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I. Introduction
Prediction is done all of the time. Want to predict the weather, what investments will

make money (for stocks about 45% of wealth gains are from dividends and 55% from the
stock increasing in value), how large the national debt will be next year (if every home
owner sold their house and gave the money to the government, would that pay off the
debt?), et cetera. When President Clinton left office, the prediction was that there would
be budget surpluses for the next ten years, instead there was record setting debt for the
next 12 years. In Iowa City, Iowa, there have been two “100 year floods” in the past
decade. If you are diagnosed with a cancer where 80% of the patients die of something
else, then the standard treatment is probably effective, but if you are told that you have
6 to 18 months to live, the standard treatment is probably ineffective, and you may want
to change the population by trying to get in a clinical trial for a new treatment.

Statistical prediction regions try to give a guarantee on the prediction. Suppose you
are trying to predict a k×1 vector yf , for example, corn and soybean yield in Illinois for
2013. For a large sample 90% prediction region, there should be about a 90% chance that
yf lies in the prediction region. So if 100 data sets are independently gathered, about 90
times yf,j should lie in the prediction region, and about 10 times yf,j should fail to lie
in the region. Hence a prediction region is a region of typical values of yf . Prediction
regions are actually used, so the user gets mad at the Statistician when the prediction
region fails. Unfortunately, statistical prediction regions with a nominal 100(1 − δ)%
coverage, e.g. 90%, typically have much smaller actual coverage. In Statistics, 90%,
95% and 99% nominal regions are often used, but several fields use 50% nominal regions
since the high nominal coverage regions work so poorly. Prediction regions generally
estimate percentiles of the underlying distribution, which is often assumed to be normal.
The normal distribution is rarely a good approximation to the data since the normal
distribution has small variability. Hence the estimated percentiles assuming normality
tend to underestimate the true percentiles of the underlying distribution, and the true
coverage is smaller than the nominal coverage.

Suppose a p × 1 vector of predictors xf is available for predicting yf and there is
data yi ≡ yi|xi = m(xi) + εi = E(yi|xi) + εi for i = 1, ..., n where the zero mean εi are
independent and identically distributed (iid). Asymptotically optimal prediction regions
can be derived for many additive error models of this form, where the distribution of the
εi is unknown but from a large class of distributions.

A large sample (1−δ)100% prediction region is a set An such that P (yf ∈ An) → 1−δ,
and is asymptotically optimal if the volume of the region converges in probability to the
volume of the population minimum volume covering region. Want asymptotically optimal
prediction regions that perform well for moderate sample size n but with few assumptions
on the data distribution.

Statistics is the science of extracting useful information from data, and a statistical
model is used to provide a useful approximation to some of the important characteristics
of the population which generated the data. For a parametric statistical model, the

1



distribution of the data (and often that of the statistic) is known except for k unknown
parameters. Want to avoid parametric (frequentist or Bayesian) models for prediction
regions since parametric regions tend to perform poorly unless there is strong graphical
evidence supporting the parametric model.

Example 1. Cook and Weisberg (1999, p. 351, 433, 447) give a data set on 82 mussels
sampled off the coast of New Zealand. The variables are y1 = L, y2 = log(W ), y3 =
H, y4 = log(S) and y5 = log(M) where L is the length, W is the shell width, H is the
height of the shell in mm, S is the shell mass, and M is the muscle mass in grams. Might
want to predict a) y5 (location model), b) y5 given y1, ..., y4 (regression model, often the
multiple linear regression model), c) y (multivariate location and dispersion model), or
d) y4 and y5 given y1, y2, and y3 (multivariate linear regression model).

A case or observation consists of the p random variables measured for one person
or thing. The ith case consists of the p measurements on the ith object (mussel) for
i = 1, ..., n. The cases are collected into an n × p data matrix.

L log(W) H log(S) log(M) p = 5

318 4.220 158 5.844 3.850 case 1

312 4.025 148 5.670 3.951 case 2

265 3.829 124 5.118 3.296 case 3

. . . . .

: : : : :

220 3.584 105 4.159 2.773 case 82=n

Things that can go wrong with using a training data set to predict a future data set:
i) the training set and future set may have different distributions, possibly due to a

change in population. Population drift occurs when the population changes over time.
For example, suppose there are several variables being used to produce greater yield

of a crop or a chemical. If one journal paper out of 50 (the training set) finds a set of
variables and variable levels that successfully increases yield, then the next 25 papers
(the future set) are more likely to use variables and variable levels similar to the one
successful paper than variables and variable levels of the 49 papers that did not succeed.
Also Reagan, Bush, Bush and Obama spent massive amounts of money to make the
economy appear better, Clinton froze spending.

ii) Training set or future set could be distorted from the population if outliers (cases
far from the bulk of the data) are present or if one data set is not a random sample from
the population.

For example, the training data set could be drawn from three hospitals, and the future
data set could be drawn from two more hospitals. These two data sets may not represent
random samples from the same population of hospitals.

iii) Other model assumptions could be wrong (why multiple linear regression?, why
iid normal errors?). Check model assumptions with response plots, residual plots, QQ
plots and DD plots.

iv) The sample size n of the training set may not be large enough. Often want
n > 10p.

II. Prediction Intervals and Regions for Additive Error Models
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Asymptotically Optimal Prediction Intervals for the Location Model
The location model is Yi = µ + ei, for i = 1, ..., n. Let Y1, ..., Yn, Yf be iid from the

location model. In the location model there is one variable so the ith case is Yi. Given
Y1, ..., Yn, want an asymptotically optimal prediction interval (PI) (L̂n, Ûn) for Yf . Hence

want P (Yf ∈ (L̂n, Ûn)) → 1 − δ and want the PI length (Ûn − L̂n)
P→ D = U − L where

D is as small as possible. U and L will be upper and lower percentiles of the unknown
distribution of the Yi. For asymptotically optimal prediction regions, we will assume
that the distribution has a unimodal probability density distribution (pdf), and that the
population PI is unique. If the distribution was symmetric, then the population 90% PI
discards the top and bottom 5% of the distribution: L is the 0.05 percentile and U is the
0.95 percentile.
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Figure 1: Highest 36.8% Density Region is (0,1)

Suppose Y1, ..., Yn are iid from a unimodal pdf that has interval support, and that the
pdf f(y) decreases rapidly as y moves away from the mode. Let (a, b) be the shortest
interval such that F (b)−F (a) = 1−δ where the cumulative distribution function F (y) =
P (Y ≤ y) . Then the interval is the highest density region containing 1 − δ of the mass.
To find the (1−δ)100% highest density region of a pdf, move a horizontal line down from
the top of the pdf. The line will intersect the pdf or the boundaries of the support of the
pdf at (a1, b1), ..., (ak, bk) for some k ≥ 1. Stop moving the line when the areas under the
pdf corresponding to the intervals is equal to 1 − δ. See Figure 1 where the area under
the pdf from 0 to 1 gives the 36.8% highest density region. Will often have f(a) = f(b),
e.g., if the support where f(y) > 0 is (−∞,∞).
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If the data Y1, ..., Yn is arranged in ascending order from smallest to largest and written
as Y(1) ≤ · · · ≤ Y(n), then Y(i) is the ith order statistic and the Y(i)’s are called the order
statistics. For the location model, consider intervals that contain c cases: (Y(1), Y(c)),
(Y(2), Y(c+1)), ..., (Y(n−c+1), Y(n)). Denote the set of c cases in the ith interval by Ji, for
i = 1, 2, ..., n − c + 1. Compute Y(c) − Y(1), Y(c+1) − Y(2), ..., Y(n) − Y(n−c+1). Then the
estimator shorth(c) = (Y(d), Y(d+c−1)) is the interval with the shortest length.

Example 2, votes for preseason 1A basketball poll Nov. 22, 2011 WSIL News:

111 89 778 78 76

get shorth(3)

order data 76 78 89 111 778

13 = 89 - 76

33 = 111 - 78

689 = 778 - 89

shorth(3) = (76,89)

The correct value of 778 was 78 giving shorth(3) = (76,78).
The shorth(c = dn(1−δ)e) estimator estimates (a, b), and can be used as a 100(1−δ)%

asymptotically optimal prediction interval for a future observation Yf , but the PI has
slight undercoverage for moderate sample sizes.

