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Abstract

This paper gives three easily computed highly outlier resistant robust
√

n consistent estimators of multivariate

location and dispersion for elliptically contoured distributions with fourth moments. When the data is from a

multivariate normal distribution, the dispersion estimators are also consistent estimators of the covariance matrix.

Outlier detection and robust canonical correlation analysis are presented as applications.
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1. Introduction

This paper gives three robust estimators of multivariate location and dispersion and then uses one of the estimators

to create a robust method of canonical correlation analysis. The FCH estimator is so named because it is fast,

consistent and highly outlier resistant. The reweighted FCH (RFCH) estimator is the second estimator while the

RMVN estimator is so named because it is a reweighted FCH estimator that can give useful estimates of the

population covariance matrix when the data is from a multivariate normal distribution, even when certain types of

outliers are present. This claim will be illustrated in Section 3.1.

Creating a robust estimator and applying it to create a robust method of canonical correlation analysis is not new.

See Zhang (2011) and Alkenani and Yu (2012) for references. Typically highly outlier resistant estimators that

are backed by theory are impractical to compute while the practical algorithm estimator used to approximate the

impractical estimator is not backed by theory. For example, the theoretical robust projection pursuit estimator,

discussed in Section 2.4, may not be possible to compute since it is defined on all possible projections. Practical

robust projection pursuit algorithms (e.g., that use n randomly chosen projections) typically are not backed by

large sample theory. Similarly, the impractical Rousseeuw (1984) minimum covariance determinant (MCD) esti-

mator was shown to be
√

n consistent by Cator and Lopuhaä (2010), but no large sample theory was provided by

Rousseeuw and Van Driessen (1999) for the Fast-MCD (FMCD) estimator. The practical FCH, RFCH and RMVN

estimators have been shown to be
√

n consistent by Olive and Hawkins (2010). These three estimators satisfy

Theorem 7.1 in Olive (2012), hence replacing the classical estimator by the RMVN estimator to create a robust

method of canonical correlation analysis results in consistent estimators of the population canonical correlations

on a large class of elliptically contoured distributions.

A multivariate location and dispersion (MLD) model is a joint distribution for a p × 1 random vector x that is

completely specified by a p × 1 population location vector µ and a p × p symmetric positive definite population

dispersion matrix Σ. The observations xi for i = 1, ..., n are collected in an n × p matrix X with n rows xT
1 , ..., x

T
n .

An important MLD model is the elliptically contoured ECp (µ,Σ, g) distribution with probability density function

f (z) = kp|Σ|−1/2g[(z − µ)T
Σ
−1(z − µ)]

where z is a p × 1 dummy vector, kp > 0 is some constant and g is some known function. The multivariate normal

(MVN) Np(µ,Σ) distribution is a special case, and x is “spherical about µ” if x has an ECp (µ, cIp, g) distribution

where c > 0 is some constant and Ip is the p × p identity matrix. Many classical procedures originally meant for

the MVN distribution are semiparametric in that the procedures also perform well on a much larger class of EC

distributions. See Olive (2012) for examples and references.

For EC distributions, let constants d > 0 and cX > 0. Then a dispersion estimator estimates d Σ, and a covariance

matrix estimator estimates the covariance matrix Cov(x) = cXΣ. Notice that a covariance matrix estimator is also a

dispersion estimator. For multivariate analysis, the classical estimator (x,S) of (E(x),Cov(x)) is the sample mean

and sample covariance matrix where

x =
1

n

n
∑

i=1

xi and S =
1

n − 1

n
∑

i=1

(xi − x)(xi − x)T. (1)

The following assumptions will be used frequently.

Assumptions (E1): i) The x1, ..., xn are iid ECp (µ,Σ, g) with nonsingular Cov(xi). ii) Assume g is continuously

differentiable with finite 4th moment.

Let the p×1 column vector T (X) be a multivariate location estimator, and let the p× p symmetric positive definite

matrix C(X) be a dispersion estimator. The notation (T,C) will be often be used, suppressing X. Then the ith



squared sample Mahalanobis distance is the scalar

D2
i = D2

i (T (X),C(X)) = (xi − T (X))T C−1(X)(xi − T (X)) (2)

for each observation xi. Notice that the Euclidean distance of xi from the estimate of center T (X) is Di(T (X), Ip).

The classical Mahalanobis distance uses (T,C) = (x,S). The population squared Mahalanobis distance

U ≡ D2 = D2(µ,Σ) = (x − µ)T
Σ
−1(x − µ). (3)

For EC distributions, Johnson (1987, pp. 107-108) states that U has density

h(u) =
πp/2

Γ(p/2)
kpup/2−1g(u) (4)

for u > 0.

Section 2 describes the FCH, RFCH, and RMVN estimators and some competitors. Several methods of canonical

correlation analysis are also studied. Section 3 presents simulation studies.

2. Method

The FCH, RFCH, and RMVN estimators are described along with some important competitors such as FMCD.

Section 2.1 describes the FCH estimator and some competitors. Section 2.2 uses RMVN to estimate (µ,Σ) when

the data are Np(µ,Σ) even when certain types of outliers are present. As an application, Sections 2.3 and 2.4

describe methods for canonical correlation analysis. Zhang (2011) is followed closely.

2.1 Practical Robust Estimators

Many of the most used practical “robust estimators” generate a sequence of K trial fits called attractors: (T1,C1), ...,

(TK ,CK). Then some criterion is evaluated and the attractor (TA,CA) that minimizes the criterion is used in the

final estimator. One way to obtain attractors is to generate trial fits called starts, and then use the following

concentration technique. Let (T0, j,C0, j) be the jth start and compute all n Mahalanobis distances Di(T0, j,C0, j).

At the next iteration, the classical estimator (T1, j,C1, j) is computed from the cn ≈ n/2 cases corresponding

to the smallest distances. This iteration can be continued for k steps resulting in the sequence of estimators

(T0, j,C0, j), (T1, j,C1, j), ..., (Tk, j ,Ck, j). Then (Tk, j,Ck, j) = (xk, j,Sk, j) is the jth attractor. The quantities cn and k

depend on the concentration estimator. The Fast-MCD estimator use the classical estimator applied to K = 500

randomly drawn elemental sets of p+1 cases as starts. Then the attractor with the smallest determinant det(Ck, j) is

used in the final estimator. Hawkins and Olive (1999) have a similar estimator. These are the widely used elemental

concentration algorithms. For the estimators in the following paragraph, k = 5 concentration steps are used, and

cn = (n + 1)/2 for odd n since the distances that are less than or equal to the median distance are used.

The FCH and Olive (2004) median ball algorithm (MBA) estimators use the same two attractors. The first attractor

is the Devlin, Gnanadesikan and Kettenring (1981) DGK estimator that uses the classical estimator as the start.

