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Abstract

Consider a regression model, Y |x ∼ D(x), where D is a parametric distribution that

depends on the p× 1 vector of predictors x. Generalized linear models, generalized additive

models, and some survival regression models have this form. To obtain a prediction interval

for a future value of the response variable Yf given a vector of predictors xf , apply the

nonparametric shorth prediction interval to Y ∗

1 , ..., Y
∗

B where the Y ∗

i are independent and

identically distributed from the distribution D̂(xf) which is a consistent estimator of D(xf).

A second prediction interval modifies the shorth prediction interval to work after variable

selection and if p > n where n is the sample size. Competing prediction intervals, when they

exist, tend to be for one family of D (such as Poisson regression), tend to need n ≥ 10p, and

usually have not been proven to work after variable selection.

1. Introduction

This paper presents simple large sample 100(1−δ)% prediction intervals (PIs) for a future

value of the response variable Yf given a p × 1 vector of predictors xf and training data

(x1, Y1), ..., (xn, Yn) for a parametric regression model Y |x ∼ D(x), where D is a parametric

distribution that depends on the p × 1 vector of predictors x. Often the conditioning and
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subscript i is suppressed: Y ∼ D(x) means Yf |xf ∼ D(xf ) and Yi|xi ∼ D(xi) for i = 1, ..., n.

In a 1D regression model, the response variable Y is conditionally independent of x

given the sufficient predictor SP = h(x), where the real valued function h : R
p → R. The

estimated sufficient predictor ESP = ĥ(x). An important special case is a model with a

linear predictor h(x) = xT β where ESP = xT β̂. A parametric 1D regression model is

Y |x ∼ D(h(x),γ) where the parametric distribution D depends on x only through h(x),

and γ is a q × 1 vector of parameters. Then D̂(x) = D(ĥ(x), γ̂). This class of models

includes the generalized linear model (GLM), and the generalized additive model (GAM),

where Y is independent of x = (1, x2, ..., xp)
T given the additive predictor (AP ) where, for

example, AP = SP = α+
∑p

j=2 Sj(xj) for some (usually unknown) functions Sj . Then the

estimated additive predictor EAP = ESP = α̂ +
∑p

j=2 Ŝj(xj).

A large sample 100(1 − δ)% prediction interval (PI) for Yf has the form [L̂n, Ûn] where

P (L̂n ≤ Yf ≤ Ûn) is eventually bounded below by 1 − δ as the sample size n → ∞. A large

sample 100(1 − δ)% PI is asymptotically optimal if it has the shortest asymptotic length:

the length of [L̂n, Ûn] converges to Us−Ls as n→ ∞ where [Ls, Us] is the population shorth:

the shortest interval covering at least 100(1 − δ)% of the mass.

The shorth(c) estimator of the population shorth is useful for making asymptotically

optimal prediction intervals if the data are independent and identically distributed (iid).

Let Z(1), ..., Z(n) be the order statistics of Z1, ..., Zn. Then let the shortest closed interval

containing at least c of the Zi be

shorth(c) = [Z(s),Z(s+c−1)]. (1)

Let dxe be the smallest integer ≥ x, e.g., d7.7e = 8. Let kn = dn(1− δ)e. Frey (2013) showed

that for large nδ and iid data, the shorth(kn) PI has maximum undercoverage ≈ 1.12
√

δ/n,

and used the shorth(c) estimator as the large sample 100(1 − δ)% PI where

c = min(n, dn[1 − δ + 1.12
√

δ/n ] e). (2)

The maximum undercoverage occurs for the family of uniform distributions, where the pop-

ulation shorth is not unique. Of course the length of the population shorth is unique.
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The large sample 100(1− δ)% shorth PI (2) may or may not be asymptotically optimal if

the 100(1 − δ)% population shorth is [Ls, Us] and F (x) is not strictly increasing in intervals

(Ls − δ, Ls + δ) and (Us − δ, Us + δ) for some δ > 0. To see the issue, suppose Y has

probability mass function (pmf) p(0) = 0.4, p(1) = 0.3, p(2) = 0.2, p(3) = 0.06, and

p(4) = 0.04. Then the 90% population shorth is [0,2] and the 100(1− δ)% population shorth

is [0,3] for (1 − δ) ∈ (0.9, 0.96]. Let I(Yi ≤ x) = 1 if Yi ≤ x and 0, otherwise. The empirical

cumulative distribution function

F̂n(x) =
1

n

n
∑

i=1

I(Yi ≤ x)

is the sample proportion of Yi ≤ x. If Y1, ..., Yn are iid, then for fixed x, nF̂n(x) ∼
binomial(n, F (x)). Thus an asymptotic normal approximation is F̂n(x) ∼ AN(F (x), F (x)