Olive (2013a) recommends the following asymptotically optimal PI. Let an =
(
1 +

15

n

)√
n + 1

n − 1
. Let c = dn(1 − δ)e. Let shorth(c) = (Y(d), Y(d+c−1)). Let MED(n) be

the sample median = sample 50th percentile. If Y1, ..., Yn are iid, then the recommended
large sample 100(1 − δ)% PI for Yf is the closed interval [L̂n, Ûn] = [(1 − an)MED(n) +
anY(d), (1−an)MED(n)+anY(d+c−1)]. This PI is a special case of the PI for multiple linear
regression using the least absolute deviations estimator, but with a closed interval. The
PI inflates the length of the shorth, reducing undercoverage. Plot the Y ′s to examine
the data and to check for outliers.

Asymptotically Optimal Prediction Intervals for the Multiple Linear Re-
gression Model

Regression is the study of the conditional distribution Y |x of the response Y given
the p× 1 vector of predictors x. Regression prediction intervals are for a future response
Yf given a vector xf of predictors when the regression model has the form

Yi = m(xi) + ei (1)

for i = 1, ..., n where m is a function of xi and the errors ei are iid from a continuous
unimodal distribution. Many of the most important regression models have this form,
including the multiple linear regression model and many time series, nonlinear, nonpara-
metric and semiparametric models (neural networks, partial least squares, vector support
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machines, kriging, additive models, etc.). If m̂ is an estimator of m, then the ith residual
is ri = Yi − m̂(xi) = Yi − Ŷi.

Also, conditional on xi, Yi follows the location model with µi = m(xi). For example,
if the ei are iid N(0, σ2), then Yi|xi ∼ N(m(xi), σ

2). If there was a lot of data at xf ,
then a location model PI could be used; however, often there is no data at xf . If m was
known and there were n ei’s, then we could generate Yf,j = m(xf) + ej for j = 1, ..., n
and use a location model PI on the Yf,j. Since m̂ estimates m and ri estimates ei, the
basic idea is to use a location model type PI on a pseudosample Ỹf,j = m̂(xf ) + rj

for j = 1, ..., n. Since m̂ is based on the past or training data (Yi, xi) for i = 1, ..., n,
Yf and m̂ are independent. Hence, conditional on xf , the variance V (Yf − m̂(xf )) =
V (Yf ) + V (m̂(xf )) = σ2 + V (m̂(xf )) where σ2 = V (ei) and V (m̂(xf)) → 0 as n → 0.

Olive (2007) showed how to form asymptotically optimal prediction intervals for model
(1), but for many regression models and estimators, large n is needed for the intervals
to perform well. Prediction intervals derived for multiple linear regression did perform
well. Olive (2013a) derives asymptotically optimal prediction intervals that perform well
for many models for moderate n.

A large sample 100(1 − δ)% prediction interval (PI) has the form (L̂n, Ûn) where

P (L̂n < Yf < Ûn)
P→ 1 − δ as the sample size n → ∞. Let ξδ be the δ percentile of the

error e, i.e., P (e ≤ ξδ) = δ. Let ξ̂δ be the sample δ percentile of the residuals. Consider
predicting a future observation Yf given a vector of predictors xf where (Yf , xf) comes
from the same population as the past data (Yi, xi) for i = 1, ..., n. Let 1− δ2− δ1 = 1− δ
with 0 < δ < 1 and δ1 < 1 − δ2 where 0 < δi < 1. Then P [Yf ∈ (m(xf) + ξδ1

, m(xf) +
ξ1−δ2

)] = 1 − δ.

Assume that m̂ is consistent: m̂(x)
P→ m(x) as n → ∞. Then ri − ei = Yi − m̂(xi)−

(Yi − m(xi))
P→ 0 and, under “mild” regularity conditions, ξ̂δ

P→ ξδ . If an
P→ 1 and

bn
P→ 1, then

(L̂n, Ûn) = (m̂(xf) + anξ̂δ1
, m̂(xf ) + bnξ̂1−δ2

) (2)

is a large sample 100(1 − δ)% PI for Yf .
According to regression folklore, the percentiles of the residuals are consistent esti-

mators, ξ̂δ
P→ ξδ, under “mild” regularity conditions, and this consistency is the basis for

using QQ plots. The folklore is true for linear models: sufficient conditions are β̂
P→ β

and the xi are bounded. See Olive and Hawkins (2003).
The multiple linear regression model is Yi ≡ Yi|xi = xT

i β + ei for i = 1, ..., n where
the zero mean ei are iid. Then m(xi) = xT

i β. In matrix form, Y = Xβ + e where Y

is an n × 1 vector of dependent variables, X is an n × p matrix of predictors, β is a
p × 1 vector of unknown coefficients, and e is an n × 1 vector of unknown iid zero mean
errors ei with variance σ2. Let the hat matrix H = X(XT X)−1XT . Let hi = hii be
the ith diagonal element of H for i = 1, ..., n. Then hi is called the ith leverage and
hi = xT

i (XT X)−1xi. Suppose new data is to be collected with predictor vector xf . Then
the leverage of xf is hf = xT

f (XT X)−1xf .

If least squares is used and ei ∼ N(0, σ2), then the classical parametric 100(1 − δ)%
PI is

Ŷf ± tn−p,1−δ/2

√
MSE

√
(1 + hf) (3)
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where P (T ≤ tn−p,δ) = δ if T has a t distribution with n−p degrees of freedom and MSE

= σ̂. If Ŷf = xT
f β̂, then for many distributions, MSE

P→ σ2 and V (Ŷf ) ≈ MSE hf . Also
for iid N(0, σ2) errors, the pivotal quantity

T =
Yf − Ŷf√

MSE(1 + hf)
∼ tn−p.

Notice that the PI
Ŷf ± tn−p,1−δ/2

√
MSE

√
(1 + hf) =

Ŷf ± z1−δ/2

√
MSE

tn−p,1−δ/2

z1−δ/2

√
(1 + hf ).

Thus the quantity

an = bn =
tn−p,1−δ/2

z1−δ/2

√
(1 + hf )

can be regarded as a finite sample correction factor if ei ∼ N(0, σ2) where P (Z ≤ zδ) = δ
if Z ∼ N(0, 1).

Let 1 − γ be the asymptotic coverage of the classical nominal (1 − δ)100% PI (3).
Then 1 − γ = P (−σz1−δ/2 < e < σz1−δ/2)

≥ 1 − 1

z2
1−δ/2

(4)

where the inequality follows from Chebyshev’s inequality. For a 95% PI, z1−δ/2 ≈ 2, so
actual coverage could be as low as 75%.

For the multiple linear regression model, let ξ̂δ be the sample percentile of the resid-
uals. Following Olive (2007), let

an = bn =
(
1 +

15

n

)√
n

n − p

√
(1 + hf ). (5)

Then a large sample semiparametric 100(1 − δ)% PI for Yf is

(Ŷf + anξ̂δ/2, Ŷf + anξ̂1−δ/2). (6)

PI (6) is very similar to PI (3) except ξ̂δ is used instead of σ̂zδ to estimate the error
percentiles ξδ. A PI is asymptotically optimal if it has the shortest asymptotic length
that gives the desired asymptotic coverage. The PI (6) is asymptotically optimal on
a large class of unimodal continuous symmetric error distributions. For more general
distributions, an asymptotically optimal PI can be created by applying the shorth(c)
estimator to the residuals where c = dn(1 − δ)e. That is, let r(1), ..., r(n) be the or-
der statistics of the residuals. Compute r(c) − r(1), r(c+1) − r(2), ..., r(n) − r(n−c+1). Let

(r(d), r(d+c−1)) = (ξ̃δ1
, ξ̃1−δ2

) correspond to the interval with the smallest length. Follow-
ing Olive (2007), a 100 (1 − δ)% PI for Yf is

(Ŷf + anξ̃δ1
, Ŷf + anξ̃1−δ2

) (7)

6



1640 1660 1680 1700 1720 1740 1760

1
5
5
0

1
6
0
0

1
6
5
0

1
7
0
0

1
7
5
0

1
8
0
0

1
8
5
0

1
9
0
0

FIT

Y

Figure 2: 95% PI Limits for Buxton Data
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where an is given by (5). This prediction interval performs well for moderate n for mul-
tiple linear regression and several estimators, including least squares (several regression
estimators have asymptotic variances that are of the same order as that of least squares).

Example 3. For the Buxton (1920) data suppose that the response Y = height and the
predictors were a constant, head length, nasal height, bigonal breadth and cephalic index.
Five outliers were deleted leaving 82 cases. Figure 2 shows a fit response plot of the fitted
values versus the response Y with the identity line added as a visual aid. If the model is
good then the plotted points should scatter about the identity line in an evenly populated
band. The triangles represent the upper and lower limits of the semiparametric 95% PI
(5). Notice that 79 (or 96%) of the Yi fell within their corresponding PI while 3 Yi did
not.