The second attractor is the median ball (MB) estimator that uses the classical estimator computed from the cases

with Di(MED(X), Ip) ≤ MED(Di(MED(X), Ip)) as a start where MED(X) is the coordinatewise median. Thus

the start (T0,M ,C0,M) = (x0,M,S0,M) is the classical estimator applied after trimming M% of the cases furthest in

Euclidean distance from MED(X) for M ∈ {0, 50}. The Mth attractor is (Tk,M ,Ck,M) = (xk,M ,Sk,M ). The median

ball estimator (xk,50,Sk,50) is also the attractor of (T−1,50,C−1,50) = (MED(X), Ip). The MBA estimator uses the

attractor with the smallest determinant as does the FCH estimator if ‖xk,0 −MED(X)‖ ≤ MED(Di(MED(X, Ip)). If

the DGK location estimator xk,0 has a greater Euclidean distance from MED(X) than half the data, then FCH uses

the median ball attractor. Let (TA,CA) be the attractor used. Then the estimator (TF ,CF) takes TF = TA and

CF =
MED(D2

i
(TA,CA))

χ2
p,0.5

CA (5)

where χ2
p,0.5

is the 50th percentile of a chi–square distribution with p degrees of freedom and F is the MBA or FCH

estimator.

Olive (2008,
∮

10.7) and Olive and Hawkins (2010) prove that the MBA and FCH estimators are highly outlier

resistant
√

n consistent estimators of (µ, d Σ) when (E1) holds where d = 1 for MVN data. Also CA and CMCD are√
n consistent estimators of dMCDΣwhere (TMCD ,CMCD) is the minimum covariance determinant (MCD) estimator.

The proofs use two results. First, Lopuhaä (1999) shows that if a start (T,C) is a consistent estimator of (µ, sΣ),

then the attractor is a consistent estimator of (µ, aΣ) where a, s > 0 are some constants. Also the constant a does

not depend on s, and the attractor and the start have the same rate. If the start is inconsistent, then so is the attractor.



Second, the proofs need the result from Butler, Davies and Jhun (1993) and Cator and Lopuhaä (2010) that the

MCD estimator is consistent and high breakdown (HB).

2.2 A practical robust covariance matrix estimator

This subsection presents the RFCH and RMVN estimators. Since the FCH estimator is a
√

n consistent estimator,

RFCH and RMVN are, too, by Lopuhaä (1999). See Olive and Hawkins (2010).

It is important to note that if (T,C) is a
√

n consistent estimator of (µ, d Σ), then

D2(T,C) = (x − T )T C−1(x − T ) = (x − µ + µ − T )T [C−1 − d−1
Σ
−1 + d−1

Σ
−1](x − µ + µ − T )

= d−1D2(µ,Σ) + OP(n−1/2).

Thus the sample percentiles of D2
i
(T,C) are consistent estimators of the percentiles of d−1D2(µ,Σ). For MVN data,

D2(µ,Σ) ∼ χ2
p. Similarly, suppose (TA,CA) is a consistent estimator of (µ, d Σ), and that P(U ≤ uα) = α where U

is given by (3). Then the scaling in (5) makes CF a consistent estimator of dFΣ where dF = u0.5/χ
2
p,0.5

, and dF = 1

for MVN data.

The RFCH estimator uses two reweighting steps. Let (µ̂1, Σ̃1) be the classical estimator applied to the n1 cases

with D2
i
(TFCH ,CFCH ) ≤ χ2

p,0.975
, and let

Σ̂1 =
MED(D2

i
(µ̂1, Σ̃1))

χ2
p,0.5

Σ̃1.

Then let (TRFCH , Σ̃2) be the classical estimator applied to the cases with D2
i
(µ̂1, Σ̂1) ≤ χ2

p,0.975
, and let

CRFCH =
MED(D2

i
(TRFCH , Σ̃2))

χ2
p,0.5

Σ̃2.

The RMVN estimator uses (µ̂1, Σ̃1) and n1 as above. Let

q1 = min{0.5(0.975)n/n1, 0.995}, and

Σ̂1 =
MED(D2

i
(µ̂1, Σ̃1))

χ2
p,q1

Σ̃1.

Then let (TRMVN , Σ̃2) be the classical estimator applied to the n2 cases with

D2
i
(µ̂1, Σ̂1)) ≤ χ2

p,0.975
. Let q2 = min{0.5(0.975)n/n2, 0.995}, and

CRMVN =
MED(D2

i
(TRMVN , Σ̃2))

χ2
p,q2

Σ̃2.

Since there are several estimators under consideration, we will use the notation dE where E stands for the estimator,

e.g., RFCH. Then the RFCH and RMVN estimators are highly outlier resistant
√

n consistent estimators of (µ, dEΣ)

when (E1) holds with dE = u0.5/χ
2
p,0.5

and dE = 1 for MVN data.

If the bulk of the data is Np(µ,Σ), the RMVN estimator can give useful estimates of (µ,Σ) for certain types of

outlier configurations where FCH and RFCH estimate (µ, dEΣ) for dE > 1. This claim will be illustrated in Section

3.1. Also, let 0 ≤ γ < 0.5 be the outlier proportion. If γ = 0, then ni/n
P→ 0.975 and qi

P→ 0.5. If γ > 0, suppose

the outlier configuration is such that the D2
i
(TFCH ,CFCH ) are roughly χ2

p for the clean cases, and the outliers have

larger D2
i

than the clean cases. Then MED(D2
i
) ≈ χ2

p,q where q = 0.5/(1 − γ). For example, if n = 100 and

γ = 0.4, then there are 60 clean cases and the q = 5/6 quantile χ2
p,q is being estimated instead of χ2

p,0.5
. Now

ni ≈ n(1− γ)0.975, and qi estimates q. Thus CRMVN ≈ Σ. Of course consistency cannot generally be claimed when

outliers are present.

2.3. Canonical Correlation Analysis

Canonical correlation analysis (CCA) is a multivariate statistical method to identify and quantify the association

between two sets of variables. It focuses on the correlation between a linear combination of the variables in one

set and a linear combination of the variables in another set. First, a pair of linear combinations is determined

by maximizing the correlation. Next, a pair of linear combinations uncorrelated to previously selected pair is

determined by maximizing the correlation, and so on. The pairs of combinations are called the canonical variables

(canonical variates), and their correlations are called canonical correlations.



Denote the first set of variables by the p-dimensional variable x and the second set of variables by the q-dimensional

variable y.

x = [X1, X2 , · · · Xp]′ and y = [Y1,Y2, · · · Yq]′.

Without loss of generality, assume p ≤ q. For the random vectors x and y, let

E(x) = µ1 and E(y) = µ2,

Cov(x) = Σ11 and Cov(y) = Σ22,

Cov(x, y) = Σ12 = Σ
′
21.

Considering x and y jointly in a random vector W,

W
((p+q)×1)

=

[

x

y

]

,

with mean vector

µ
((p+q)×1)

= E(W) =

[

µ1

µ2

]

and covariance matrix

Σ
((p+q)×(p+q))

= E
[

(W − µ)(W − µ)′
]

=

[

Σ11 Σ12

Σ21 Σ22

]

. (6)

Then the canonical coefficients of the first pair of linear combination is determined by

(α1,β1) = arg max
a,b

Corr(a′x, b′y) (7)

with the restriction Cov(a′x) = 1, Cov(b′y) = 1 and Cov(a′x, b′y) = 0. So the first pair of canonical variates is the

pair of the linear combinations

U1 = α
′
1x and V1 = β

′
1y

where Cov(U1) = 1, Cov(V1) = 1, and Cov(U1,V1) = 0. Higher order kth canonical vectors is then recursively

defined by

(αk,βk) = arg max
a,b

Corr(a′x, b′y) (8)

with the restriction Cov(a′x) = 1, Cov(b′y) = 1, Cov(a′x, b′y) = 0 and (a′x, b′y) is uncorrelated with all previous

selected canonical variates (Ui,Vi) where 1 ≤ i ≤ k−1. The canonical correlation ρk between the canonical variates

of the kth pair is

ρk = Corr(Uk,Vk).