(1 − F (x))/n). For the Y with the above pmf, F̂n(2)
P→ 0.9 as n → ∞ with P (F̂n(2) <

0.9) → 0.5 and P (F̂n(2) ≥ 0.9) → 0.5 as n→ ∞. Hence the large sample 90% PI (2) will be

[0,2] or [0,3] with probabilities → 0.5 as n → ∞ with expected asymptotic length 2.5 and

expected asymptotic coverage 0.93. However, the large sample 100(1− δ)% PI (2) converges

to [0,3] and is asymptotically optimal with asymptotic coverage 0.96 for (1− δ) ∈ (0.9, 0.96).

We will illustrate the new prediction intervals with the following three types of regres-

sion models. The binomial logistic regression model is Yi ∼ binomial

(

mi, ρ =
eSP

1 + eSP

)

.

Then E(Yi|SP ) = miρ(SP ) and V (Yi|SP ) = miρ(SP )(1 − ρ(SP )), and Ê(Yi|xi) = miρ̂ =
mie

ESP

1 + eESP
is the estimated mean function. The binary logistic regression model has mi ≡ 1

for i = 1, ..., n. Note that D̂(xf ) ∼ binomial(mf , ρ(ESP)) where if SP = h(x), then

ESP = ĥ(xf ). We will use the GLM with ESP = xT
f β̂, and we will also use the GAM.

Note that Yf is the number of “successes” in the known number mf of binomial trials.

A Poisson regression (PR) model Y ∼ Poisson
(

eSP
)

has E(Y |SP ) = V (Y |SP ) =

exp(SP ). The estimated mean and variance functions are Ê(Y |x) = eESP , and D̂(xf ) ∼
Poisson

(

eESP
)

. We will use the GLM and the GAM.

The Weibull proportional hazards regression model is

Y |SP ∼ W (γ = 1/σ, λ0 exp(SP )),
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where λ0 = exp(−α/σ), and Y has a Weibull W (γ, λ) distribution if the probability density

function (pdf) of Y is

f(y) = λγyγ−1 exp[−λyγ]

for y > 0. The data is (Ti, δi,xi) where Ti = Yi is the observed survival time if δi = 1, and Ti

is the right censored survival time if δi = 0. The PIs are for the survival times, not censored

survival times. Then D̂(xf ) ∼ W (γ̂ = 1/σ̂, λ̂0 exp(ESP )). We will use ESP = xT
f β̂. If

Y follows the above model, then log(Y ) follows the Weibull accelerated failure time model

log(Y ) = α + xTβA + σe where the variance V (e) = 1, and the ei are iid from a smallest

extreme value SEV(0,1) distribution. Then β = βA/σ.

Section 2 describes the new prediction intervals, and Section 3 gives a simulation.

2. The New Prediction Intervals

The first new large sample 100(1 − δ)% prediction interval for Yf is

[Y ∗

(s), Y
∗

(s+c−1)] with c = min(B, dB[1− δ + 1.12
√

δ/B ] e), (3)

and applies the shorth(c) prediction interval to the parametric bootstrap sample Y ∗

1 , ..., Y
∗

B

where the Y ∗

i are iid from the distribution D̂(xf). If Y |xf ∼ D(xf ) and the regression

method produces a consistent estimator D̂(xf ) of D(xf), then this new prediction interval is

a large sample 100(1 − δ)% PI. For a parametric 1D regression model Y |xf ∼ D(h(xf ),γ),

we need (ĥ(xf ), γ̂) to be a consistent estimator of (h(xf),γ).

For models with a linear predictor, we will want prediction intervals after variable selec-

tion or model selection. Variable selection is the search for a subset of predictor variables

that can be deleted with little loss of information if n/p is large, and so that the model with

the remaining predictors is useful for prediction. Following Olive and Hawkins (2005), a

model for variable selection can be described by

xT β = xT
SβS + xT

EβE = xT
SβS, (4)

where x = (xT
S ,x

T
E)T , xS is an aS × 1 vector, and xE is a (p− aS) × 1 vector. Given that

xS is in the model, βE = 0 and E denotes the subset of terms that can be eliminated given
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that the subset S is in the model. Let xI be the vector of a terms from a candidate subset

indexed by I , and let xO be the vector of the remaining predictors (out of the candidate

submodel). Suppose that S is a subset of I and that model (4) holds. Then

xTβ = xT
SβS = xT

SβS + xT
I/Sβ(I/S) + xT

O0 = xT
I βI , (5)

where xI/S denotes the predictors in I that are not in S. Since this is true regardless of the

values of the predictors, βO = 0 if S ⊆ I .