Asymptotically Optimal Prediction Intervals for the Regression Model Y =
m(x) + e

A problem with prediction intervals is choosing an and bn so that the intervals have
short length and coverage close to or higher than the nominal coverage for a wide variety
of regression models when n is moderate.

The idea for finding the asymptotically optimal prediction intervals and regions is
simple. Find the target population 100(1−δ)% covering region. For small n, the coverage
of the training data will be higher than that for the future case to be predicted. In
simulations for a large group of models and distributions, the undercoverage could be as
high as min(0.05, δ/2). Let qn = min(1 − δ + 0.05, 1 − δ + p/n) for δ > 0.1 and

qn = min(1 − δ/2, 1 − δ + 10δp/n), otherwise. (8)

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Then use the prediction interval
or region that covers 100qn% of the training data. The coverage of the training data is
100qn% and converges to 100(1 − δ)% as n → ∞, even if the model assumptions fail to
hold.

This technique is used to produce asymptotically optimal PIs that perform well for
moderate samples. Find Ŷf and the residuals from the regression model. Since the
leverage of xi is closely related to the Mahalanobis distance of xi from the sample mean
x of the n predictor vectors, leverage and extrapolation are useful for a wide range
of regression models. For a wide range of regression models, extrapolation occurs if
hf > 2p/n: if xf is too far from the data x1, ..., xn, then the model may not hold and
prediction can be arbitrarily bad. This result suggests replacing (5) by

an = bn =
(
1 +

15

n

)√
n + 2p

n − p
. (9)

Let δn = 1 − qn where qn is given by (8). Then

(L̂n, Ûn) = (m̂(xf ) + bnξ̂δn/2, m̂(xf) + bnξ̂1−δn/2) (10)

is a large sample 100(1 − δ)% PI for Yf that is similar to (2) and (6).
Let c = dnqne. Compute r(c) − r(1), r(c+1) − r(2), ..., r(n)− r(n−c+1). Let (r(d), r(d+c−1)) =

(ξ̃δ1
, ξ̃1−δ2

) correspond to the interval with the smallest length. Then the asymptotically
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optimal 100 (1 − δ)% large sample PI for Yf is

(m̂(xf ) + bnξ̃δ1
, m̂(xf) + bnξ̃1−δ2

), (11)

and is similar to (7).

For asymptotic optimality, can not have extrapolation. Also, even if the coverage
converges to the nominal coverage, the length of the PI need not be asymptotically
shortest unless the highest 1 − δ density region of the probability density function of
the iid errors is an interval. The highest density region is an interval for unimodal
distributions, but need not be an interval for multimodal distributions for all δ.

Notice that the technique computes a PI for coverage qn ≥ 1 − δ which converges to
the nominal coverage 1− δ as n → ∞. Suppose n ≤ 20p. Then the nominal 95% PI uses
qn = 0.975 while the nominal 50% PI uses qn = 0.55. Prediction distributions depend
both on the error distribution and on the variability of the estimator m̂. This variability
is typically unknown but converges to 0 as n → ∞. Also, residuals tend to underestimate
the errors for small n. For small n, ignoring estimator variability and using qn = 1 − δ
resulted in undercoverage as high as min(0.05, δ/2). Letting the “coverage” qn decrease
to the nominal coverage 1 − δ inflates the length of the PI for small n, compensating for
the unknown variability of m̂.

The geometry of the “asymptotically optimal prediction region” is simple. The region
is the area between two parallel lines with unit slope. Consider a plot of m(xi) versus Yi

on the vertical axis. The identity line with zero intercept and unit slope is E(Yi) = m(xi).
Let (Li, Ui) be the asymptotically optimal population 95% prediction interval containing
m(xi). For example, if the errors are iid N(0, σ2), then Yi|m(xi) ∼ N(m(xi), σ

2), and
(Li, Ui) = (m(xi)− 1.96σ, m(xi)+ 1.96σ). Then the upper line has unit slope and passes
through (m(xi), Ui) while the lower line has unit slope and passes through (m(xi), Li).

The geometry of the “prediction region” for PI (11) is a natural sample analog of the
population “asymptotically optimal prediction region.” A response plot of Ŷi = m̂(xi)
versus Yi has identity line Ê(Yi) = m̂(xi). The region corresponding to pointwise predic-
tion intervals is between two lines with unit slope passing through the points (m̂(xi), Ûi)
and (m̂(xi), L̂i), respectively, where (L̂i, Ûi) is the asymptotically optimal prediction in-
terval (9) for Yf if xf = xi. For the multiple linear regression model, expect the points
in the response plot to scatter in an evenly populated band for n > 5p. Other regression
models, such as additive models, may need a much larger sample size n.

Example 4. Chambers and Hastie (1993, p. 251, 516) examine an environmental
study that measured the four variables Y = ozone concentration, x1 = solar radiation,
x2 = temperature, and x3 = wind speed for n = 111 consecutive days. Figure 3 shows
the response plot made in Splus with the pointwise large sample 95% PI bands for the
additive model Y = m(x) + e where the additive predictor m(x) = α +

∑3
j=1 Sj(xj) for

some functions Sj to be estimated. Here m̂(x) = estimated additive predictor (EAP).
Note that the plotted points scatter about the identity line in a roughly evenly populated
band, and that 3 of the 111 PIs (11) corresponding to the observed data do not contain
Y .

The “theory section” shows that PI (11) and the shorth of the residuals behave well
when the sample percentiles are consistent. Even if these assumptions do not hold, the
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Figure 3: Pointwise Prediction Interval Bands for Ozone Data

PI covers 100qn% of the training data, and often the coverage of the future case will be
close to 100(1 − δ) if the future case Yf is similar to the training data.

Asymptotically Optimal Prediction Regions for the Multivariate Location
and Dispersion Model

Asymptotically optimal prediction regions use ideas similar to those in the previous
subsection. Some notation is needed. Let the ith case xi be a p × 1 random vector, and
suppose the n cases are collected in an n × p matrix X with rows xT

1 , ..., xT
n .

The classical estimator (x, S) of multivariate location and dispersion is the sample
mean and sample covariance matrix where

x =
1

n

n∑

i=1

xi and S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T. (12)

Some important joint distributions for x are completely specified by a p × 1 population
location vector µ and a p×p symmetric positive definite population dispersion matrix Σ.
An important model is the elliptically contoured ECp(µ,Σ, g) distribution with probabil-
ity density function f(z) = kp|Σ|−1/2g[(z−µ)T Σ−1(z−µ)] where kp > 0 is some constant
and g is some known function. The multivariate normal (MVN) Np(µ,Σ) distribution is
a special case.

Let the p × 1 column vector T (X) be a multivariate location estimator, and let the
p × p symmetric positive definite matrix C(X) be a dispersion estimator. Then the ith
squared sample Mahalanobis distance is the scalar D2

i = D2
i (T (X), C(X)) =

(xi − T (X))TC−1(X)(xi − T (X)) (13)

for each observation xi. Notice that the Euclidean distance of xi from the estimate of
center T (X) is Di(T (X), Ip) where Ip is the p×p identity matrix. Often the data X will
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be suppressed. Then the classical Mahalanobis distance uses (T, C) = (x, S). Following
Johnson (1987, p. 107-108), the population squared Mahalanobis distance

U ≡ D2(µ,Σ) = (x − µ)TΣ−1(x − µ), (14)

and for elliptically contoured distributions, U has probability density function (pdf)

h(u) =
πp/2

Γ(p/2)
kpu

p/2−1g(u). (15)

The volume of the hyperellipsoid {z : (z − x)TS−1(z − x) ≤ h2} is equal to

2πp/2

pΓ(p/2)
hp
√

det(S), (16)

see Johnson and Wichern (1988, p. 103-104).
Note that if (T, C) is a

√
n consistent estimator of (µ, d Σ), then

D2(T, C) = (x − T )TC−1(x − T ) =

(x −µ + µ − T )T [C−1 − d−1Σ−1 + d−1Σ−1]

(x − µ + µ − T )

= d−1D2(µ,Σ) + OP (n−1/2).

Thus the sample percentiles of D2
i (T, C) are consistent estimators of the percentiles of

d−1D2(µ,Σ).

For multivariate normal data, D2(µ,Σ) ∼ χ2
p.

