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Abstract

This paper presents a simple resistant estimator of multivariate location and

dispersion. The DD plot is a plot of Mahalanobis distances from the classical

estimator versus the distances from a resistant estimator and can be used to detect

outliers and as a diagnostic for multivariate normality. The new estimator can be

used in the DD plot, is easy to compute and provides insights about several useful

robust algorithm techniques.
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1 INTRODUCTION

A multivariate location and dispersion model is a joint distribution for a p × 1 random

vector x that is completely specified by a p × 1 population location vector µ and a

p × p symmetric positive definite population dispersion matrix Σ. The observations xi

for i = 1, ..., n are collected in an n × p matrix W with n rows xT
1 , ..., xT

n .

Let the p × 1 column vector T (W ) be a multivariate location estimator, and let the

p× p symmetric positive definite matrix C(W ) be a dispersion estimator. Then the ith

squared sample Mahalanobis distance is the scalar

D2
i = D2

i (T (W ), C(W )) = (xi − T (W ))T C−1(W )(xi − T (W )) (1.1)

for each observation xi. Notice that the Euclidean distance of xi from the estimate

of center T (W ) is Di(T (W ), Ip) where Ip is the p × p identity matrix. The classical

Mahalanobis distance corresponds to the sample mean and sample covariance matrix

T (W ) = x =
1

n

n∑

i=1

xi and C(W ) = S =
1

n − 1

n∑

i=1

(xi − T(W ))(xi − T(W ))T

and will be denoted by MDi.

There is an enormous literature on the detection of outliers and influential cases for

the multivariate location and dispersion model. Robust estimators are often computed

by applying the classical estimator to a subset of the data. Consider the subset Jo of

cn ≈ n/2 observations whose sample covariance matrix has the smallest determinant

among all C(n, cn) subsets of size cn. Let TMCD and CMCD denote the sample mean

and sample covariance matrix of the cn cases in Jo. Then the minimum covariance

determinant MCD(cn) estimator is (TMCD(W ), CMCD(W )).
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This estimator is impractical to compute, so algorithm estimators are used instead.

The “basic resampling” or “elemental set” algorithm for robust estimators uses Kn “el-

emental starts” – randomly selected subsets of p + 1 cases where p is the number of

variables. The jth elemental fit is the classical estimator (Tj, Cj) computed from the jth

elemental set. For each fit a criterion function that depends on all n cases is computed.

Then the algorithm returns the elemental fit that optimizes the criterion. The efficiency

and resistance properties of the basic resampling algorithm estimator turn out to depend

strongly on the number of starts Kn used – see Hawkins and Olive (2002).

Another important algorithm technique is concentration. Starts are again used, but

they are not necessarily elemental. Let (T0,j, C0,j) be the jth start and compute all

n Mahalanobis distances Di(T0,j, C0,j). At the next iteration, the classical estimator

(T1,j, C1,j) is computed from the cn ≈ n/2 cases corresponding to the smallest dis-

tances. This iteration can be continued for k steps resulting in the sequence of estimators

(T0,j, C0,j), (T1,j, C1,j), ..., (Tk,j, Ck,j). The result of the iteration (Tk,j, Ck,j) is called the

jth attractor. Using k = 5 concentration steps works well, and iterating until conver-

gence is usually fast. In a concentration algorithm, the final estimator is the attractor

that optimizes the criterion. The basic resampling algorithm is a special case with k = 0.

Concentration has been used by several authors. The DGK estimator (Devlin, Gnanade-

sikan, and Kettenring 1975, 1981) uses the classical estimator computed from all n cases

as the only start, and results from Lopuhaä (1999) show that the DGK estimator is
√

n

consistent. Gnanadesikan and Kettenring (1972, pp. 94–95) provide a similar algorithm.

Rousseeuw and Van Driessen (1999, p. 214) prove that the concentration steps make
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the determinant |Ci+1,j| ≤ |Ci,j| and provide the FMCD concentration algorithm, im-

plemented by the Splus function cov.mcd, for the MCD estimator using Kn ≡ K = 500

elemental starts. Hawkins and Olive (1999) provide a similar MCD algorithm while

Hawkins and Olive (2002) suggest that the percentage γo of distant outliers that can be

handled by cov.mcd is

γo ≈ min(
1

2
, 1 − [1 − (0.2)1/K]1/h)100% (1.2)

if n is large, K = 500 and h = p + 1.