Forward selection or backward elimination with the Akaike (1973) AIC criterion or

Schwarz (1978) BIC criterion are often used for GLM variable selection. GLM model se-

lection with lasso and the elastic net is also common. See Hastie et al. (2015, ch. 3) and

Friedman et al. (2010). Lasso variable selection applies the regression method, such as a

GLM, to the active predictors with nonzero coefficients selected by lasso. For n ≥ 10p, Olive

and Hawkins (2005) suggested using multiple linear regression variable selection software

with the Mallows (1973) Cp criterion to get a subset I , then fit the GLM using Y and xI . If

the regression model contains a q×1 vector of parameters γ, then we may need n ≥ 10(p+q).

The prediction interval (3) can have undercoverage if n is small compared to the number

of estimated parameters. The modified shorth PI (6) inflates PI (3) to compensate for

parameter estimation and model selection. Let d be the number of variables x∗1, ..., x
∗

d used

by the full model, forward selection, backward elimination, lasso, or lasso variable selection.

(We could let d = j if j is the degrees of freedom of the selected model if that model was

chosen in advance without model or variable selection. Hence d = j is not the model degrees

of freedom if model selection was used. For a GAM full model, suppose the “degrees of

freedom” di for S(xi) is bounded by k. We could let d = 1 +
∑p

i=2 di with p ≤ d ≤ pk.) We

want n ≥ 10d, and the prediction interval length will be increased (penalized) if n/d is not

large. For the second new prediction interval, let qn = min(1 − δ + 0.05, 1 − δ + d/n) for

δ > 0.1 and

qn = min(1 − δ/2, 1 − δ + 10δd/n), otherwise.
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If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Then compute the shorth(cmod) PI

[Y ∗

(s), Y
∗

(s+cmod−1)] with cmod = min(B, dB[qn + 1.12
√

δ/B ] e). (6)

Olive (2007, 2013a, 2018) and Pelawa Watagoda and Olive (2020) used similar correction

factors for additive error regression models Y = h(x) + e since the maximum simulated

undercoverage was about 0.05 when n = 20d. If a q × 1 vector of parameters γ is also

estimated, we may need to replace d by dq = d+ q.

If β̂I is a×1, form the p×1 vector β̂I,0 from β̂I by adding 0s corresponding to the omitted

variables. For example, if p = 4 and β̂Imin
= (β̂1, β̂3)

T is the estimator that minimized the

variable selection criterion, then β̂Imin,0 = (β̂1, 0, β̂3, 0)
T . This estimator is needed since

typically β̂Imin
is not a consistent estimator of any vector βI , e.g. βI = (β1, β3)

T . We will

show that β̂Imin,0 is a
√
n consistent estimator of β in the following paragraph.

Hong et al. (2018) explain why classical PIs after AIC variable selection may not work.

Fix p and let Imin correspond to the predictors used after variable selection. To show that

(3) and (6) are large sample prediction intervals for a parametric 1D regression model with

SP = xTβ, we need to show that (β̂Imin,0, γ̂Imin
) is a consistent estimator of (β, γ). Suppose

P (S ⊆ Imin) → 1 as n→ ∞. This assumption tends to hold for AIC and BIC. See Charkhi

and Claeskens (2018), Claeskens and Hjort (2008, pp. 70, 101, 102, 114, 232), and Haughton

(1988, 1989) for more information and references about this assumption. For lasso variable

selection, the assumption holds if lasso is a consistent estimator. See Pelawa Watagoda and

Olive (2020) and Rathnayake and Olive (2021). Suppose model (4) holds with S ⊆ Ij. Then

under regularity conditions that are often mild, (β̂Ij
, γ̂Ij

) is a consistent estimator of (βIj
, γ)

with
√
n(β̂Ij

− βIj
)

D→ Naj
(0,V j). Hence

√
n(β̂Ij ,0 − β)

D→ Np(0,V j,0), (7)

where V j,0 adds columns and rows of zeros corresponding to the xi not in Ij. Then γ̂Imin
is a

consistent estimator of γ and β̂Imin,0 is a
√
n consistent estimator of β under model (4) if the

variable selection criterion AIC or BIC is used with forward selection, backward elimination,
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or all subsets. Hence if P (S ⊆ Imin) → 1 as n→ ∞, then (3) and (6) are large sample PIs.