Suppose (T, C) = (xM , b SM ) is the sample mean and scaled sample covariance
matrix applied to some subset of the data. For h > 0, the hyperellipsoid

{z : (z − T )TC−1(z − T ) ≤ h2} = {z : D2
z ≤ h2}

= {z : Dz ≤ h} (17)

has volume equal to

2πp/2

pΓ(p/2)
hp
√

det(C) =
2πp/2

pΓ(p/2)
hpbp/2

√
det(SM ) (18)

by (16). A future observation (random vector) xf is in region (17) if Dxf
≤ h.

The Olive and Hawkins (2010) RMVN estimator (TRMV N , CRMV N ) is an easily com-
puted

√
n consistent estimator of (µ, cΣ) under regularity conditions (E1) that include a

large class of elliptically contoured distributions, and c = 1 for the Np(µ,Σ) distribution.
Also see Zhang, Olive and Ye (2012). The RMVN estimator also gives a useful estimate
of (µ,Σ) for Np(µ,Σ) data even when certain types of outliers are present.
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A large sample (1−δ)100% prediction region is a set An such that P (xf ∈ An)
P→ 1−δ.

Let qn be given by (8). If (T, C) is a consistent estimator of (µ, dΣ), then (17) is a large
sample (1−δ)100% prediction region if h = D(up) where D(up) is the qnth sample quantile
of the Di. If x1, ..., xn and xf are iid, then region (17) is asymptotically optimal on a large
class of elliptically contoured distributions in that its volume converges in probability to
the volume of the minimum volume covering region {z : (z − µ)TΣ−1(z − µ) ≤ u1−δ}
where P (U ≤ u1−δ) = 1 − δ and U has pdf given by (15). The classical parametric

multivariate normal large sample prediction region uses Dxf
(x, S) ≡ MDxf

≤
√

χ2
p,1−δ.

Olive (2013a) gives three new prediction regions. The nonparametric region uses the
classical estimator (T, C) = (x, S) and h = D(up). The semiparametric region uses
(T, C) = (TRMV N , CRMV N ) and h = D(up). The parametric MVN region uses (T, C) =
(TRMV N , CRMV N ) and h2 = χ2

p,qn
where P (W ≤ χ2

p,qn
) = qn if W ∼ χ2

p. All three regions
are asymptotically optimal for Np(µ,Σ) distributions with nonsingular Σ. The first two
regions are asymptotically optimal for a large class of elliptically contoured distributions.
For distributions with nonsingular covariance matrix cXΣ, the nonparametric region is a
large sample (1− δ)100% prediction region, but regions with smaller volume may exist.

Notice that for the data x1, ..., xn, if C−1 exists, then 100qn% of the n cases are in
the prediction region, and qn → 1 − δ even if (T, C) is not a good estimator. Hence the
coverage qn of the training data is robust to model assumptions. Of course the volume
of the prediction region could be large if a poor estimator (T, C) is used or if the xi do
not come from an elliptically contoured distribution. Also notice that qn = 1 − δ/2 or
qn = 1 − δ + 0.05 for n ≤ 20p and qn → 1 − δ as n → ∞. If qn ≡ 1 − δ, then (17) is
a large sample prediction region, but taking qn given by (8) improves the finite sample
performance of the region. Taking qn ≡ 1 − δ does not take into account variability of
(T, C), and for moderate n the resulting prediction region tended to have undercoverage
as high as min(0.05, δ/2). Using (8) helped reduce undercoverage for moderate n due to
the unknown variability of (T, C).

Rousseeuw and Van Driessen (1999) introduce the DD plot of the classical Maha-
lanobis distances MD versus the robust distances RD. Olive (2002) shows that if consis-
tent estimators are used and n is large, then the plotted points will follow the identity
line with unit slope and zero intercept if the data distribution is multivariate normal, and
the plotted points will follow some other line through the origin if the data distribution
is from a large class of elliptically contoured distributions but not multivariate normal.

Figure 4 was made with the Arc software of Cook and Weisberg (1999). The 10%,
30%, 50%, 70%, 90% and 98% highest density regions are shown for two multivariate
normal (MVN) distributions. Both distributions have µ = 0. In Figure 4a),

Σ =

(
1 0.9

0.9 4

)
.

Note that the ellipsoids are narrow with high positive correlation. In Figure 4b),

Σ =

(
1 −0.4

−0.4 1

)
.

Note that the ellipsoids are wide with negative correlation. The highest density ellipsoids
are superimposed on a scatterplot of a sample of size 100 from each distribution.
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Figure 5: Prediction Regions for Buxton Data
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Ex. 5. Buxton (1920) gives various measurements on 87 men including height, head
length, nasal height, bigonal breadth and cephalic index. Five heights were recorded to be
about 19mm and are massive outliers. All 87 cases and 5 predictors were used. Figure
5 shows the RMVN DD plot with the identity line added as a visual aid. Points to
the left of the vertical line are in the nonparametric large sample 90% prediction region.
Points below the horizontal line are in the semiparametric region. The horizontal line
at RD = 3.33 corresponding to the parametric MVN 90% region is obscured by the
identity line. This region contains 78 of the cases. Since n = 87, the nonparametric and
semiparametric regions used the 95th quantile. Since there were 5 outliers, this quantile
was a linear combination of the largest clean distance and the smallest outlier distance.
The semiparametric 90% region blows up unless the outlier proportion is small.

Figure 6 shows the DD plot and 3 prediction regions after the 5 outliers were removed.
The classical and robust distances cluster about the identity line and the three regions
are similar, with the parametric MVN region cutoff again at 3.33, slightly below the
semiparametric region cutoff of 3.44.

Example 6. Consider the mussel data set from Example 1 with p = 5 and n = 82.
Figure 5 shows a DD plot of the data with multivariate prediction regions added. This
plot suggests that the data may come from an elliptically contoured distribution that is
not multivariate normal. The semiparametric and nonparametric 90% prediction regions
consist of the cases below the RD = 5.86 line and to the left of the MD = 4.41 line. These
two lines intersect on a line through the origin that is followed by the plotted points.
The parametric MVN prediction region is given by the points below the RD = 3.33
line and does not contain enough cases. Points to the left of a vertical line MD = 3.33
would give a modified classical MVN prediction region. Parametric prediction regions for
multivariate normal data tend to have severe undercoverage if the data is not multivariate
normal. This undercoverage problem becomes worse as p increases, since if the cutoff h
is too small, then the volume of the prediction region depends on hp by (16).

Asymptotically Optimal Prediction Regions for the Multivariate Linear
Regression Model

The multivariate linear regression model yi = BT xi + εi for i = 1, ..., n has m ≥
2 response variables Y1, ..., Ym and p predictor variables x1, x2, ..., xp. The ith case is
(xT

i , yT
i ) = (xi1, xi2, ..., xip, Yi1, ..., Yim) where the constant xi1 = 1 could be omitted from

the case. The model is written in matrix form as Z = XB+E. The model has E(εk) = 0
and Cov(εk) = Σε = (σij) for k = 1, ..., n. Also E(ei) = 0 while Cov(ei, ej) = σijIn for
i, j = 1, ..., m. Then B and Σε are unknown matrices of parameters to be estimated,
and E(Z) = XB while E(Yij) = xT

i βj. The n × m matrix

Z =
[

Y 1 Y 2 . . . Y m

]
=




yT
1
...

yT
n


 .

If v1 = 1, the n × p matrix

X =
[

v1 v2 . . . vp

]
=




xT
1
...

xT
n


 .
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Figure 7: DD Plot of the Mussels Data.

The p × m matrix B =
[

β1 β2 . . . βm

]
.

The n ×m matrix

E =
[

e1 e2 . . . em

]
=




εT
1
...

εT
n


 .

Least squares is the classical method for fitting multivariate linear regression. The
least squares estimators are B̂ = (XTX)−1XT Z =

[
β̂1 β̂2 . . . β̂m

]
. The predicted

values or fitted values
Ẑ = XB̂ =

[
Ŷ 1 Ŷ 2 . . . Ŷ m

]
.

The residuals

Ê = Z − Ẑ = Z − XB̂ =




ε̂T
1

ε̂T
2
...

ε̂T
n




=
[

r̂1 r̂2 . . . r̂m

]
.

These quantities can be found from the m multiple linear regressions of Yj on the pre-

dictors: β̂j = (XTX)−1XTY j, Ŷ j = Xβ̂j and r̂j = Y j − Ŷ j for j = 1, ..., m. Hence

ε̂i,j = Yi,j − Ŷi,j where Ŷ j = (Ŷ1,j, ..., Ŷn,j)
T . Finally,

Σ̂ε,d =
(Z − Ẑ)T (Z − Ẑ)

n − d
=

(Z − XB̂)T (Z − XB̂)

n − d
=

Ê
T
Ê

n − d
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=
1

n − d

n∑

i=1

ε̂iε̂
T
i .