Johnson and Wichern (1998, ch. 10) gives a simple solution to compute the canonical variates. The kth pair of

canonical variates, k = 1, 2, ..., p can be computed as

Uk = e′kΣ
−1/2

11
x Vk = f ′kΣ

−1/2

22
y (9)

and

Corr(Uk,Vk) = ρk

where ρ2
1
≥ ρ2

2
≥ · · · ≥ ρ2

p are the eigenvalues of the matrix

Σ
−1/2

11
Σ12Σ

−1
22Σ21Σ

−1/2

11

with associated eigenvectors e1, e2, ..., ep. Moreover, ρ2
1
≥ ρ2

2
≥ · · · ≥ ρ2

p are also the p largest eigenvalues of

Σ
−1/2

22
Σ21Σ

−1
11Σ12Σ

−1/2

22

with associated eigenvectors f 1, f 2, ..., f p.

When the original variables to be studied by CCA have quite different measure scales or standard deviations, they

usually will be standardized for better analysis and interpretation before computing the canonical variates. Let

σii = Cov(Xi) and νii = Cov(Yi). Further let V11 = diag(σ11, σ22, ..., σpp ) and V22 = diag(ν11, ν22, ..., νqq). Then

the standardized random vectors are

zx = V
−1/2

11
(x − µx) and zy = V

−1/2

22
(y − µy).



Consequently the canonical variates standardized vectors, zx and zy have the form

U∗k = (α∗k)′ zx = e
′

kρ
−1/2

11
zx

and

V∗k = (β∗k)′ zy = f
′

kρ
−1/2

22
zy

where Cov(zx) = ρ11, Cov(zy) = ρ22, Cov(zx, zy) = ρ12 = ρ
′

21, and ek and f k are the eigenvectors of ρ
−1/2

11
ρ12ρ

−1
22ρ21ρ

−1/2

11

and ρ
−1/2

22
ρ21ρ

−1
11
ρ12ρ

−1/2

22
respectively. The canonical correlations are given by

Corr(U∗k ,V
∗
k ) = ρ∗k,

where ρ∗21 ≥ ρ
∗2
2 ≥ · · · ≥ ρ

∗2
p are the eigenvalues of the matrices of both ρ

−1/2

11
ρ12ρ

−1
22ρ21ρ

−1/2

11
and ρ

−1/2

22
ρ21ρ

−1
11ρ12ρ

−1/2

22
.

Note that in accordance with the definition of the canonical variate,

(α∗k,β
∗
k) = arg max

a∗ ,b
∗

Corr[(a∗)′ zx, (b∗)′ zy]

= arg max
a∗ ,b

∗
Corr
(

(a′V
−1/2

11
)x, (b′V

−1/2

22
)y
)

= arg max
a,b

Corr(a′x, b′y)

= (V
−1/2

11
a,V

−1/2

22
b). (10)

Therefore, unlike the principal component analysis, CCA has an equivariance property since the canonical corre-

lations are unchanged by the standardization. That is, ρk ≡ ρ∗k for all 1 ≤ k ≤ p.

Canonical variates are generally artificial and have no physical meaning. They are latent variables analogous to

factors obtained in factor analysis. They often are looked as subject-matter variables. If the original variables are

standardized to have zero means and unit variances, then the standardized canonical coefficients are interpreted in

a similar manner to standardized regression coefficients. Being increased by one for a standardized variable is the

same as being increased by one standard deviation for the corresponding original variable.

Let A
(p×p)
= [α1,α2, · · · ,αp]′ and B

(p×p)
= [β1,β2, · · · ,βp]′ so that the vectors of canonical variates are

U
(p×1)
= Ax and V

(q×1)
= By.

From (9), A = E′Σ−1/2

11
and B = F′Σ−1/2

22
where E = [e1, e2, · · · , ep] and F = [ f1, f 2, · · · , f q]. So

Cov(U) = Cov(Ax) = AΣ11 A′ = E′Σ−1/2

11
Σ11Σ

−1/2

11
E = I.

Likewise,

Cov(V) = Cov(By) = I.

Decompose Σ11 to get Σ11 = P1Λ1 P′1. It follows that

U = Ax = E′Σ
−1/2

11
x = E′P1Λ

−1/2

1
P′1 x.

Hence, the canonical variates vector U can be geometrically interpreted as the three-step transformation as follows.

A similar geometrical interpretation can be made to V.

(i) A transformation from x to uncorrelated standardized principal components, Λ
−1/2

1
P′1 x;

(ii) an orthogonal rotation P1;

(iii) another orthogonal rotation E′.

The canonical coefficients are estimated by using sample covariance matrix instead of population covariance ma-

trix. Denote the data matrix X = [X1, X2, · · · , Xp] and Y = [Y1,Y2, · · · ,Yq]. Equation (9) becomes

Ûk = ê′kS
−1/2

11
X V̂k = f̂

′
kS
−1/2

22
Y (11)

where êk, for 0 ≤ k ≤ p, is an eigenvector of

S
−1/2

11
S12S−1

22 S21S
−1/2

11



and f̂ k, for 0 ≤ k ≤ p, is an eigenvector of

S
−1/2

22
S21S−1

11 S12S
−1/2

22
.

Eigenvalues r2
1
, r2

2
, ..., r2

p of S
−1/2

11
S12S−1

22 S21S
−1/2

11
are the squared sample canonical correlations. Muirhead and

Waternaux (1980) shows that if the population canonical correlation coefficients are distinct and the underlying

population distribution has finite fourth order cumulant, then the limit joint distribution of
√

n(r2
i
− ρ2

i
), for i =

1, · · · , p, is p-variate normal. In particular, if the data are drawn from an elliptical distribution with kurtosis 3κ,

then the limiting joint distribution of

µi =
√

n
r2

i
− ρ2

i

2ρi(1 − ρ2
i
)
, i = 1, · · · , p

is N(0, (κ + 1)Ip). As a more special case, when the data are drawn from multivariate normal distribution (κ = 0),

the ui’s are asymptotically iid with a standard normal distribution.

However, these asymptotic results are nonrobust. The outliers have great distorting effect on the classical sample

covariance matrix since the eigenvalues and eigenvectors are very sensitive to the presence of outliers. Replacing

the classical sample covariance matrix by a robust dispersion estimator, such as RMVN, and then computing the

eigenvalues and eigenvectors regularly from the robust dispersion estimator is an approach not only intuitive but

also effective for a robust CCA. Later, a simulation will be implemented to compare the classical CCA and robust

CCA based on Fast-MCD and RMVN dispersion estimators. The next section discusses the projection pursuit

(PP) approach. The idea of the PP approach is to robustify the correlation measure in (7) rather than robustify the

classical dispersion matrix.