Regularity conditions for (3) and (6) to be large sample PIs when p > n are much stronger.

Prediction intervals (3) and (6) often have higher than the nominal coverage if n is large

and Yf can only take on a few values. Consider binary regression where Yf ∈ {0, 1} and

the PIs (3) and (6) are [0,1] with 100% coverage, [0,0], or [1,1]. If [0,0] or [1,1] is the PI,

coverage tends to be higher than nominal coverage unless P (Yf = 1|xf) is near δ or 1 − δ,

e.g., if P (Yf = 1|xf) = 0.01, then [0,0] has coverage near 99% even if 1 − δ < 0.99.

3. Examples and Simulations

Example 1. For the Ceriodaphnia data of Myers et al. (2002, pp. 136-139), the response

variable Y is the number of Ceriodaphnia organisms counted in a container. The sample

size was n = 70, and the predictors were a constant (x1), seven concentrations of jet fuel

(x2), and an indicator for two strains of organism (x3). The jet fuel was believed to impair

reproduction so high concentrations should have smaller counts. Figure 1 shows the response

plot of ESP versus Y for this data. In this plot, the lowess curve is represented as a jagged

curve to distinguish it from the estimated Poisson regression mean function (the exponential

curve). The horizontal line corresponds to the sample mean Y . We also computed PI (6)

using xf = xi for i = 1, ..., n corresponding to the observed training data (xi, Yi). The

circles correspond to the Yi and the ×’s to the PIs (6) with d = 3. The n = 70 large sample

95% PIs contained 97% of the Yi. There was no evidence of overdispersion for this example.

There were 5 replications for each of the 14 strain–species combinations, which helps show

the bootstrap PI variability tracks the data variability when B = 1000. Increasing B from

1000 decreases the average PI length slightly, but using B = 1000000 gave a plot very

similar to Figure 1 with similar coverage. Using B = 50 had longer PIs and sometimes had

undercoverage. Using B = 1000 several times gave coverage between 97% and 100%.

This example illustrates a useful goodness of fit diagnostic: if the model D is a useful

approximation for the data and n is large enough, we expect the coverage on the training

data to be close to or higher than the nominal coverage 1 − δ. For example, there may

be undercoverage if a Poisson regression model is used when a negative binomial regression
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Figure 1: Ceriodaphnia Data Response Plot.

model is needed, as illustrated in the following example.

Example 2. For the species data of Johnson and Raven (1973), the response variable is

the total number of species recorded on each of n = 29 islands in the Galápagos Archipelago.

We used a constant and the logarithm of four predictors endem = the number of endemic

species (those that were not introduced from elsewhere), the area of the island, the distance

to the closest island, the areanear = the area of the closest island. The Poisson regression

response plot looks good, but Olive (2017b, pp. 438-440) showed that there is overdispersion

and that a negative binomial regression model fits the data well. When the incorrect Poisson

regression model was used, the n large sample 95% PIs (6) contained 89.7% of the Yi.

Example 3. The Flury and Riedwyl (1988, pp. 5-6) banknote data consists of 100

counterfeit and 100 genuine Swiss banknotes. The response variable is an indicator for

whether the banknote is counterfeit. The six predictors are measurements on the banknote:

bottom, diagonal, left, length, right, and top. We used a constant, right, and bottom as

predictors to get a model that did not have perfect classification. The response plot for this

model is shown in the left plot of Figure 2 with Z = Zi = Yi/mi = Yi and the large sample
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Figure 2: Banknote Data GLM and GAM Response Plots.

95% PIs for Zi = Yi. The circles correspond to the Yi and the ×’s to the PIs (6) with d = 3,

and 199 of the 200 PIs contain Yi. The PI [0,0] that did not contain Yi corresponds to the

circle in the upper left corner. The PIs were [0,0], [0,1], or [1,1] since the data is binary. The

mean function is the smooth curve and the step function gives the sample proportion of ones

in the interval. The step function approximates the smooth curve closely, hence the binary

logistic regression model seems reasonable. The right plot of Figure 2 shows the GAM using

right and bottom with d = 3. The coverage was 100% for the training data and the GAM

had many [1,1] intervals.