In addition to concentration and randomly selecting elemental sets, two additional

algorithm techniques will be examined in this paper. He and Wang (1996) suggest com-

puting the classical estimator and a robust estimator. The final estimator is the classical

estimator if both estimators are “close,” otherwise the final estimator is the robust es-

timator. He (1991) proposed a similar technique for regression. The second technique

was proposed by Gnanadesikan and Kettenring (1972, p. 90). They suggest using the

dispersion matrix C = [ci,j] where ci,j is a robust estimator of the covariance of Xi and

Xj. Computing the classical estimator on a subset of the data results in an estimator of

this form. The identity

ci,j = Cov(Xi, Xj) = [Var(Xi + Xj) − Var(Xi − Xj)]/4

where Var(X) = σ2(X) suggests that a robust estimator of dispersion can be created by

replacing the sample standard deviation σ̂ by a robust estimator of scale. Maronna and

Zamar (2002) modify this idea to create a fairly fast high breakdown consistent estimator

of multivariate location and dispersion.
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Robust estimators tend to be judged by their Gaussian efficiency and breakdown value

(see Zuo 2001 for references). The following notation will be useful. Let W n
d denote the

data matrix where any d < n/2 of the n cases have been replaced by arbitrarily bad

contaminated cases. Then the contamination fraction is γ = d/n.

Consider a fixed data set W n
d . A multivariate location estimator T basically “breaks

down” if the d outliers can make the median Euclidean distance MED(‖wi − T (W n
d)‖)

arbitrarily large where wT
i is the ith row of W n

d . Thus a multivariate location estimator

T will not break down if T can not be driven out of some ball of (possibly huge) radius

R about the origin.

The estimator C breaks down if the smallest eigenvalue λp can be driven to zero or if

the largest eigenvalue λ1 can be driven to ∞. From numerical linear algebra, it is known

that the largest eigenvalue of a p × p matrix C is bounded above by p max |ci,j| where

ci,j is the (i, j) entry of C. See Datta (1995, p. 403).

Assume that (T, C) is the classical estimator (x, S) applied to some subset of cn ≈ n/2

cases of the data. Denote these cases by z1, ..., zcn. Then the (i, j) entry of C is

ci,j =
1

cn − 1

cn∑

k=1

(zi,k − zi)(zj,k − zj).

Hence the maximum eigenvalue λ1 can not get arbitrarily large if the zi are all contained

in some ball of radius R about the origin, e.g., if none of the cn cases is an outlier. If all

of the ‖zi‖ are bounded, then all of the λi are bounded, and λp can only be driven to

zero if the determinant of C can be driven to zero. The determinant |S| of S is known

as the generalized sample variance. Consider the hyperellipsoid

{x : (x − T )TC−1(x − T ) ≤ D2
(cn)} (1.3)
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where D2
(cn) is the cnth smallest squared Mahalanobis distance based on (T, C). This

ellipsoid contains the cn cases with the smallest D2
i . The volume of this ellipsoid is

proportional to the square root of the determinant |C|1/2, and this volume will be positive

unless extreme degeneracy is present among the cn cases. See Johnson and Wichern (1988,

pp. 103-104).

Section 2 uses ideas presented in this section to create a simple resistant estimator

for multivariate location and dispersion.

2 The Median Ball Algorithm

The simplest form of the median ball algorithm (MBA) estimator for multivariate location

and dispersion uses two carefully chosen starts. Suppose that the data xi are iid from

an elliptically contoured (EC) distribution with finite second moments and parameters

(µ,Σ). The first start (T0,1, C0,1) is chosen so that the first attractor (T5,1, C5,1) is a
√

n

consistent estimator of (µ, cΣ) where the constant c > 0 depends on the EC distribution.