2.4. Robust Canonical Correlation Analysis using Projection Pursuit

One has learned that the PCA can be looked as a PP-technique since it searches for the directions that have

maximum variances. The classical PCA PP-technique uses the variance function as a projection index and robust

PCA uses a robust scale. A similar idea could be applied for canonical correlation analysis. CCA can also be

seen as a PP-technique since it seeks for two directions a and b in which the correlation of two projections of the

variables x and y, corr(a′x,b′y), is maximized. The correlation measure in this case is the projection index. The

robust PP-technique substitutes the classical correlation measure with a robust estimator of the correlation called

robust projection index (RPI). Derivation from a robust covariance matrix of two univariate variables is a common

approach to obtain a RPI. RMVN, Fast-MCD, and M-estimator robust projection indices will be compared in a

Monte Carlo study in Section 3.3. Muirhead and Waternaux (1980) provided a limit distribution for classical

CCA when the underlying population distribution has finite fourth moment. However, so far there is still no

asymptotic theory of RPP available since it is very difficult to work out the properties of the robust CCA estimator

analytically. Only simulation studies are conducted to estimate those properties. Branco, Croux, Filzmoser, and

Oliveira (2005) proposed an algorithm to perform projection pursuit CCA without the backup of any rigorous

theories. The algorithm starts by estimating Σ using a robust estimator. Then Σ is partitioned as

Σ
(p+q)×(p+q)

=





















Σ11
(p×p)

Σ12
(p×q)

Σ21
(q×p)

Σ22
(q×q)





















.

Performing a spectral decomposition of Σ11 and Σ22,

Σ11 = AMA′ and Σ22 = BNB′,

where M, N are diagonal and A, B are orthogonal matrices. Transform the original data x and y into

(x∗, y∗) =
(

M−1/2 A′x,N−1/2B′y
)

.

Note that

arg max
a∗ ,b

∗
PI[(a∗)′x∗, (b∗)′y∗] = arg max

a∗ ,b
∗

PI
[

(a∗)′M−1/2 A′x, (b∗)′N−1/2B′y
]

= arg max
a∗ ,b

∗
PI

[

(

AM−1/2a∗
)′

x,
(

BN−1/2b∗
)′

y

]

= arg max
a,b

PI[a′x, b′y].



where PI is a robust projection index. So the robust CCA has the equivariance property, meaning new data (x∗, y∗)

have the same canonical correlation as the original data (x, y), and their canonical coefficients satisfy

ai = AM−1/2a∗i and bi = BN−1/2b∗i ,

for i = 1, · · · , p. Note that for any a and b,

Var(a′x∗) = a′Var(x)a = a′Var(M−1/2 A′x)a

= a′(M−1/2 A) Var(x)(A′M−1/2)a

= a′(M−1/2 A′)(AMA′)AM−1/2)a

= a′a.

Similarly, Var(b′y∗) = b′b. So to find the first canonical coefficients (a∗
1
, b∗1), the projection index PI(a′x∗, b′y∗)

must be maximized subject to a′a = 1 and b′b = 1. One can write a and b in polar coordinates with norm 1 so

that the constraint a′a = 1 and b′b = 1 can be satisfied automatically. See Branco, Croux, Filzmoser and Oliveira

(2005) for more details. The projection index is then maximized, over the polar angle vectors (θ1, · · · , θp−1), by

a standard maximization routine, mlminb in R. Once two angle vectors are determined by mlminb, they will be

converted back to (a∗
1
, b∗1).

Now assume that the first k − 1 pairs of canonical coefficients are already obtained. To get kth pair (ak, bk),

the projection index PI(a′x∗, b′y∗) must be maximized subject to a′a = 1, b′b = 1, Cov(ak x∗, aix
∗) = 0, and

Cov(bky∗, bi y
∗) = 0 for i = 1, · · · , (k − 1). Note that

Cov(a′kx∗, a′i x
∗) = a′kCov(x∗, x∗)ai

= a′kIai = a′k ai

Likewise, Cov(bky∗, biy
∗) = b′k bi. Hence (ak, bk) can be obtained by maximizing the RPI in two subspaces that

are orthogonal to a1, · · · , ak−1 and b1, · · · , bk−1 respectively. Using Gram-Schmidt process, one can construct two

orthogonal matrices U and V such that

U = [a∗1, · · · , a
∗
k−1 |Û] and V = [b∗1, · · · , b

∗
k−1 |V̂],

where Û and V̂ are orthogonal bases of the subspaces that are orthogonal to a1, · · · , ak−1 and b1, · · · , bk−1 respec-

tively. Next project the original data to these two subspaces, one gets

(x∗∗, y∗∗) = (Û
′
x∗, V̂

′
y∗).

Now one can obtain (a∗∗, b∗∗) with the data (x∗∗, y∗∗) by maximizing PI(a′x∗∗, b′y∗∗) subject to a′a = 1 and

b′b = 1. After (a∗∗, b∗∗) is determined, it is transformed back to get (a∗
k
, b∗k) by

a∗k = Ûa∗∗ and b∗k = V̂a∗∗.

And then

ak = AM−1/2a∗k and bk = BN−1/2 b∗k.

The k-th canonical correlation is estimated by ρk = PI(a′
k
x, b′ky) for 1 ≤ k ≤ p. Once the k-th canonical covariate

is obtained, a robust covariance matrix with dimension 2 × 2 is computed based on two univariate variables a′
k
x

and b′k y. The off-diagonal entry of this matrix is then taken to be the estimator of ρk.

One obvious advantage of projecting onto subspaces (Û, V̂) is their lower dimensions. The maximization in a lower

dimensional space can be much more computationally efficient. Another advantage is that the canonical coefficient

a∗
k

and b∗k are orthogonal to all previously found a∗
i

and b∗i respectively so that the constraint of PI maximization is

automatically satisfied.

3. Results

Examples are given and three simulation studies are done in this section. The first simulation shows that the RMVN

estimator is estimating (µ,Σ) when the bulk of the data comes from a Np(µ,Σ) distribution even when certain types

of outliers are present. The second simulation compares the outlier resistance of five robust MLD estimators, while

the third simulation compares several methods of CCA.

3.1. RMVN Estimator

Simulations suggested (TRMVN ,CRMVN ) gives useful estimates of (µ,Σ) for a variety of outlier configurations. The

R/Splus estimator cov.mcd is an implementation of the Rousseeuw and Van Driessen (1999) FMCD estimator



which is also supposed to be a covariance matrix estimator for MVN data. Shown below are the averages, using 20

runs and n = 1000, of the dispersion matrices when the bulk of the data are iid N4(0,Σ) where Σ = diag(1, 2, 3, 4).

The first pair of matrices used γ = 0. Here the FCH, RFCH and RMVN estimators are
√

n consistent estimators

of Σ, while CFMCD seems to be approximately unbiased for 0.94Σ.

RMVN FMCD

0.9963 0.0137 0.0020 -0.0007 0.9309 0.0169 0.0112 0.0001

0.0137 2.0123 -0.0011 0.0291 0.0169 1.8845 -0.0034 0.0219

0.0020 -0.0011 2.9841 0.0032 0.0112 -0.0034 2.8026 0.0103

-0.0007 0.0291 0.0032 3.9942 0.0001 0.0219 0.0103 3.7520

Next the data had γ = 0.4 and the outliers had x ∼ N4((0, 0, 0, 15)T , 0.0001I4), a near point mass at the major axis.