For the simulations, generating xT β is important. For example, for binomial logistic

regression, typically−5 ≤ xTβ ≤ 5 or there can be problems with the MLE. Let x = (1 uT )T

where u is the (p− 1)× 1 vector of nontrivial predictors. In the simulations, for i = 1, ..., n,

we generated wi ∼ Np−1(0, I) where the m = p− 1 elements of the vector wi are iid N(0,1).

Let the m × m matrix A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j.

Then the vector zi = Awi so that Cov(zi) = Σz = AAT = (σij) where the diagonal

entries σii = [1 + (m − 1)ψ2] and the off diagonal entries σij = [2ψ + (m − 2)ψ2]. Hence
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the correlations are cor(zi, zj) = ρ = (2ψ + (m − 2)ψ2)/(1 + (m − 1)ψ2) for i 6= j. Then
∑k

j=1 zj ∼ N(0, kσii + k(k − 1)σij) = N(0, v2). Let u = az/v. Then cor(xi, xj) = ρ for i 6= j

where xi and xj are nontrivial predictors. If ψ = 1/
√
cp, then ρ → 1/(c + 1) as p → ∞

where c > 0. As ψ gets close to 1, the predictor vectors ui cluster about the line in the

direction of (1, ..., 1)T . Let SP = xTβ = β1 +1xi,2 + · · ·+1xi,k+1 ∼ N(β1, a
2) for i = 1, ..., n.

Hence β = (β1, 1, .., 1, 0, ..., 0)
T with β1, k ones and p− k − 1 zeros. The default settings for

Poisson regression use β1 = 1 = a. The default settings for binomial regression use β1 = 0

and a = 5/3.

The simulation used 5000 runs, so an observed coverage in [0.94, 0.96] gives no reason

to doubt that the PI has the nominal coverage of 0.95. The simulation used B = 1000;

p = 4, 50, n, or 2n; ψ = 0, 1/
√
p, or 0.9; and k = 1, 19, or p− 1. The simulated data sets are

rather small since the R estimators are rather slow. For binomial and Poisson regression,

we only computed the GAM for p = 4 with SP = AP = α + S2(x2) + S2(x3) + S4(x4) and

d = p = 4. We only computed the full model GLM if n ≥ 5p. Lasso and lasso variable

selection were computed for all cases for Tables 1 to 5. The regression model was computed

from the training data, and a prediction interval was made for the test case Yf given xf . The

“length” and “coverage” were the average length and the proportion of the 5000 prediction

intervals that contained Yf . Two rows per table were used to display these quantities for the

first five tables. For a larger simulation, see Rathnayake (2019).

Tables 1 and 2 show some simulation results for Poisson regression. Lasso minimized

10-fold cross validation and lasso variable selection was applied to the selected lasso model.

The full GLM, full GAM, and backward elimination (BE in the tables) used PI (3) while

lasso, lasso variable selection (LVS in the tables), and forward selection using the Olive and

Hawkins (2005) method (OHFS in the tables) used PI (6). For n ≥ 10p, coverages tended

to be near or higher than the nominal value of 0.95, except for lasso and the Olive and

Hawkins (2005) method. These two methods sometimes had severe undercoverage. In Table

1, the Poisson counts were not small, so the discreteness of the distribution did not affect the

coverage much. For Table 2, p = 50, and PI (3) had slight undercoverage for the full GLM
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Table 1: Simulated Large Sample 95% PI Coverages and Lengths for Poisson Regression,