The choices d = 0 and d = p are common. If d = 1, then Σ̂ε,d=1 = Sr, the sample
covariance matrix of the residual vectors ε̂i since the sample mean of the ε̂i is 0. Let
Σ̂ε = Σ̂ε,p be the unbiased estimator of Σε. The εi are assumed to be iid.

Now suppose a prediction region for an m × 1 random vector yf given a vector
of predictors xf is desired for the multivariate linear model. If we had many cases
zi = BT xf + εi, then we could make a prediction region for zi using one of the three
multivariate location and dispersion model prediction regions with p replaced by m.

Instead, use the nonparametric region on the pseudodata ẑi = B̂
T
xf + ε̂i = ŷf + ε̂i for

i = 1, ..., n. This takes the data cloud of the n residual vectors ε̂i and centers the cloud
at ŷf . Note that ẑi = (B −B + B̂)T xf + (εi − εi + ε̂i) = zi + (B̂ −B)T xf + ε̂i − εi =

zi + (B̂ − B)Txf − (B̂ − B)Txi = zi + OP (n−1/2). The theory section will show that
the distances based on the zi and the distances based on the ẑi have the same quantiles,
asymptotically.

If the εi are iid from an ECp(µ,Σ, g) distribution with nonsingular covariance matrix
Σε and continuous decreasing g, then the population asymptotically optimal prediction
region is {y : Dy(BTxf ,Σε) < D1−δ} where P (Dy(BT xf ,Σε) < D1−δ) = 1 − δ. For

example, if the iid εi ∼ Nm(0,Σε), then D1−δ =
√

χ2
m,1−δ. If the error distribution is not

elliptically contoured, then the above region still has 100(1−δ)% coverage, but prediction
regions with smaller volume may exist.

The “theory section” shows that applying the nonparametric prediction region on
the ẑi results in a large sample 100(1 − δ)% prediction region for yf given the vector of
predictors xf . The prediction region is asymptotically optimal if the εi are iid from an
ECp(0,Σε, g) distribution for a large class of elliptically contoured distributions.

The nonparametic region uses the sample mean and sample covariance matrix (T, C)
of the ẑi. For h > 0, the hyperellipsoid

{y : (y − T )TC−1(y − T ) ≤ h2} =

{y : D2
y ≤ h2} = {y : Dy ≤ h}. (19)

A future observation (random vector) yf is in the region (19) if Dy
f
≤ h.

Since the least squares residuals have sample mean 0, Sr is the sample covariance
matrix of the residual vectors ε̂i and of the ẑi = ŷf + ε̂i, and the sample mean of the
ẑi is ŷf . Hence (T, C) = (ŷf , Sr), and the Di(ŷf , Sr) using the ẑi are used to compute
D(up). Set up the nonparametric prediction region (19) using h = D(up)(ŷf , Sr) using m
instead of p.

The nonparametic prediction region has some interesting properties. If there are 100
different values (xjf , yjf ) to be predicted, only need to update ŷjf for j = 1, ..., 100, do
not need to update the covariance matrix Sr.

The geometry of the nonparametric region is simple. Let Rr be the nonparametric
prediction region applied to the residuals ε̂i, and let (19) be the nonparametric prediction
region using (T, C) = (ŷf , Sr) when the multivariate regression is fit by least squares.
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Then Rr is a hyperellipsoid with center 0, and the nonparametric prediction region (19)
is the hyperellipsoid Rr translated to have center ŷf .

It is common practice to examine how well the prediction regions work on the data.
That is, for i = 1, ..., n, set xf = xi and see if yi is in the region with probability near
to 1− δ with a simulation study. Note that ŷf = ŷi if xf = xi. Simulation is not needed
for the nonparametric prediction region (19) for the data since the prediction region (19)
centered at ŷi contains yi iff Rr , the prediction region centered at 0, contains ε̂i since
yi−ŷi = ε̂i. So Dy

i
(ŷi, Sr) = (yi−ŷi)

TS−1
r (yi−ŷi) = (ε̂i−0)TS−1

r (ε̂i−0) = Dε̂i
(0, Sr).

Thus 100qn% of prediction regions corresponding to the training data (yi, xi) contain yi,
and 100qn% → 100(1 − δ)%. Hence the prediction regions work well on the training
data and should work well on (xf , yf) similar to the training data. Of course simulation
should be done for (xf , yf) that are not equal to training data cases.

This result holds provided that the multivariate linear regression using least squares
is such that the sample covariance matrix Sr of the residual vectors is nonsingular, the
multivariate regression model need not be correct. Hence the coverage at the
n training data cases (xi, yi) is very robust to model misspecification. Of course, the
prediction regions may be very large if the model is severely misspecified, but severity
of misspecification can be checked with the response, residual and DD plots. Coverage
can also be arbitrarily bad if there is extrapolation or if (xf , yf ) comes from a different
population than that of the data.
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Figure 8: Plots for Y1 = log(W ).

Example 7. Consider the Cook and Weisberg (1999) mussels data with Y1 = log(S)
and Y2 = log(M) where S is the shell mass and M is the muscle mass. The predictors
are X2 = L, X3 = log(W ) and X4 = H: the shell length, width and height. (Example
6 and Figure 5 discussed the multivariate prediction regions.) Figures 8 and 9 give the
response and residual plots for Y1 and Y2. For Y2, cases 8, 25 and 48 are not fit well. A
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Figure 10: DD Plot of the Residual Vectors.
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residual vector r = (r−e)+e is a combination of e and a discrepancy r−e that tends to
have an approximate multivariate normal distribution. The r−e term can dominate for
small to moderate n when e is not multivariate normal, incorrectly suggesting that the
distribution of the error e is closer to a multivariate normal distribution than is actually
the case. Figure 10 shows the DD plot of the residual vectors. The nonparametric
90% prediction region for the residuals consists of the points to the left of the vertical
line MD = 2.60. Comparing Figures 5 and 10, the residual distribution is closer to
a multivariate normal distribution. Cases 8, 48 and 79 have especially large distances.
Note that cases to the right of the vertical line correspond to cases that are not in their
prediction region. Also adding a constant does not change the distance, so the DD plot
for the residuals is the same as the DD plot for the ẑi.

III. Theory
Location Model:
Grübel (1988) shows that, under regularity conditions, the length of the shorth con-

verges in probability to D at a
√

n rate but the midpoint of the shorth converges in
probability to the midpoint of the population shorth at an n1/3 rate. Since the location
model is a special case of the regression models, the results for regression suggest that
a PI based on the shorth should work well, asymptotically, if the sample percentiles are
consistent estimators of the population percentiles and the distribution is continuous.

For a discrete distribution, the asymptotically optimal region will be a set of points
rather than an interval. The shorth should produce short intervals, but odd behavior
can occur. For example, if P (Y = 0) = 0.1, P (Y = 1) = 0.8 and P (Y = 7) = 0.1, then
the shortest population 90% PI is [0,1], but the sample shorth covering 90% of the cases
will use (0,1), (1,7) and (0,7).

Multiple Linear Regression:
Assume that the predictors are bounded. Hence ‖x‖ ≤ M for some constant M . Let

0 < γ < 1, and let 0 < ε < 1. Since β̂n is consistent, there exists an N such that P (A) =

P (β̂j,n ∈ [βj −
ε

4pM
, βj +

ε

4pM
], j = 1, ..., p)

≥ 1 − γ

for all n ≥ N. If n ≥ N , then on set A,

max
i=1,...,n

|ri − ei| = max
i=1,...,n

|
p∑

i=1

xi,j(βj − β̂j,n)| ≤
ε

2
.

Since ε and γ are arbitrary,

max
i=1,...,n

|ri − ei| P→ 0.

Hence the sample percentiles of the residuals are consistent estimators of the population
percentiles of the population distribution of the ei. The following result suggests that
the shorth of the residuals will perform well.

Regression where Y = m(x) + e:
To see that the PI (11) is asymptotically optimal, assume that the sample percentiles

of the residuals converge to the population percentiles of the iid unimodal errors: ξ̂δ
P→ ξδ.
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Also assume that the population shorth (ξδ1
, ξ1−δ2

) is unique and has length L. Since bn →
1, m̂(xf )

P→ m(xf), and qn = 1−δ for large enough n, it is enough to show that the shorth

of the residuals converges to the population shorth of the ei: (ξ̃δ1
, ξ̃1−δ2

)
P→ (ξδ1

, ξ1−δ2
).