The second start (T0,2, C0,2) is chosen so that the second attractor (T5,2, C5,2) is a high

(50%) breakdown estimator. Let (TA, CA) = (T5,i, C5,i) where i = 1 if the determinant

|C5,1| ≤ |C5,2| and i = 2, otherwise. Then the MBA estimator (TMBA, CMBA) takes

TMBA = TA and

CMBA =
MED(D2

i (TA, CA))

χ2
p,0.5

CA (2.1)

where χ2
p,0.5 is the 50th percentile of a chi–square distribution with p degrees of freedom.

This scaling makes CMBA a better estimate of Σ if the data is multivariate normal

(MVN). See Olive (2002).
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A good choice for the first start is the classical estimator (T0,1, C0,1) = (x, S). After

five concentration steps, the resulting attractor (T5,1, C5,1) is the DGK estimator. The

DGK estimator is affine equivariant,
√

n consistent and very simple to compute.

The choice for the second start is motivated by the results on breakdown given in

Section 1. Find the set of cn ≈ n/2 cases xi that are closest to the coordinatewise median

MED(x) in Euclidean distance, and let the second start (T0,2, C0,2) be the classical sample

mean and covariance of these cases. Arcones (1995) and Kim (2000) showed that T0,2 is

a high breakdown,
√

n consistent estimator of multivariate location. Since only cases xi

such that ‖xi − MED(x)‖ ≤ MED(‖xi − MED(x)‖) are used, the largest eigenvalue of

C0,2 is bounded if fewer than half of the cases are outliers.

The geometric behavior of this start is simple. If the data xi are MVN (or EC)

then the highest density regions of the data are hyperellipsoids. The set of x closest

to the coordinatewise median in Euclidean distance is a hypersphere. For EC data the

highest density ellipsoid and hypersphere will have approximately the same center, and

the hypersphere will be drawn towards the longest axis of the hyperellipsoid. Hence too

much data will be trimmed in that direction. For example, if the data are MVN with Σ =

diag(1, 2, ..., p) then C0,2 may underestimate the largest variances and overestimate the

smallest variances. Taking five concentration steps can greatly reduce the bias of C5,2 if

the data is MVN, and the determinant |C5,2| < |C0,2| unless the attractor is equal to the

start. The attractor (T5,2, C5,2) is not affine equivariant but is resistant to gross outliers in

that they will initially be given weight zero if they are further than the median Euclidean

distance from the coordinatewise median. Gnanadesikan and Kettenring (1972, p. 94)

suggest an estimator similar to the attractor (T5,2, C5,2).
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The DD plot (Rousseeuw and Van Driessen 1999) is useful for detecting outliers.

This plots MDi vs. RDi where the RDi are Mahalanobis distances based on a resistant

estimator. The plotted points should cluster about the identity line if the data is MVN

or if the resistant estimator fails so that the resistant estimator is nearly the same as

the classical estimator. The resistant estimator will be useful if (T, C) ≈ (µ, cΣ) where

c > 0 since scaling by c affects the vertical labels of the RDi but not the shape of the

DD plot.

Examining a special outlier configuration may be useful for comparing the FMCD and

MBA concentration algorithms. Assume that the “clean” data is ellipsoidal and highly

correlated about the major axis a1. Suppose that there is a group of distant outliers in a

direction a0 orthogonal to a1, and that the subset of cn cases with the smallest distances

based on the start is not clean. Heuristically, if the sample mean of the cn cases with

the smallest distances is close enough to the clean cases, then after the concentration

step the cn cases will contain fewer outliers and more clean cases. After several steps the

attractor may be clean. When the contamination proportion is high (roughly larger than

the level given by Eq. (1.2)), every randomly chosen elemental set of p + 1 cases will be

contaminated with high probability. Hence the probability is high that the initial subset

of cn cases from each FMCD start will contain more outliers than the second MBA start

that uses the coordinatewise median. Thus the attractor from the second MBA start is

more likely to be clean than the best attractor from the K = 500 FMCD starts. Notice

that the DGK estimator can have considerable resistance to a group of distant outliers

that is placed on the major axis a1.
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Many high breakdown estimators of multivariate location and dispersion have been

proposed. Estimators such as the projection, S and minimum volume ellipsoid estimators

are difficult to compute and are typically approximated by a basic resampling estimator

that uses K ≤ 3000 starts. Such algorithm estimators are inconsistent and have a

breakdown value bounded above by K/n. See Hawkins and Olive (2002). Maronna and

Zamar (2002) compare their OGK estimator with the FMCD estimator and concluded

that they performed about equally well on several real data sets.