FCH and RFCH estimated 1.93Σ while RMVN estimated Σ. The FMCD estimator failed to estimate d Σ. Note

that χ2
4,5/6
/χ2

4,0.5
= 1.9276.

RMVN FMCD

0.9883 -0.0226 -0.0074 0.0214 0.2271 -0.0157 0.0021 0.0492

-0.0226 1.9642 -0.0216 -0.0018 -0.0157 0.4345 -0.0140 0.0130

-0.0074 -0.0216 3.0532 0.0072 0.0021 -0.0140 0.6732 0.1791

0.0214 -0.0018 0.0072 3.8699 0.0492 0.0130 0.1791 55.6480

Next the data had γ = 0.4 and the outliers had x ∼ N4((15, 15, 15, 15)T ,Σ), a mean shift with the same covariance

matrix as the clean cases. Rocke and Woodruff (1996) suggest that outliers with mean shift are hard to detect.

Again FCH and RFCH estimated 1.93Σ while RMVN and FMCD estimated Σ.

RMVN FMCD

1.0130 0.0075 0.0055 -0.0264 1.0241 0.0020 0.0026 -0.0249

0.0075 1.9745 -0.0217 -0.0159 0.0020 1.9995 -0.0337 -0.0167

0.0055 -0.0217 2.8701 0.0042 0.0026 -0.0337 2.9310 0.0052

-0.0264 -0.0159 0.0042 3.9760 -0.0249 -0.0167 0.0052 4.0456

3.2. Outlier Resistance

A simple simulation for outlier resistance is to generate outliers and count the percentage of times the minimum

distance of the outliers is larger than the maximum distance of the clean cases. Then the outliers can be separated

from the clean cases with a horizontal line in the DD plot of classical distances versus robust distances. The simu-

lation used 100 runs and γ was the percentage of outliers. The clean cases were MVN: x ∼ Np(0, diag(1, 2, ..., p)).

Outlier types were 1) x ∼ Np((0, ..., 0, pm)T , 0.0001Ip), a near point mass at the major axis, and 2) the mean shift

x ∼ Np(pm1, diag(1, 2, ..., p)) where 1 = (1, ..., 1)T . The near point mass and mean shift outlier configurations are

often used in the literature.

Table 1 shows some results for the FCH, RMVN, the Maronna and Zamar (2002) OGK, FMCD and MB estimators.

Smaller values of pm and larger values of γ suggest greater sensitivity to outliers. The inconsistent but HB MB

estimator is useful for detecting outliers. The OGK and FMCD estimators can outperform the MB, FCH and

RMVN estimators especially if p and γ are small. For fixed p, as γ approaches 0.5, the FCH, RMVN and MB

estimators appear to have greater sensitivity. The following example illustrates the DD plot.

Example. Buxton (1920) gives various measurements on 87 men including height, head length, nasal height,

bigonal breadth and cephalic index. Five heights were recorded to be about 19mm with the true heights recorded

under head length. These cases are massive outliers. Figure 1 shows the DD plot with the identity line added as

a visual aid. Lines corresponding to the 95th sample percentiles of the classical and robust RMVN distances are

also shown.

Another simulation was done to check that the RMVN estimator estimates Σ for outlier configurations 1) and 2)

used in Table 1 if γ = 0.4. On clean MVN data, n ≥ 20p gave good results for 2 ≤ p ≤ 100. For the contaminated

MVN data, the first nγ cases were outliers, and the classical estimator Sc was computed on the clean cases. The

diagonal elements of Sc and Σ̂RMVN should both be estimating (1, 2, ..., p)T . The average diagonal elements of both

matrices were computed for 20 runs, and the criterion Q was the sum of the absolute differences of the p average

diagonal elements. Since γ = 0.4 and the initial subsets for the RMVN estimator are half sets, the simulations used
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Figure 1: DD plot for Buxton data

Table 1: Percentage of times outliers were detected

p γ type n pm FCH RMVN OGK FMCD MB

5 .25 1 100 10 35 36 0 0 63

5 .25 1 100 20 100 100 0 0 100

5 .49 1 100 20 100 99 0 0 100

5 .40 2 100 10 100 100 0 100 100

5 .47 2 100 10 98 98 0 1 100

20 .2 1 100 30 0 0 0 0 50

20 .2 1 100 50 100 100 0 0 100

20 .2 1 100 100 100 100 29 0 100

20 .2 1 100 4000 100 100 100 2 100

20 .2 1 100 10000 100 100 100 94 100

20 .05 2 100 5 83 91 98 82 86

20 .25 2 100 5 54 61 0 50 71

20 .4 2 100 10 50 50 0 0 100

20 .4 2 100 20 99 99 6 0 100

50 .4 1 200 80 88 84 0 0 88

50 .4 2 200 20 9 9 0 0 100

50 .4 2 200 40 100 100 100 0 100

Table 2: Estimation of Σ with γ = 0.4, n = 35p

p type n pm Q

5 1 175 16 0.153

5 2 175 6 0.213

10 1 350 21 0.326

10 2 350 6 0.326

15 1 525 26 0.856

15 2 525 7 0.675

20 1 700 33 0.798

20 2 700 8 0.792

25 1 875 39 1.014

25 2 875 10 1.867
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Figure 2: RMVN DD Plot for mmreg Data

n = 35p. The values of Q shown in Table 2 correspond to good estimation of the diagonal elements. Values of pm

slightly smaller than the tabled values led to poor estimation of the diagonal elements.

3.3. Comparing Eight CCA Methods

Two simulation studies for Sections 2.3 and 2.4 are conducted to compare eight different CCA methods, based on:

1. the classical sample covariance matrix,

2. FMCD covariance matrix estimator,

3. M covariance matrix estimator,

4. RMVN covariance matrix estimator,

5. PP-C (using the classical correlation function as the PI),

6. PP-FMCD (using the FMCD correlation estimator as the PI),

7. PP-M (using the M correlation estimator as the PI),

8. PP-RMVN (using the RMVN correlation estimator as the PI).

Simulation 1

UCLA: Academic Technology Services (2011) provides a data analysis example of CCA at

http://www.ats.ucla.edu/stat/R/dae/canonical.htm. The example uses a data file, mmreg.csv, available at

http://www.ats.ucla.edu/stat/R/dae/mmreg.csv. The dataset consists of 600 observations on eight variables. They

are locus of control, self-concept, motivation, reading, writing, math, science, and female. The first three variables

are a group of psychological variables. The next four variables are a group of academic variables. The last variable

female is a categorical indicator. The first simulation studies the canonical correlation between these two groups of

variables. The female variable is not included in the simulation study since the FMCD is likely to be singular when

some of the variables are categorical. See Olive (2004). In fact, two Fast-MCD algorithms, cov.mcd and covMcd,

failed to generate a FMCD estimator when the female variable was included. The DD plot of the mmreg dataset

from Figure 2 shows the data follows a multivariate normal distribution since all points tightly cluster about the

identity line. With the absence of apparent outliers, it is reasonable to assume this dataset is “clean”. Hence, the

classical canonical covariates and correlations obtained from this “clean” dataset will be used as benchmarks for a

comparison of different CCA methods.

Let (T,C) be the sample mean and covariance matrix of the mmreg dataset. The following different types of

outliers are considered:

0. No outliers are added to original “clean” dataset.

1. 30% (in probability) of the data values are tripled.



