at (www.math.siu.edu/olive/ol-bookp.htm). Function covrmvn computes

the FCH, RMVN and MB estimators while covfch computes the FCH, RFCH and MB

estimators. The following functions were used in the three simulations and have more

outlier configurations than the two described in the paper. Function covesim was used

to produce Table 1, pcasim for Tables 2 and 3 and rhotsim for Tables 4 and 5.
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Table 1: Estimation of Σ with γ = 0.4, n = 35p

p type n pm Q

5 1 135 16 0.153

5 2 135 6 0.213

10 1 350 21 0.326

10 2 350 6 0.326

15 1 525 26 0.856

15 2 525 7 0.675

20 1 700 33 0.798

20 2 700 8 0.792

25 1 875 39 1.014

25 2 875 10 1.867
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Table 2: Variance Explained by PCA and RPCA, p = 4

n type M/S vexpl rvexpl a1/p1 a2/p2 a3/p3

40 N M 0.445,0.289,0.178 0.472,0.286,0.166 0.895 0.821 0.825

S 0.050,0.037,0.032 0.062,0.043,0.037 0.912 0.813 0.804

100 N M 0.419,0.295,0.191 0.425,0.293,0.189 0.952 0.926 0.963

S 0.033,0.030,0.024 0.040,0.032,0.027 0.956 0.923 0.953

400 N M 0.404,0.298,0.198 0.406,0.298,0.198 0.994 0.991 0.996

S 0.019,0.017,0.014 0.021,0.019,0.015 0.995 0.990 0.994

40 C M 0.765,0.159,0.056 0.514,0.275,0.147 0.563 0.519 0.511

S 0.165,0.112,0.051 0.078,0.055,0.040 0.776 0.383 0.239

100 C M 0.762,0.156,0.060 0.455,0.286,0.173 0.585 0.527 0.528

S 0.173,0.112,0.055 0.054,0.041,0.034 0.797 0.377 0.269

400 C M 0.756,0.162,0.060 0.413,0.296,0.194 0.608 0.562 0.575

S 0.172,0.113,0.054 0.030,0.025,0.022 0.796 0.397 0.308

40 L M 0.539,0.256,0.139 0.521,0.268,0.146 0.610 0.509 0.530

S 0.127,0.075,0.054 0.099,0.061,0.047 0.643 0.439 0.398

100 L M 0.482,0.270,0.165 0.459,0.279,0.172 0.647 0.555 0.566

S 0.180,0.063,0.052 0.077,0.047,0.041 0.654 0.492 0.474

400 L M 0.437,0.282,0.185 0.416,0.290,0.194 0.748 0.639 0.739

S 0.080,0.048,0.044 0.049,0.035,0.033 0.727 0.594 0.690

10000 L M 0.400,0.301,0.200 0.402,0.300,0.199 0.982 0.967 0.991

S 0.027,0.023,0.018 0.013,0.011,0.009 0.976 0.967 0.989
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Table 3: Variance Explained by PCA and RPCA, SSD = 107 SD, p = 50

n type vexpl SSD rvexpl SSD a1

200 N 0.999998 1.958 0.999998 2.867 0.687

1000 N 0.999998 0.917 0.999998 0.971 0.944

1000 C 0.999996 161.3 0.999998 1.482 0.112

1000 L 0.999998 0.919 0.999998 1.508 0.175
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Figure 1: First Two Principal Components for Buxton data
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Table 4: Hotelling simulation

p n=15p hcv rhcv n=20p hcv rhcv n=30p hcv rhcv

10 150 0.0476 0.0300 200 0.0516 0.0304 300 0.0498 0.0286

15 225 0.0474 0.0318 300 0.0506 0.0308 450 0.0492 0.0320

20 300 0.0540 0.0368 400 0.0548 0.0314 600 0.0520 0.0354

25 375 0.0444 0.0334 500 0.0462 0.0296 750 0.0456 0.0288

30 450 0.0472 0.0324 600 0.0516 0.0358 900 0.0484 0.0342

35 525 0.0490 0.0384 700 0.0522 0.0358 1050 0.0502 0.0374

40 600 0.0534 0.0440 800 0.0486 0.0354 1200 0.0526 0.0336

45 675 0.0406 0.0390 900 0.0544 0.0390 1350 0.0512 0.0366

50 750 0.0498 0.0430 1000 0.0522 0.0394 1500 0.0512 0.0364

55 825 0.0504 0.0502 1100 0.0496 0.0392 1650 0.0510 0.0374

60 900 0.0482 0.0514 1200 0.0488 0.0404 1800 0.0474 0.0376

65 975 0.0568 0.0602 1300 0.0524 0.0414 1950 0.0548 0.0410

70 1050 0.0462 0.0530 1400 0.0558 0.0432 2100 0.0522 0.0424

75 1125 0.0474 0.0632 1500 0.0502 0.0486 2250 0.0490 0.0370

80 1200 0.0524 0.0620 1600 0.0524 0.0432 2400 0.0468 0.0356

85 1275 0.0482 0.0758 1700 0.0496 0.0456 2550 0.0520 0.0404

90 1350 0.0504 0.0746 1800 0.0484 0.0454 2700 0.0484 0.0398

95 1425 0.0524 0.0892 1900 0.0472 0.0506 2850 0.0538 0.0424

100 1500 0.0554 0.0808 2000 0.0452 0.0506 3000 0.0488 0.0392
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Table 5: Hotelling power simulation

p n hcv rhcv δ n hcv rhcv δ n hcv rhcv δ

5 75 0.459 0.245 0.20 100 0.366 0.184 0.15 150 0.333 0.208 0.12

5 75 0.682 0.416 0.25 100 0.599 0.368 0.20 150 0.577 0.394 0.16

5 75 0.840 0.588 0.30 100 0.816 0.587 0.30 150 0.860 0.708 0.40

10 150 0.221 0.113 0.10 200 0.312 0.182 0.10 300 0.469 0.340 0.10

10 150 0.621 0.400 0.17 200 0.655 0.467 0.15 300 0.647 0.504 0.12

10 150 0.888 0.729 0.22 200 0.848 0.692 0.18 300 0.872 0.767 0.15

15 225 0.314 0.188 0.10 300 0.442 0.294 0.10 450 0.317 0.228 0.07

15 225 0.714 0.543 0.15 300 0.623 0.449 0.12 450 0.648 0.522 0.10

15 225 0.881 0.738 0.18 300 0.858 0.755 0.15 450 0.853 0.762 0.12

20 300 0.408 0.276 0.10 400 0.341 0.230 0.08 600 0.291 0.216 0.06

20 300 0.691 0.525 0.13 400 0.674 0.534 0.11 600 0.554 0.433 0.08

20 300 0.935 0.852 0.17 400 0.858 0.742 0.13 600 0.790 0.701 0.10

25 375 0.304 0.214 0.08 500 0.434 0.319 0.08 750 0.354 0.266 0.06

25 375 0.728 0.580 0.12 500 0.676 0.531 0.10 750 0.660 0.556 0.08

25 375 0.926 0.837 0.15 500 0.868 0.771 0.12 750 0.887 0.815 0.10

30 450 0.374 0.264 0.08 600 0.395 0.290 0.07 900 0.290 0.217 0.05

30 450 0.602 0.467 0.10 600 0.639 0.517 0.09 900 0.743 0.642 0.08

30 450 0.883 0.763 0.13 600 0.867 0.770 0.11 900 0.876 0.808 0.09
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Figure 2: First Two Robust Principal Components with Outliers Omitted
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