p = 4, β1 = 5, a = 2

n ψ k GLM GAM lasso LVS OHFS BE

100 0 1 cov 0.9500 0.9440 0.7730 0.9664 0.9654 0.9520

len 77.6072 77.6306 84.1066 81.8374 82.4752 84.1432

400 0 1 cov 0.9580 0.9564 0.7566 0.9622 0.9628 0.9534

len 82.0126 82.0212 85.5704 83.2692 83.4374 80.9897

100 0.5 1 cov 0.9456 0.9424 0.7646 0.9634 0.9408 0.9512

len 83.0236 82.9034 90.5822 88.3060 88.6700 79.6887

400 0.5 1 cov 0.9530 0.9500 0.7584 0.9604 0.9566 0.9678

len 83.8588 83.8292 87.4336 85.1042 85.1434 79.9855

100 0.9 1 cov 0.9492 0.9452 0.7688 0.9646 0.7712 0.9654

len 78.3554 78.3798 87.0086 84.6072 83.4980 81.5432

400 0.9 1 cov 0.9550 0.9574 0.7606 0.9606 0.7928 0.9513

len 76.7028 76.7594 80.5070 78.2308 78.2538 80.1298

100 0 3 cov 0.9544 0.9466 0.7798 0.9708 0.9404 0.9487

len 80.1476 80.1362 92.1372 89.8532 90.3456 79.4565

400 0 3 cov 0.9560 0.9548 0.7514 0.9582 0.9566 0.9567

len 80.7868 80.8976 85.0642 82.7982 82.7912 79.4522

100 0.5 3 cov 0.9516 0.9478 0.7848 0.9694 0.3324 0.9515

len 77.1120 77.1130 88.9346 86.4680 85.8634 81.5643

400 0.5 3 cov 0.9568 0.9558 0.7534 0.9636 0.5214 0.9528

len 80.4226 80.4932 84.7646 82.5590 83.7526 79.9786

100 0.9 3 cov 0.9492 0.9456 0.7882 0.9620 0.7510 0.9554

len 79.5374 79.6172 91.2052 89.0692 84.5648 81.8544

400 0.9 3 cov 0.9544 0.9546 0.7638 0.9554 0.7384 0.9586

len 79.7384 79.6906 83.8318 81.6862 81.0882 80.7521

11



Table 2: Simulated Large Sample 95% PI Coverages and Lengths for Poisson Regression,

p = 50, β1 = 5, a = 2

n ψ k GLM lasso LVS OHFS BE

500 0 1 cov 0.9352 0.7564 0.9598 0.9640 0.9476

len 81.2668 84.3188 81.8934 85.2922 81.1010

500 0.14 1 cov 0.9370 0.7508 0.9580 0.9628 0.9458

len 81.1820 84.4530 82.1894 85.2304 81.1146

500 0.9 1 cov 0.9368 0.7630 0.9620 0.8994 0.9456

len 80.4568 86.3506 84.4942 84.1448 80.4202

500 0 19 cov 0.9388 0.7592 0.9756 0.3778 0.9472

len 81.6922 96.8546 94.6350 99.7436 81.7218

500 0.14 19 cov 0.9368 0.7556 0.9730 0.2770 0.9438

len 80.0654 95.2964 93.2748 87.3814 80.1276

500 0.9 19 cov 0.9350 0.7544 0.9536 0.9480 0.9352

len 79.7324 86.3448 84.0674 83.2958 79.6172

500 0 49 cov 0.9386 0.7104 0.9666 0.1004 0.9364

len 81.1422 96.4304 94.8818 108.0518 81.2516

500 0.14 49 cov 0.9396 0.7194 0.9558 0.2858 0.9402

len 79.7874 94.8908 93.2538 86.4234 79.8692

500 0.9 49 cov 0.9380 0.7640 0.9480 0.9512 0.9430

len 78.8146 85.5786 83.2812 82.4104 78.8316
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since n = 10p. Table 2 helps illustrate the importance of the correction factor: PI (6) would

have higher coverage and longer average length. Lasso was good at choosing subsets that

contain S since lasso variable selection had good coverage. The Olive and Hawkins (2005)

method is partly graphical, and graphs were not used in the simulation. For the same n, ψ,

and k as Table 1, we simulated the Poisson regression model with p = 4, and β1 = 1 = a.

Then the response variable took on few values and the coverages were between 0.959 and

0.984 for the six methods used in Table 1.

Tables 3 and 4 are for binomial regression where only PI (6) was used. For large n,

coverage is likely to be higher than the nominal if the binomial probability of success can

get close to 0 or 1. For binomial regression, neither lasso nor the Olive and Hawkins (2005)

method had undercoverage in any of the simulations with n ≥ 10p.

For n ≤ p, good performance needed stronger regularity conditions, and Table 5 shows

some results with n = 100 and p = 200. For k = 1, lasso variable selection performed well as

did lasso except in the second to last column of Table 5. With k = 19 and ψ = 0, there was

undercoverage since n < 10(k+1). For the dense models with k = 199 and ψ = 0, there was

often severe undercoverage, lasso sometimes picked 100 predictors including the constant,

and then lasso variable selection caused the program to fail with 5000 runs. Coverage was

usually good for ψ > 0 except for the second to last column and sometimes the last column

of Table 5.