2. 10% (in probability) of the data values are tripled.

4. 30% (in probability) of the observations are replaced by the data generated from a multivariate normal

distribution, N(T, 5C).

5. 10% (in probability) of the observations are replaced by the data generated from a multivariate normal

distribution, N(T, 5C).

Note that when some observations are replaced by outliers, their original values of the motivation variable are

retained on purpose since it is categorical.

Denote the k-th canonical coefficients and correlation for the i-th replication by âi
k, b̂

i

k and ρ̂i
k

where k = 1, · · · , p
and i = 1, · · · ,m. Then the final estimators of k-th canonical coefficients and correlation are computed by

âk =
1

m

m
∑

i

âi
k, b̂k =

1

m

m
∑

i

b̂
i

k, and ρ̂k =
1

m

m
∑

i

ρi
k.

Denote the classical canonical coefficients and correlation computed from the “clean” mmreg dataset by ak, bk

and ρk. In the first simulation study, ak, bk and ρk are used as benchmarks for a comparison of different CCA

methods. The correlation, such as corr(âk, ak), between a canonical covariate and its benchmark will be used as

one robustness measure. The mean squared error (MSE) of ρ̂k, as another robustness measure, is defined by

MSE(ρ̂k) =
1

m

m
∑

i=1

(

tanh-1(ρ̂i
k) − tanh-1(ρk)

)2
(12)

where tanh-1 is the inverse hyperbolic function known as the Fisher transformation in Statistics. The Fisher trans-

formation turns the distribution of correlation coefficients toward a normal distribution. The MSE of ak is defined

by

MSE(âk) =
1

m

m
∑

i=1

cos−1
( |âi

k ak|
‖âi

k‖ · ‖ak‖

)

, (13)

and the MSE of bk is defined in a similar manner by

MSE(b̂k) =
1

m

m
∑

i=1

cos−1
( |b̂i

k bk|

‖b̂i

k‖ · ‖bk‖

)

. (14)

See Branco, Croux, Filzmoser and Oliveira (2005).

The results of the simulation, with the number of replications m = 150, are shown in tables 3 and 4. In table 3, the

column with header “ra1” gives the value of corr(â1, a1). All other columns to the right are similar. Table 3 shows

all CCA methods except PP-FMCD perform well on a clean dataset (outlier = 0) since corr(âk, ak) and corr(b̂k, bk)

are quite close to 1 for k = 1, 2. When 30% the values are tripled, the PP-FMCD and PP-M estimators failed quite

badly. RMVN works well both as PI and as robust dispersion estimator. In table 4, the column with header “Mr1”

gives the value 1000 ∗MSE(ρ̂1). The “Mr2” and “Mr3” columns are similar. The column with header “Ma1” gives

the value MSE(â1). The rest of the columns to the right are similar. The PP-FMCD MSEs really stand out. It has

larger MSEs than all other approaches for all different types of outliers.

Tables 3 and 4 are consistent regarding two aspects: (i) as a whole, the CCA methods using projection pursuit are

not as good as the CCA methods based on robust dispersion estimators; (ii) PP-FMCD does not work well as a

robust CCA technique.

By Theorem 7.1 in Olive (2012), the CCA estimator based on the RMVN estimator produces consistent estimators

of the canonical correlations for a large class of elliptically contoured distributions. A possible cause of the poor

performance of PP-FMCD is that PP-FMCD does not produce an adequate estimator of its population analog. The

FMCD estimator has not been shown to be a consistent estimator of (µ, cΣ), and there are no large sample theory

results for PP-FMCD.

The simulation program shows that the running time of the projection pursuit approach is at least 10 times longer

than the approaches based on dispersion matrices. Among all RPP approaches, the PP-M is the most computation-

ally inefficient.

Simulation 2

In the second CCA simulation study, the following sampling distributions are considered:



Table 3: Robust CCA with Correlation Measure

outlier method ra1 ra2 ra3 rb1 rb2 rb3

0 1 1.00 1.00 1.00 1.00 1.00 1.00

0 2 1.00 -1.00 -0.99 0.99 1.00 -0.73

0 3 1.00 -1.00 -0.97 -0.99 -0.98 -0.55

0 4 1.00 -1.00 0.99 -0.98 -0.98 -0.16

0 5 1.00 -1.00 1.00 -1.00 1.00 -0.62

0 6 0.60 -0.46 0.43 -0.62 0.71 0.06

0 7 1.00 -1.00 0.96 -0.99 0.99 -0.51

0 8 0.96 -0.96 -0.86 -0.85 0.99 0.00

1 1 0.99 -0.99 0.78 -0.54 0.82 0.73

1 2 0.99 -0.99 0.96 0.81 -0.99 0.48

1 3 0.97 0.99 -0.93 0.99 0.98 -0.14

1 4 0.99 -1.00 -0.97 -0.96 0.99 0.28

1 5 0.95 -0.99 0.69 -0.93 0.90 0.00

1 6 0.27 0.69 0.52 -0.67 0.73 0.00

1 7 -0.18 0.96 -0.85 -0.06 -0.98 -0.42

1 8 0.98 0.37 0.56 -0.70 0.36 0.35

2 1 0.71 -1.00 0.52 -0.19 0.92 0.17

2 2 0.96 -1.00 0.97 0.96 0.99 0.99

2 3 0.99 -1.00 -0.99 0.98 0.99 0.35

2 4 1.00 -1.00 -0.99 -0.96 -0.97 0.41

2 5 -0.30 -0.81 0.66 -0.06 0.45 0.01

2 6 0.98 0.42 0.60 -0.34 -0.86 0.38

2 7 -0.98 -1.00 -0.88 0.91 0.99 0.07

2 8 0.92 1.00 -0.97 -0.54 -0.92 0.30

3 1 0.49 -0.95 -0.65 -0.40 0.97 0.28

3 2 0.74 0.01 -0.44 0.91 -0.57 -0.55

3 3 0.95 -0.97 -0.87 -0.89 0.93 -0.86

3 4 1.00 0.98 -0.52 -0.89 0.89 0.69

3 5 -0.81 -0.99 0.06 -0.20 0.90 -0.51

3 6 -0.51 0.67 -0.45 -0.33 0.55 -0.51

3 7 -1.00 -0.76 0.57 0.52 0.70 0.63

3 8 0.98 -0.50 -0.62 -0.86 -0.21 -0.74

4 1 0.89 1.00 1.00 0.96 0.71 0.47

4 2 1.00 -1.00 -0.96 1.00 1.00 0.59

4 3 1.00 -1.00 -0.93 0.99 0.96 0.61

4 4 1.00 1.00 1.00 0.87 0.97 0.41

4 5 1.00 -1.00 0.98 -0.99 0.87 -0.84

4 6 -0.30 0.33 -0.38 -1.00 -0.94 -0.21

4 7 -0.99 1.00 -1.00 0.84 -0.90 0.93

4 8 0.75 0.94 0.96 -0.55 -0.98 -0.35



Table 4: Robust CCA with MSE Measure

outlier method Mr1 Mr2 Mr3 Ma1 Ma2 Ma3 Mb1 Mb2 Mb3

0 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0 2 0.05 0.01 0.03 0.00 0.00 0.76 0.00 0.00 0.76