Let Ln be the length of the shorth (ξ̃δ1
, ξ̃1−δ2

). Since ri − ei
P→ 0, and since consistent

sample percentiles imply that the proportion of ri that do not get arbitrarily close to the
ei goes to 0, the shorth is an interval that asymptotically covers 100(1− δ)% of the cases
(ei) and the population shorth is the shortest such interval. Hence P (Ln < L) → 0. But

Ln = ξ̃1−δ2
− ξ̃δ1

≤ ξ̂1−δ2
− ξ̂δ1

P→ L as n → ∞ since the sample percentiles are consistent
and the shorth is the smallest sample interval covering 100 (1 − δ)% of the data (define
the sample percentiles to be order statistics, e.g. ξ̂δ1

= r(dnδ1e), and c = cn ≈ n(1 − δ) so

that cn is the number of residuals in [ξ̂δ1
, ξ̂1−δ2

]). Hence Ln
P→ L, and since the population

shorth is unique, the shorth of the residuals converges in probability to the population
shorth (can’t have two intervals of length L that asymptotically cover 100(1− δ)% of the
data).

Multivariate Location and Dispersion:
If (T, C) is a consistent estimator of (µ, dΣ), then (17) is a large sample (1− δ)100%

prediction region if h = D(up) where D(up) is the qnth sample quantile of the Di. If
x1, ..., xn and xf are iid, then region (17) is asymptotically optimal on a large class
of elliptically contoured distributions in that its volume converges in probability to the
volume of the minimum volume covering region {z : (z−µ)TΣ−1(z−µ) ≤ u1−δ} where
P (U ≤ u1−δ) = 1 − δ and U has pdf given by (15).

T n converges in probability to θ, written T n
P→ θ, if for every ε > 0, P (‖T n−θ‖ >

ε) → 0 as n → ∞. T n is a consistent estimator of θ if T n
P→ θ for every θ ∈ Θ.

T n is a
√

n consistent estimator of θ if
√

n‖T n − θ‖ is bounded in probability. Then

n0.499‖T n − θ‖ P→ 0.
Collect the n cases into a data matrix W with ith row xT

i . Let B = 1bT . Then the
multivariate location and dispersion estimator (T, C) is affine equivariant if

T (Z) = T (WAT + B) = AT (W ) + b, (20)

and
C(Z) = C(WAT + B) = AC(W )AT . (21)

The assumption below gives the class of distributions for which RMVN has been
shown to be

√
n consistent. Distributions where the minimum covariance determinant

(MCD) functional is unique are called “unimodal,” and rule out, for example, a spheri-
cally symmetric uniform distribution.

Assumption (E1): The x1, ..., xn are iid from a “unimodal” ECp(µ,Σ, g) distribu-
tion with nonsingular covariance matrix Cov(xi) where g is continuously differentiable
with finite 4th moment:

∫
(xT x)2g(xT x)dx < ∞.

Theorem 1, Lopuhaä (1999). Suppose (T, C) is a consistent affine equivariant
estimator of (µ, sΣ) with rate nδ where s > 0 and 0 < δ ≤ 0.5. Assume (E1) holds. Then
the classical estimator (T0, C0) applied to the cases with D2

i (T, C) ≤ h2 is a consistent
affine equivariant estimator of (µ, aΣ) with the same rate nδ where a > 0. The constant
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a depends on the positive constants s, h2, p and the elliptically contoured distribution,
but does not otherwise depend on the consistent start (T, C).

Let δ = 0.5. Applying the above theorem iteratively for a fixed number k of steps
produces a sequence of estimators
(T0, C0), ..., (Tk, Ck) where (Tj, Cj) is a

√
n consistent affine equivariant estimator of

(µ, ajΣ) where the constants aj > 0 depend on s, p, h and the elliptically contoured
distribution, but do not otherwise depend on the consistent start (T, C) ≡ (T−1, C−1).

Concentration applies the classical estimator to cases with D2
i (T, C) ≤ D2

(cn)(T, C).
Let

b = D2
0.5(µ,Σ) (22)

be the population median of the population squared distances. Olive and Hawkins
(2010) show that if (T, C) is a

√
n consistent affine equivariant estimator of (µ, sΣ)

then (T, C̃) ≡ (T, D2
(cn)(T, C) C) is a

√
n consistent affine equivariant estimator of

(µ, bΣ) where b > 0 is given by Equation (22), and that D2
i (T, C̃) ≤ 1 is equivalent to

D2
i (T, C) ≤ D2

(cn)(T, C)). Hence Lopuhaä (1999) theory applied to (T, C̃) with h = 1 is
equivalent to theory applied to the concentration estimator using the affine equivariant
estimator (T, C) ≡ (T−1, C−1) as the start. Since b does not depend on s, concentration
produces a sequence of estimators (T0, C0), ..., (Tk, Ck) where (Tj, Cj) is a

√
n consistent

affine equivariant estimator of (µ, aΣ) where the constant a > 0 is the same for each j.
Then Olive and Hawkins (2010) show that the DGK and MCD estimators are estimating
the same quantity where the DGK estimator uses the classical estimator (x, S) as the
only start. See Devlin, Gnanadesikan and Kettenring (1981). Note that the DGK estima-
tor is practical to compute but has a much lower breakdown value than the impractical
MCD estimator.

Theorem 2, Olive and Hawkins (2010). Assume (E1) holds. a) Then the DGK estima-
tor and MCD estimator are

√
n consistent affine equivariant estimators of (µ, aMCDΣ).

b) The FCH, RFCH and RMVN estimators are
√

n consistent estimators of (µ, ciΣ)
for c1, c2, c3 > 0 where ci = 1 for multivariate normal data. If the clean data are in
general position, then TFCH is a high breakdown estimator and CFCH is nonsingular
even if nearly half of the cases are outliers.

Consider the subset Jo of cn ≈ n/2 observations whose sample covariance matrix
has the lowest determinant among all C(n, cn) subsets of size cn. Let TMCD and CMCD

denote the sample mean and sample covariance matrix of the cn cases in Jo. Then the
minimum covariance determinant MCD(cn) estimator is (TMCD(W ), CMCD(W )).

This is the fastest estimator of multivariate location and dispersion that has been
shown to be both consistent and high breakdown with O(nv) complexity where v =
1 + p(p + 3)/2. See Bernholt and Fischer (2004).

For nearly 20 years, the elemental basic resampling algorithm was the main way for
computing “high breakdown multivariate robust estimators.” Randomly select h cases
and compute the classical estimator (Ti, Ci) (or Ti = β̂i for MLR) for these cases. Here
h = p for multiple linear regression and h = p+1 for multivariate location and dispersion.
The estimator uses K elemental sets as trial fits.

Theorem 3: The elemental basic resampling algorithm estimators are inconsistent and
zero breakdown.
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Proof: Note that you can not get a consistent estimator by using Kh randomly
selected cases since the number of cases Kh needs to go to ∞ for consistency. Change
each of the Kh cases to d1 where 1 is a vector of ones and d is some constant. Then
the classical OLS estimator can not be computed and the classical dispersion estimator
is singular with rank 1 if d 6= 0. Hence the breakdown value is bounded by Kh/n → 0.
QED

The Rousseeuw Yohai paradigm for high breakdown multivariate robust statistics is to
approximate an impractical brand name estimator by computing a fixed number of easily
computed trial fits and then use the brand name estimator criterion to select the trial
fit to be used in the final robust estimator. The resulting estimator will be called an F-
brand name estimator where the F indicates that a fixed number of trial fits was used. For
example, generate 500 easily computed estimators of multivariate location and dispersion
as trial fits. Then choose the trial fit with the dispersion estimator that has the smallest
determinant. Since the minimum covariance determinant (MCD) criterion is used, call
the resulting estimator the FMCD estimator. Hubert, Rousseeuw, and Verdonck (2012)
claim to compute MCD with two FMCD estimators Fast-MCD and Det-MCD, but the
claim is false because sometimes Fast-MCD has the smallest determinant and sometimes
Det-MCD does. If both were finding the half set corresponding to the sample covariance
matrix with the smallest determinant, then the two determinants would always be equal.

Multivariate Linear Regression:
Theorem 4, (Johnson and Wichern (1988, p. 304): Suppose X has full rank p < n

and the covariance structure of the multivariate linear model holds. Then E(B̂) = B

so E(β̂j) = βj , Cov(β̂j, β̂k) = σjk(X
T X)−1 for j, k = 1, ..., p. Also Ê and B̂ are

uncorrelated, E(Ê) = 0 and

E(Σ̂ε) = E



Ê
T
Ê

n − p



 = Σε.