For the Weibull regression model, there is no constant since the constant appears in the

corresponding accelerated failure time model. The data was generated as for the Poisson and

Binomial regression, but replace u by x and p−1 by p. Let SP = xT
i β = 1xi,1 + · · ·+1xi,k ∼

N(0, a2) for i = 1, ..., n. The simulations use a = 1 where β = (1, ..., 1, 0, ..., 0)T with k ones

and p−k zeros. The right censored Weibull regression data was generated in a manner similar

to Zhou (2001) with γ = 4. Since the Weibull distribution is continuous, the coverage of PI

(6) converges to 1 − δ. For 5000 runs, we needed n ≥ 100p or MLE convergence problems

could cause the program to fail often. With n = 100p, we occasionally needed to run the

program twice to get output. Table 6 shows some results for the full model, and the coverages
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Table 3: Simulated Large Sample 95% PI Coverages and Lengths for Binomial Regression,

p = 4, m = 40

n ψ k GLM GAM lasso LVS OHFS BE

100 0 1 cov 0.9786 0.9788 0.9774 0.9744 0.9720 0.9726

len 10.7696 10.7656 10.5332 10.4430 10.1990 10.2016

400 0 1 cov 0.9708 0.9700 0.9696 0.9708 0.9702 0.9688

len 9.8374 9.8426 9.8292 9.7866 9.7518 9.7548

100 0.5 1 cov 0.9792 0.9720 0.9742 0.9750 0.9724 0.9708

len 10.6668 10.6426 10.3790 10.3282 10.1060 10.1012

400 0.5 1 cov 0.9678 0.9676 0.9692 0.9670 0.9668 0.9656

len 9.8352 9.8452 9.8196 9.7890 9.7612 9.7590

100 0.9 1 cov 0.9780 0.9766 0.9762 0.9742 0.9704 0.9714

len 10.7324 10.7222 10.3774 10.3186 10.1438 10.1602

400 0.9 1 cov 0.9688 0.9672 0.9680 0.9674 0.9684 0.9672

len 9.7554 9.7646 9.7392 9.7012 9.6778 9.6790

100 0 3 cov 0.9790 0.9750 0.9782 0.9772 0.9780 0.9776

len 10.6974 10.6960 10.7388 10.7030 10.6956 10.7020

400 0 3 cov 0.9652 0.9652 0.9654 0.9656 0.9650 0.9626

len 9.7838 9.7878 9.8244 9.7864 9.7800 9.7722

100 0.5 3 cov 0.9780 0.9734 0.9776 0.9766 0.9770 0.9784

len 10.7224 10.7034 10.7482 10.7042 10.7162 10.7134

400 0.5 3 cov 0.9686 0.9688 0.9726 0.9702 0.9704 0.9706

len 9.7250 9.7170 9.7460 9.7172 9.7152 9.7290

100 0.9 3 cov 0.9800 0.9798 0.9802 0.9786 0.9698 0.9720

len 10.6978 10.6994 10.5820 10.5414 10.0660 10.1802

400 0.9 3 cov 0.9682 0.9684 0.9696 0.9674 0.9678 0.9676

len 9.8146 9.8074 9.8364 9.8190 9.7594 9.7764

14



Table 4: Simulated Large Sample 95% PI Coverages and Lengths for Binomial Regression,

p = 50, m = 7

n ψ k GLM lasso LVS OHFS BE

1000 0 1 cov 0.9896 0.9838 0.9802 0.9798 0.9798

len 4.0008 3.6666 3.5744 3.5838 3.5842

1000 0.14 1 cov 0.9868 0.9818 0.9782 0.9774 0.9770

len 4.0422 3.6836 3.6158 3.6226 3.6312

1000 0.9 1 cov 0.9894 0.9794 0.9796 0.9800 0.9798

len 4.0214 3.5994 3.5794 3.6122 3.6114

1000 0 19 cov 0.9888 0.9870 0.9848 0.9814 0.9812

len 4.0294 3.9730 3.8438 3.7110 3.7030

1000 0.14 19 cov 0.9872 0.9846 0.9852 0.9804 0.9806

len 4.0376 3.8350 3.7834 3.7170 3.7066

1000 0.9 19 cov 0.9884 0.9804 0.9808 0.9802 0.9772

len 4.0348 3.6170 3.5948 3.6226 3.6216

1000 0 49 cov 0.990 0.9904 0.9904 0.9900 0.9904

len 4.0428 4.0726 4.0528 4.0490 4.0460

1000 0.14 49 cov 0.9866 0.9866 0.9856 0.9806 0.9796

len 4.0396 3.9044 3.8640 3.7046 3.6988

1000 0.9 49 cov 0.9874 0.9808 0.9792 0.9790 0.9772

len 4.0660 3.6444 3.6230 3.6556 3.6490
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Table 5: Simulated Large Sample 95% PI Coverages and Lengths, n = 100, p = 200