0 3 0.75 0.69 0.45 0.09 0.20 1.01 0.09 0.20 1.01

0 4 0.40 0.46 0.13 0.00 0.04 1.41 0.00 0.04 1.41

0 5 0.00 0.00 0.13 0.00 0.00 0.98 0.00 0.00 0.98

0 6 158.65 23.27 25.13 0.68 1.14 1.44 0.68 1.14 1.44

0 7 0.10 0.01 0.29 0.25 0.00 1.06 0.25 0.00 1.06

0 8 0.17 1.19 0.49 0.55 0.00 1.40 0.55 0.00 1.40

1 1 51.41 1.04 1.23 1.10 1.12 1.23 1.10 1.12 1.23

1 2 30.84 0.64 0.26 1.08 0.72 1.02 1.08 0.72 1.02

1 3 1.19 1.06 0.58 0.53 0.59 1.06 0.53 0.59 1.06

1 4 1.26 1.47 1.06 0.13 0.17 1.03 0.13 0.17 1.03

1 5 54.21 1.37 0.30 1.06 1.14 1.45 1.06 1.14 1.45

1 6 122.09 34.32 25.89 0.74 1.26 1.38 0.74 1.26 1.38

1 7 27.64 2.92 1.34 1.10 0.93 1.42 1.10 0.93 1.42

1 8 35.43 25.91 9.35 0.27 1.01 1.32 0.27 1.01 1.32

2 1 41.87 1.69 1.88 0.85 0.96 1.12 0.85 0.96 1.12

2 2 27.12 0.19 0.08 0.34 0.28 0.83 0.34 0.28 0.83

2 3 1.70 0.71 0.33 0.28 0.37 0.99 0.28 0.37 0.99

2 4 0.60 0.77 0.42 0.07 0.06 1.19 0.07 0.06 1.19

2 5 42.18 1.28 0.41 0.86 0.94 1.40 0.86 0.94 1.40

2 6 175.89 19.64 37.28 0.70 1.19 1.44 0.70 1.19 1.44

2 7 24.08 1.71 0.97 0.77 0.41 1.29 0.77 0.41 1.29

2 8 27.41 15.95 9.63 0.26 0.93 1.33 0.26 0.93 1.33

3 1 3.08 2.10 1.00 0.94 1.05 1.19 0.94 1.05 1.19

3 2 1.95 1.76 1.14 0.78 0.80 1.03 0.78 0.80 1.03

3 3 2.27 1.53 0.97 0.58 0.65 1.02 0.58 0.65 1.02

3 4 1.93 1.81 0.93 0.26 0.40 0.94 0.26 0.40 0.94

3 5 2.81 2.25 0.29 0.96 1.04 1.40 0.96 1.04 1.40

3 6 246.93 23.08 31.15 0.87 1.19 1.42 0.87 1.19 1.42

3 7 2.32 2.13 0.93 0.80 0.93 1.35 0.80 0.93 1.35

3 8 33.57 23.21 11.04 0.58 1.00 1.30 0.58 1.00 1.30

4 1 1.42 1.81 1.08 0.64 0.72 0.98 0.64 0.72 0.98

4 2 0.56 0.75 0.38 0.38 0.38 0.85 0.38 0.38 0.85

4 3 1.85 0.74 0.39 0.32 0.39 0.90 0.32 0.39 0.90

4 4 0.62 0.66 0.52 0.10 0.13 1.13 0.10 0.13 1.13

4 5 1.85 1.26 0.24 0.67 0.69 1.37 0.67 0.69 1.37

4 6 225.93 24.20 33.37 0.76 1.12 1.45 0.76 1.12 1.45

4 7 1.61 1.41 0.44 0.46 0.49 1.26 0.46 0.49 1.26

4 8 31.97 18.19 8.31 0.37 0.93 1.31 0.37 0.93 1.31



1. normal distribution, Np+q(0,Σ),

2. normal mixture, .8Np+q(0,Σ) + .2Np+q(0, 8Σ),

3. normal mixture, .95Np+q(0,Σ) + .05Np+q(0, 8Σ),

4. mixture distribution, .8Np+q(0,Σ) + .2δ
(

tr(Σ)1′
)

,

5. mixture distribution, .95Np+q(0,Σ) + .05δ
(

tr(Σ)1′
)

,

6. mixture distribution, .8Np+q(0,Σ) + .2δ
(

tr(Σ) ∗ [1, 0, · · · , 0]′
)

,

7. mixture distribution, .95Np+q(0,Σ) + .05δ
(

tr(Σ) ∗ [1, 0, · · · , 0]′
)

,

where tr(Σ) represents the trace of the Σ and δ() represents a point mass distribution. To form the covariance matrix

Σ, let Σ11 = Ip, Σ22 = Iq and Σ12 be one of the following:

1. Σ12
(2×4)

=

[

.9 0 0 0

0 .3 0 0

]

, Σ11 = I2, Σ22 = I4;

2. Σ12
(3×3)

=





















.9 0 0

0 .5 0

0 0 .2





















, Σ11 = I3, Σ22 = I3;

3. Σ12
(5×5)

=







































.9 0 0 0 0

0 .7 0 0 0

0 0 .4 0 0

0 0 0 .3 0

0 0 0 0 .1







































, Σ11 = I5, Σ22 = I5.

Σ11 and Σ22 are set to be identity matrices due to the equivariant property of CCA. The sample size of the simulation

is n = 1000 and the number of replications is m = 200. The benchmarks in simulation 2 are the true values of ρk,

ak and bk computed from the matrix Σ.

The result of simulation 2 when Σ is formed by the third choice above is presented in table 5. The “cov” column

indicates the choice of Σ, the “std” column indicates the type of sampling distribution, and the “mdt” column

indicates the CCA methods. Although p = q = 5 in this case, only the results of first two canonical covariates

are listed due to the limit of the space. Table 5 shows that the MSE(ρk) of classical CCA (as well as classical PP)

increases rapidly when the point mass outliers are introduced. For the normal mixture sampling distribution, only

PP-MCD does not work well. For the mixture distribution .8Np+q(0,Σ)+ .2δ
(

tr(Σ)1′
)

, only RMVN and PP-RMVN

CCA perform well. The result of the mixture distribution .8Np+q(0,Σ) + .2δ
(

tr(Σ) ∗ [1, 0, · · · , 0]′
)

is quite similar.

In general, it is observed that RMVN and PP-RMVN have the best performance when the underlying distribution

is multivariate normal. Between them, the CCA based on RMVN approach should be adopted since it has the

computational efficiency advantage.

6. Discussion

Robust outlier resistant estimators of MLD should be i)
√

n consistent for a large class of distributions, ii) easy to

compute, iii) effective at detecting certain types of outliers and iv) outlier resistant. Although Hawkins and Olive

(2002) showed that almost all of the literature focuses either on i) and iv) or on ii) and iii), Olive and Hawkins

(2010) shows that it is simple to construct estimators satisfying i)–iv) provided that n > 20p and p ≤ 40. These

results represent both a computational and theoretical breakthrough in the field of robust MLD.

The new FCH, RFCH and RMVN estimators use information from both location and dispersion criteria and are

more effective at screening attractors than estimators such as MBA and FMCD that only use the MCD dispersion

criterion. The new estimators are roughly two orders of magnitude faster than FMCD.