Su and Cook (2012) show that if the iid errors have 4th moments, max hi → 0 and

XT X/n
P→ C−1, then B̂ and Sr are

√
n consistent and asymptotically normal. The

following result is also useful.
Theorem 5. Sr = Σε + OP (n−1/2) if B − B̂ = OP (n−1/2), 1

n

∑n
i=1 εix

T
i = OP (1),

1

n

n∑

i=1

xix
T
i = OP (n−1/2)

and 1
n

∑n
i=1 εiε

T
i = Σε + OP (n−1/2).

Proof. Note that yi = BT xi + εi = B̂
T
xi + ε̂i. Hence ε̂i = (B − B̂)T xi + εi. Thus

n∑

i=1

ε̂iε̂
T
i =

n∑

i=1

(εi − εi + ε̂i)(εi − εi + ε̂i)
T =

n∑

i=1

[εiε
T
i + εi(ε̂i − εi)

T + (ε̂i − εi)ε̂
T
i ] =
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n∑

i=1

εiε
T
i + (

n∑

i=1

εix
T
i )(B − B̂)

+(B − B̂)T (
n∑

i=1

xiε
T
i )+

(B − B̂)T (
n∑

i=1

xix
T
i )(B − B̂).

Thus 1
n

∑n
i=1 ε̂iε̂

T
i = 1

n

∑n
i=1 εiε

T
i +

OP (1)OP (n−1/2) + OP (n−1/2)OP (1)+

OP (n−1/2)OP (n1/2)OP (n−1/2),

and the result follows since 1
n

∑n
i=1 εiε

T
i = Σε + OP (n−1/2) and

Sr =
n

n − 1

1

n

n∑

i=1

ε̂iε̂
T
i .

The following technical theorem will be needed to prove Theorem 7.

Theorem 6. Let aj > 0 and assume that (µ̂j,n, Σ̂j,n) are consistent estimators of
(µ, ajΣ) for j = 1, 2.

a) D2
x(µ̂j , Σ̂j) − 1

aj
D2

x(µ,Σ) = oP (1).

b) Let 0 < δ ≤ 0.5. If (µ̂j, Σ̂j) − (µ, ajΣ) = Op(n
−δ) and ajΣ̂

−1

j − Σ−1 = OP (n−δ),
then

D2
x(µ̂j, Σ̂j) −

1

aj
D2

x(µ,Σ) = OP (n−δ).

Proof. Let Bn denote the subset of the sample space on which both Σ̂1,n and Σ̂2,n

have inverses. Then P (Bn) → 1 as n → ∞.

D2
x(µ̂j, Σ̂j) = (x − µ̂j)

T Σ̂
−1

j (x− µ̂j) =

(x − µ̂j)
T

(
Σ−1

aj
− Σ−1

aj
+ Σ̂

−1

j

)
(x− µ̂j)

= (x − µ̂j)
T

(
−Σ−1

aj
+ Σ̂

−1

j

)
(x − µ̂j)+

(x− µ̂j)
T

(
Σ−1

aj

)
(x − µ̂j)

=
1

aj
(x − µ̂j)

T (−Σ−1 + aj Σ̂
−1

j )(x − µ̂j) +

(x − µ + µ − µ̂j)
T

(
Σ−1

aj

)
(x − µ + µ − µ̂j)
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=
1

aj
(x −µ)TΣ−1(x − µ)

+
2

aj
(x− µ)TΣ−1(µ − µ̂j)+

1

aj

(µ − µ̂j)
TΣ−1(µ − µ̂j)

+
1

aj
(x − µ̂j)

T [ajΣ̂
−1

j − Σ−1](x − µ̂j) (23)

on Bn, and the last three terms are oP (1) under a) and OP (n−δ) under b).

Theorem 7. Suppose yi = E(yi)+εi = ŷi + ε̂i where Cov(εi) = Σε > 0, and where εf

and the εi are iid for i = 1, ..., n. Suppose the fitted model produces ŷf and nonsingular

Σ̂ε. Let ẑi = ŷf + ε̂i and

D2
i (ŷf , Σ̂ε) = (ẑi − ŷf )

T Σ̂
−1

ε (ẑi − ŷf)

for i = 1, ..., n. Let qn = min(1 − δ + 0.05, 1 − δ + m/n) for δ > 0.1 and

qn = min(1 − δ/2, 1 − δ + 10δm/n), otherwise.

If qn < 1 − δ + 0.001, set qn = 1 − δ. Let 0 < δ < 1 and h = D(Un) where D(Un) is the
qnth sample quantile of the Di. Consider the nominal 100(1 − δ)% prediction region for
yf

{z : (z − ŷf )
T Σ̂

−1

ε (z − ŷf) ≤ D2
(Un)} =

{z : D2
z(ŷf , Σ̂ε) ≤ D2

(Un)} =

{z : Dz(ŷf , Σ̂ε) ≤ D(Un)}. (24)

a) Consider the n prediction regions for the data where (yf,i, xf,i) = (yi, xi) for
i = 1, ..., n. If the order statistic D(Un) is unique, then Un of the n prediction regions
contain yi where Un/n → 1 − δ as n → ∞.

b) If (ŷf , Σ̂ε) is a consistent estimator of (E(yf),Σε) then (24) is a large sample
100(1 − δ)% prediction region for yf .

c) If (ŷf , Σ̂ε) is a consistent estimator of (E(yf ),Σε), and the εi come from an ellip-
tically contoured distribution such that the highest density region is {z : Dz(0,Σε) ≤
D1−δ}, then the prediction region (24) is asymptotically optimal.

Proof. a) Suppose (xf , yf) = (xi, yi). Then

D2
y

i
(ŷi, Σ̂ε) = (yi − ŷi)

T Σ̂
−1

ε (yi − ŷi) =

ε̂T
i Σ̂

−1

ε ε̂i = D2
ε̂i

(0, Σ̂ε).

Hence yi is in the ith prediction region {z : Dz(ŷi, Σ̂ε) ≤ D(Un)(ŷi, Σ̂ε)} iff ε̂i is in

prediction region {z : Dz(0, Σ̂ε) ≤ D(Un)(0, Σ̂ε)}, but exactly Un of the ε̂i are in the
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latter region by construction, if D(Un) is unique. Since D(Un) is the (1 − δ) percentile of
the Di asymptotically, Un/n → 1 − δ.

b) Let P [Dz(E(yf),Σε) ≤ D1−δ(E(yf ),Σε)] = 1 − δ. Since Σε > 0, Theorem 6

shows that if (ŷf , Σ̂ε)
P→ (E(yf),Σε) then D(ŷf , Σ̂ε)

P→ Dz(E(yf),Σε). Hence the
percentiles of the distances also converge in probability, and the probability that yf is

in {z : Dz(ŷf , Σ̂ε) ≤ D1−δ(ŷf , Σ̂ε)} converges to 1 − δ = the probability that yf is in
{z : Dz(E(yf ),Σε) ≤ D1−δ(E(yf),Σε)}.

c) The asymptotically optimal prediction region is the region with the smallest volume
(hence highest density) such that the coverage is 1 − δ, as n → ∞. This region is
{z : Dz(E(yf),Σε) ≤ D1−δ(E(yf ),Σε)} if the asymptotically optimal region for the εi

is {z : Dz(0,Σε) ≤ D1−δ(0,Σε)}. Hence the result follows by b). QED

IV. Simulations Data and programs are in the collections of functions rpack and
mpack are available at (www.math.siu.edu/olive/ol-bookp.htm) and (www.math.siu.edu/olive/
multbk.htm).

Location Model Use rpack function lpisim.
Multiple Linear Regression See Olive (2007) and rpack function pisim.
Regression where Y = m(x) + e
A small simulation study compares the PI lengths and coverages for sample sizes

n = 50, 100 and 1000 for PIs (10) and (11). Values for PI (10) were denoted by scov and
slen while values for PI (11) were denoted by ocov and olen. The five error distributions
in the simulation were 1) N(0,1), 2) t3, 3) exponential(1) −1, 4) uniform(−1, 1) and 5)
0.9N(0, 1) + 0.1N(0, 100). The value n = ∞ gives the asymptotic coverages and lengths
and does not depend on the model. So these values are same for multiple linear and
nonlinear regression as well as additive models.