To compare (TMBA, CMBA) and (TFMCD, CFMCD), we made the MBA and FMCD

DD plots for 37 small data sets (several are available from the author’s website). On

most of the data sets the MBA and FMCD distances were highly correlated but for the

“modified wood data” (Rousseeuw and Leroy, 1987) and the “nasty data”, contributed

by Douglas M. Hawkins, the outliers could be detected from the FMCD DD plot but not

from the MBA DD plot. The FMCD covariance estimator was more likely to be singular

than the MBA estimator when some of the variables were categorical. For such data sets,

the robust estimators should be examined on the full data set and with the categorical

variables omitted. The DD plot of the MBA distances vs. the FMCD distances was often

V-shaped if one or more of the predictors needed to be transformed in order to make the

joint distribution of the predictors approximately elliptically contoured.

A small simulation study was also used to illustrate properties of concentration es-

timators. We computed the FMCD estimator with the Splus function cov.mcd which

allows up to 50 predictors. Initially the data sets had no outliers, and all 100 cases were

MVN with zero mean vector and Σ = diag(1,2, ..., p). We generated 500 runs of this

data with p = 4. The averaged diagonal elements of CMBA were 1.202, 2.260, 3.237 and
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4.204. (In the simulations, the scale factor in Eq. (2.1) appeared to be slightly too large

for small n but slowly converged to the correct factor as n increased.) The averaged

diagonal elements of CFMCD were 0.838, 1.697, 2.531, and 3.373. The approximation

1.2CFMCD ≈ Σ was good. For both matrices, all off diagonal elements had average

values less than 0.034 in magnitude.

Next data sets with γ = 40% outliers were generated. The last 60 cases were MVN

with zero mean vector and Σ = diag(1,2, ..., p). The first 40 cases were MVN with the

same Σ, but the p× 1 mean vector µ = (10, 10
√

2, ..., 10
√

p)T . We generated 500 runs of

this data using p = 4. Shown below are the averages of the estimators CMBA and CFMCD.

Notice that CFMCD performed extremely well while the CMBA entries were over inflated

by a factor of about 2 since the outliers inflate the scale factor MED(D2
i (TA, CA))/χ2

p,0.5.

Although the MBA estimator is biased, the outliers in the MBA DD plot will have large

RDi since CMBA ≈ 2CFMCD ≈ 2Σ.

MBA FMCD



2.120 −0.031 −0.069 0.004

−0.031 4.144 −0.111 −0.146

−0.069 −0.111 6.211 −0.419

−0.138 0.008 −0.419 7.933







0.980 0.002 −0.004 0.011

0.002 1.977 −0.008 −0.014

−0.004 −0.008 2.991 0.013

0.011 −0.014 0.013 3.862




When p is increased to 8, the cov.mcd estimator was usually not useful for detecting

the outliers for this type of contamination. Figure 1 shows that now the FMCD RDi are

highly correlated with the MDi. The DD plot based on the MBA estimator detects the

outliers. See Figure 2.
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We also compared the two estimators by simulating the outlier data for various values

of p, n and γ. For each configuration, twenty data sets were generated. The criterion was

the number of the runs where the minimum distance from the outliers was greater than

the maximum distance from the non-outliers. When this is the case, the outliers can be

separated from non-outliers in the DD plot with a horizontal line. As a benchmark, a

count of 17 or higher suggests that the estimator could usually handle the outlier con-

figuration. Table 1 displays the results. Notice that the count provides an approximate

lower bound on the number of runs where the best attractor was clean and that when-

ever the MBA count was less than twenty, the FMCD count was equal to zero. Table

1 also suggests that Eq. (1.2) does give a rough measure of the proportion of distant

outliers that the FMCD algorithm can handle. For n = 500, Eq. (1.2) overestimates the

proportion slightly for small p and underestimates the proportion slightly for larger p.