The collection of easily computed “robust estimators” for MLD that have not been shown to be both HB and

consistent is enormous, but without theory the methods should be classified as outlier diagnostics rather than

robust statistics.

Examine the estimator on many “benchmark data sets.” FCH was examined on 30 such data sets. Outlier perfor-

mance was competitive with estimators such as FMCD. For any given estimator, it is easy to find outlier configura-

tions where the estimator fails. For the modified wood data of Rousseeuw (1984), MB detected the planted outliers



Table 5: Robust CCA Simulation 2, cov type=3

cov sdt mdt ra1 ra2 rb1 rb2 Mr1 Mr2 Ma1 Ma2 Mb1 Mb2

3 1 1 1.00 1.00 1.00 1.00 3.21 1.35 0.32 0.22 0.32 0.22

3 1 2 1.00 1.00 1.00 1.00 2.96 1.25 0.30 0.22 0.30 0.22

3 1 3 1.00 1.00 1.00 0.99 2.92 0.48 0.28 0.27 0.28 0.27

3 1 4 1.00 1.00 1.00 0.99 2.24 0.63 0.26 0.25 0.26 0.25

3 1 5 1.00 1.00 1.00 1.00 3.21 1.35 0.32 0.22 0.32 0.22

3 1 6 0.83 0.81 0.84 0.80 1755.97 791.31 0.53 0.58 0.53 0.58

3 1 7 1.00 1.00 1.00 1.00 2.42 1.04 0.30 0.22 0.30 0.22

3 1 8 1.00 1.00 1.00 1.00 1.46 0.22 0.27 0.24 0.27 0.24

3 2 1 1.00 1.00 1.00 0.99 0.65 0.51 0.91 0.91 0.91 0.91

3 2 2 1.00 1.00 1.00 1.00 0.19 0.41 0.47 0.47 0.47 0.47

3 2 3 1.00 1.00 1.00 1.00 0.89 2.50 0.48 0.44 0.48 0.44

3 2 4 1.00 1.00 1.00 1.00 1.64 3.91 0.15 0.09 0.15 0.09

3 2 5 1.00 1.00 1.00 0.99 0.65 0.51 0.91 0.91 0.91 0.91

3 2 6 0.86 0.86 0.90 0.81 932.23 323.75 0.62 0.72 0.62 0.72

3 2 7 1.00 1.00 1.00 1.00 2.10 0.02 0.53 0.53 0.53 0.53

3 2 8 1.00 1.00 1.00 1.00 3.12 0.28 0.14 0.09 0.14 0.09

3 3 1 0.99 0.99 0.99 0.98 1.49 1.28 0.51 0.57 0.51 0.57

3 3 2 1.00 1.00 1.00 0.99 1.20 4.75 0.25 0.31 0.25 0.31

3 3 3 1.00 1.00 1.00 1.00 1.32 2.21 0.26 0.30 0.26 0.30

3 3 4 1.00 1.00 1.00 1.00 1.61 1.90 0.21 0.21 0.21 0.21

3 3 5 0.99 0.99 0.99 0.98 1.49 1.28 0.51 0.57 0.51 0.57

3 3 6 0.82 0.78 0.77 0.69 1235.39 1014.15 0.60 0.77 0.60 0.77

3 3 7 1.00 1.00 1.00 0.99 1.18 6.41 0.26 0.33 0.26 0.33

3 3 8 1.00 1.00 1.00 1.00 2.75 10.68 0.21 0.20 0.21 0.20

3 4 1 0.97 0.62 0.98 0.63 3154.60 124.85 1.43 0.90 1.43 0.90

3 4 2 0.97 0.62 0.98 0.62 3281.19 133.00 1.43 0.88 1.43 0.88

3 4 3 1.00 0.68 0.99 0.62 4684.50 223.34 1.44 0.81 1.44 0.81

3 4 4 1.00 0.99 1.00 1.00 1.50 0.23 0.27 0.00 0.27 0.00

3 4 5 0.97 0.62 0.98 0.63 3154.60 124.85 1.43 0.90 1.43 0.90

3 4 6 0.83 0.72 0.85 0.60 108.47 723.71 1.14 0.88 1.14 0.88

3 4 7 0.98 0.63 0.98 0.61 3252.78 133.14 1.42 0.90 1.42 0.90

3 4 8 1.00 0.99 1.00 1.00 0.60 0.08 0.27 0.00 0.27 0.00

3 5 1 0.97 0.61 0.97 0.59 1416.06 89.40 1.32 0.99 1.32 0.99

3 5 2 0.98 0.68 0.98 0.65 404.06 69.29 1.09 0.90 1.09 0.90

3 5 3 1.00 1.00 1.00 0.99 1.35 0.30 0.33 0.18 0.33 0.18

3 5 4 1.00 1.00 1.00 0.99 1.30 0.40 0.22 0.00 0.22 0.00

3 5 5 0.97 0.61 0.97 0.59 1416.06 89.40 1.32 0.99 1.32 0.99

3 5 6 1.00 0.86 1.00 0.87 4.72 425.08 0.33 0.45 0.33 0.45

3 5 7 1.00 0.62 1.00 0.60 62.54 96.29 1.17 0.98 1.17 0.98

3 5 8 1.00 1.00 1.00 1.00 2.30 0.79 0.22 0.00 0.22 0.00

3 6 1 0.30 0.46 0.31 0.46 384.04 159.29 1.53 1.43 1.53 1.43

3 6 2 0.30 0.45 0.31 0.45 389.42 156.69 1.52 1.43 1.52 1.43

3 6 3 1.00 1.00 1.00 1.00 1.49 0.34 0.43 0.34 0.43 0.34

3 6 4 1.00 1.00 1.00 1.00 1.61 0.68 0.20 0.00 0.20 0.00

3 6 5 0.30 0.46 0.31 0.46 384.04 159.29 1.53 1.43 1.53 1.43

3 6 6 0.87 0.80 0.83 0.80 564.07 362.96 0.62 0.66 0.62 0.66

3 6 7 0.30 0.45 0.29 0.43 375.30 152.88 1.54 1.44 1.54 1.44

3 6 8 1.00 0.95 1.00 0.98 1.23 6.55 0.19 0.15 0.19 0.15

3 7 1 0.23 0.35 0.29 0.43 395.83 231.61 1.55 1.48 1.55 1.48

3 7 2 0.24 0.39 0.32 0.49 412.43 223.62 1.54 1.45 1.54 1.45

3 7 3 1.00 0.99 1.00 0.99 0.55 2.30 0.13 0.31 0.13 0.31

3 7 4 1.00 1.00 1.00 0.99 1.11 1.83 0.00 0.02 0.00 0.02

3 7 5 0.23 0.35 0.29 0.43 395.83 231.61 1.55 1.48 1.55 1.48

3 7 6 0.75 0.77 0.79 0.77 2121.97 552.10 0.51 0.66 0.51 0.66

3 7 7 0.23 0.38 0.30 0.44 397.27 217.56 1.54 1.50 1.54 1.50

3 7 8 1.00 1.00 1.00 1.00 0.03 1.53 0.00 0.00 0.00 0.00



but FCH used DGK. For another data set, 2 clean cases had larger MB distances than 4 of 5 planted outliers that

FMCD can detect. For small p, elemental methods can be used as outlier diagnostics.
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