The regression model was Yi = m(xi) + ei, E(Yi) = m(xi) = β1xi1 + β2x
2
i1 + β3xi2 +

β4x
2
i2+β5xi3+β6x

2
i3. This model was fit as an additive model in x1, x2, and x3 with additive

predictor m(xi) = α +
∑3

j=1 Sj(xij) where the Sj are unknown. The additive model had
mean function m(xi) = xi1 + x2

i1. Thus β = (1, 1, 0, 0, 0, 0)T , α = 0, S1(xi1) = xi1 + x2
i1,

S2(xi2) = 0 and S3(xi3) = 0. For this model, the vectors (x1, x2, x3)
T were iid N3(0, I3).

The PIs for the additive model were computed using the R function gam. See Hastie
and Tibshirani (1990) and Wood (2006). The PI (10) is not asymptotically optimal with
error type 3. It is not known whether m̂ is a consistent estimator of m, but the prediction
intervals appear to have the correct asymptotic coverage and length. Some consistency
results for the additive model and models of the form Y = m(x) + e where m is smooth
are given in Müller, Schick and Wefelmeyer (2012) and Wang, Liu, Liang, and Carroll
(2011).

The simulation used 5000 runs and gave the proportion p̂ of runs where Yf fell within
the nominal 100(1 − δ)% PI. The count mp̂ has a binomial(m = 5000, p = 1 − τn)
distribution where 1 − τn converges to the asymptotic coverage (1 − τ ). The standard

error for the proportion is
√

p̂(1 − p̂)/5000 = 0.0031 and 0.0071 for p = 0.05 and 0.5,

respectively. Hence an observed coverage p̂ ∈ (.941, .959) for 95% and p̂ ∈ (.479, .521) for
50% PIs suggests that there is no reason to doubt that the PI has the nominal coverage.

Table 1 shows that for n = 1000, the coverages and lengths are near the asymptotic
n = ∞ values. For the 95% PI (11), the coverages were in or near (.94,.96) while the
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Table 1: PIs for Additive Models

error 95% PI 95% PI 50% PI 50% PI
type n slen olen scov ocov slen olen scov ocov

1 50 5.126 4.998 0.959 0.950 1.862 1.674 0.596 0.520
1 100 4.691 4.515 0.968 0.957 1.662 1.528 0.570 0.516
1 1000 3.994 3.944 0.954 0.949 1.379 1.351 0.514 0.505
1 ∞ 3.920 3.920 0.95 0.950 1.349 1.349 0.50 0.50
2 50 9.444 8.630 0.951 0.943 2.385 2.153 0.576 0.512
2 100 8.245 7.596 0.962 0.954 2.042 1.878 0.577 0.532
2 1000 6.523 6.388 0.950 0.946 1.584 1.553 0.499 0.489
2 ∞ 6.365 6.365 0.950 0.950 1.530 1.530 0.50 0.50
3 50 5.186 4.823 0.958 0.948 1.573 1.275 0.611 0.526
3 100 4.677 4.156 0.967 0.955 1.382 1.063 0.603 0.533
3 1000 3.771 3.227 0.954 0.952 1.112 0.774 0.509 0.512
3 ∞ 3.664 2.996 0.950 0.950 1.099 0.693 0.50 0.50
4 50 2.634 2.598 0.961 0.958 1.237 1.087 0.593 0.506
4 100 2.318 2.272 0.972 0.968 1.155 1.028 0.561 0.480
4 1000 1.936 1.926 0.959 0.954 1.014 0.969 0.499 0.486
4 ∞ 1.900 1.900 0.950 0.950 1.00 1.00 0.50 0.50
5 50 19.689 17.747 0.944 0.935 2.976 2.693 0.608 0.548
5 100 18.754 16.230 0.955 0.946 2.352 2.164 0.580 0.534
5 1000 13.855 12.930 0.946 0.943 1.602 1.569 0.510 0.504
5 ∞ 13.490 13.490 0.950 0.950 1.507 1.507 0.50 0.50

27



50% PI (9) was sometimes slightly conservative. The coverage for the 50% PI (10) was
near 60% for n = 50. PI (11) is recommended since its asymptotic optimality does not
depend on the symmetry of the error distribution.

Multivariate Location and Dispersion
Simulations for the prediction regions used x = Aw where A = diag(

√
1,
√

2, ...,
√

p),
w ∼ Np(0, Ip), w ∼ LN(0, Ip) where the marginals are iid lognormal(0,1), or w ∼
MV Tp(1), a multivariate t distribution with 1 degree of freedom so the marginals are iid
Cauchy(0,1). All simulations used 5000 runs and δ = 0.1.

Table 2: Coverages for 90% Prediction Regions

w dist n p ncov scov mcov voln volm
MVN 600 30 0.906 0.919 0.902 0.503 0.512
MVN 1500 30 0.899 0.899 0.900 1.014 1.027
LN 1000 10 0.903 0.906 0.567 0.659 0+

MVT(1) 1000 10 0.914 0.914 0.541 22634.3 0+

For large n, the semiparametric and nonparametric regions are likely to have coverage
near 0.90 because the coverage on the training sample is slightly larger than 0.9 and
xf comes from the same distribution as the xi. For n = 10p and 2 ≤ p ≤ 40, the
semiparametric region had coverage near 0.9. The ratio of the volumes

hp
i

√
det(Ci)

hp
2

√
det(C2)

was recorded where i = 1 was the nonparametric region, i = 2 was the semiparametric
region, and i = 3 was the parametric MVN region. The volume ratio converges in
probability to 1 for Np(µ,Σ) data, and the ratio converges to 1 for i = 1 on a large class
of elliptically contoured distributions. The parametric MVN region often had coverage
much lower than 0.9 with a volume ratio near 0, recorded as 0+. The volume ratio tends
to be tiny when the coverage is much less than the nominal value 0.9. For 10p ≤ n ≤ 20p,
the nonparametric region often had good coverage and volume ratio near 0.5.

Simulations and Table 2 suggest that for Np(µ,Σ) data, the coverages (ncov, scov
and mcov) for the 3 regions are near 90% for n = 20p and that the volume ratios voln and
volm are near 1 for n = 50p. With fewer than 5000 runs, this result held for 2 ≤ p ≤ 80.
For the non–elliptically contoured LN data, the nonparametric region had voln well under
1, but the volume ratio blew up for w ∼ MV Tp(1).

Multivariate Linear Regression
See mpack function mpredsim.
Summary
These prediction regions cover 100qn% of the training data where qn → 1 − δ as

n → ∞. For multiple linear regression and multivariate location and dispersion, need
n > 10p so that the estimators start giving good estimates. In the multivariate location
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and dispersion model, data is very sparse as p increases. So for p + 1 ≤ n < 10p could
have a low volume covering hyperellipsoid that does not approximate the population
covering hyperellipsoid. Then the prediction region could have serious undercoverage.

The prediction region for the multivariate model given in Theorem 7 and (24) can
be used for many multivariate regression models and estimators, including the Su and
Cook (2012) estimators for the multivariate linear regression model, seemingly unrelated
regression, and some multivariate time series models. The model is yi = E(yi) + εi =
ŷi + ε̂i where Cov(εi) = Σε > 0, and where εf and the εi are iid for i = 1, ..., n. When
OLS is used in multivariate linear regression with Sr, then the prediction region becomes
the nonparametric prediction region applied to the residuals. In general this result will
not hold since the sample mean of the residuals will usually not be 0.

What to plot for regression: if Y x|h(x) where the real valued function h : Rp → R,
make a response plot of ĥ(x) versus Y , and a residual plot of ĥ(x) versus r. See Olive
(2013b)

What to plot for multivariate location and dispersion: make a DD plot.
What to plot for multivariate regression: make a response and residual plot for each

of the m response variables and make a DD plot of the residuals. See Olive (2013c).

There is not much competition for these regions. The PI m̂(x) ± z1−δ

√
σ̂2 + V̂ (m̂)

needs normality, a consistent estimator m̂ and an estimate V̂ (m̂) of the variance of m̂
that goes to 0 as n → ∞. Bootstrap regions tend to take too long to compute and are not
backed by theory. An interesting idea is to estimate the pdf of the data, then use the pdf
to find small prediction regions. The problem with these regions is that nonparametric
pdf estimators do not work well for p > 4. See Lei, Robins and Wasserman (2011), Lei
and Wasserman (2012), and Vovk, Nouretdinov and Gammerman (2009).

Future Work a) Univariate and Multivariate Time Series. b) Prediction regions for
y1, ..., yk such that the probability that yi ∈ Ai for all k regions → 1−δ. So if 1−δ = 0.9,
gather 100 data sets. In about 90 data sets, all k of the yi ∈ Ai but in about 10 data
sets, at least one yj is not in Aj. c) Prediction regions so that at least m of k yj are in
the Aj.
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