The comparison of the two estimators on real and simulated data suggests that for

some outlier configurations the MBA estimator is inferior to the FMCD estimator while

for other configurations the MBA estimator is superior. The discussion papers by Rocke

and Woodruff (2001) and by Hubert (2001) stress the fact that no one estimator can

dominate all others for every outlier configuration. These papers and Wisnowski, Simp-

son, and Montgomery (2002) give outlier configurations that can cause problems for the

FMCD estimator. The MBA estimator is most vulnerable to outliers that lie inside the

hypersphere based on the median Euclidean distance from the coordinatewise median.

Now we give some rules of thumb for using the ideas presented in this paper to

analyze multivariate data. First, make a scatterplot matrix of the predictors if p is
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small. Transformations may be needed if strong nonlinearities or outliers are present in

the marginal plots. Next, make a scatterplot matrix of the Mahalanobis distances from

several estimators including the FMCD, MBA and classical estimators. Since robust

estimators will often fail if there are three or more groups of data, a cluster analysis may

be needed. Suppose that a group of unexplained outliers is detected (e.g. the outliers

are not recording errors and are not impossible values). Run the classical analysis on the

full data set, the classical analysis with the outliers deleted, and a weighted analysis with

the outliers given weight zero. Perform the usual checks on the classical analysis with

the outliers deleted to show that the classical analysis is appropriate for the bulk of the

data. A DD plot from the weighted analysis may be useful for showing the proportion

and severity of the outliers in the data.

The ideas in this paper can also be used to improve existing algorithms. Adding the

classical estimator as a start to the FMCD estimator should greatly stabilize the estimator

on clean data with a cost of about a 1% increase in computing time. The Maronna and

Zamar (2002) OGK estimator can probably be improved with concentration. A simple

modification for the MBA estimator would be to add additional starts. For example, let

T0,3 be the coordinatewise median and let C0,3 = diag(k(MAD(X1))
2, ..., k(MAD(Xp))

2)

where MAD(Xi) is the median absolute deviation of the ith variable Xi and k = 1 or

k = (1.483)2. Instead of hyperspheres, this start generates hyperellipsoids with axes

parallel to the coordinate axes. It may be useful to separate starts that result in affine

equivariant attractors from starts that do not. For example, the MBA estimator is

permutation invariant but not affine equivariant. Wang and Raftery (2002) discuss the

merits of affine and non-affine equivariant estimators.
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Finally, suppose that the researcher desires to plug in a robust estimator for the

classical estimator. A good choice would be to create an adaptive estimator using the

He and Wang (1996) cross–checking technique. First cross–check the MBA estimator

and the classical estimator. Then cross–check the result with the FMCD estimator. Fi-

nally, cross–check the result with another good estimator such as the OGK estimator.

The resulting estimator may have good resistance properties and may be asymptotically

equivalent to the classical estimator when the data follows a multivariate normal distrib-

ution. Again, make a scatterplot matrix of the distances from the component estimators

to recover information that might be lost by only using the final estimator.

The author’s website (http://www.math.siu.edu/olive) contains several interesting

data sets as well as a file rpack.txt that contains several Splus functions. The function

covmba produces the MBA estimator, and the function ddcomp produces the MBA and

FMCD DD plots. The function concmv illustrates that the initial median ball sphere may

contain a large proportion of outliers while the attractor is clean when p = 2. The cn

cases with the smallest distances are highlighted at each concentration step. The outliers

are placed on the borderline of the MBA screen so that the MBA estimator wins the

“tug–of–war” in about nine out of ten runs.
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Figure 1: The FMCD Estimator Failed
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Figure 2: The Outliers are Large in the MBA DD Plot
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Table 1: Number of 20 runs where outliers had larger distances than non–outliers.

p n γ MBA Count FMCD Count

3 100 0.49 20 17

4 20 0.49 18 0

4 200 0.49 20 20

8 500 0.47 20 0

8 500 0.40 20 20

9 500 0.43 20 1

9 500 0.36 20 15

10 100 0.49 19 0

10 100 0.30 20 20

10 500 0.47 20 0

10 500 0.40 20 7

15 500 0.30 20 15

20 100 0.49 12 0

20 100 0.30 20 0

20 500 0.23 20 20

40 500 0.13 20 20

50 400 0.40 19 0

50 500 0.10 20 20

100 700 0.30 17 NA

100 4000 0.40 18 NA
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