BR m=7 BR m=40 PR,a=1 β1 = 1 PR,a=2 β1 = 5

ψ,k lasso LVS lasso LVS lasso LVS lasso LVS

0 cov 0.9912 0.9654 0.9836 0.9602 0.9816 0.9612 0.7620 0.9662

1 len 4.2774 3.8356 11.3482 11.001 7.8350 7.5660 93.7318 91.4898

0.07 cov 0.9904 0.9698 0.9796 0.9644 0.9790 0.9696 0.7652 0.9706

1 len 4.2570 3.9256 11.4018 11.1318 7.8488 7.6680 92.0774 89.7966

0.9 cov 0.9844 0.9832 0.9820 0.9820 0.9880 0.9858 0.7850 0.9628

1 len 3.8242 3.7844 10.9600 10.8716 7.6380 7.5954 98.2158 95.9954

0 cov 0.9146 0.8216 0.8532 0.7874 0.8678 0.8038 0.1610 0.6754

19 len 4.7868 3.8632 12.0152 11.3966 7.8126 7.5188 88.0896 90.6916

0.07 cov 0.9814 0.9568 0.9424 0.9208 0.9620 0.9444 0.3790 0.5832

19 len 4.1992 3.8266 11.3818 11.0382 7.9010 7.7828 92.3918 92.1424

0.9 cov 0.9858 0.9840 0.9812 0.9802 0.9838 0.9848 0.7884 0.9594

19 len 3.8156 3.7810 10.9194 10.8166 7.6900 7.6454 97.744 95.2898

0.07 cov 0.9820 0.9640 0.9604 0.9390 0.9720 0.9548 0.3076 0.4394

199 len 4.1260 3.7730 11.2488 10.9248 8.0784 7.9956 90.4494 88.0354

0.9 cov 0.9886 0.9870 0.9822 0.9804 0.9834 0.9814 0.7888 0.9586

199 len 3.8558 3.8172 10.9714 10.8778 7.6728 7.6602 97.0954 94.7604
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Table 6: Simulated Large Sample 95% PI Coverages and Lengths

n p k ψ cov len

400 4 1 0 0.9540 1.0520

400 4 1 0.5 0.9532 1.0506

400 4 1 0.9 0.9504 1.0514

1000 10 4 0 0.9458 1.0529

1000 10 4 0.3162 0.9526 1.0512

1000 10 4 0.9 0.9476 1.0554

were good. The simulated data is such that Y |SP and SP depend on a and γ, but not on

p, k, or ψ. If n is large and β̂, γ̂, and λ̂0 are good estimators, then we would expect the

simulated average lengths to be nearly the same. For Table 6, these lengths are near 1.052.

Similar remarks apply to Tables 1 to 4.

4. Conclusions

We recommend using PI (6) if there is a good choice for d. PI (3) can be useful if n is

large or if Y |xf takes on few values with high probability. Since PIs (3) and (6) are for a

parametric regression model, it is crucial to check that the parametric model is appropriate.

For example, if a negative binomial regression model is appropriate, but a Poisson regression

model is fit, then the PI coverage will likely be poor, as in Example 2. The response plot

of the ESP on the horizontal axis versus the response on the vertical axis is useful. This

plot and the OD plot for detecting overdispersion are described in Olive (2013b, 2017b: ch.

13). Olive (2021: ch. 4) shows that these plots can be useful for methods such as lasso and

elastic net if n/p is not large, although estimation becomes more difficult.

For the additive error regression model Y = h(x)+e = SP +e where the ei are iid, which

includes the multiple linear regression model Y = xT β + e, we do not recommend using a

parametric model. It is often incorrectly assumed that Yf ∼ N(h(xf ), σ
2), and then the

prediction intervals tend to have undercoverage since the error distribution of e has heavier

tails than the normal distribution. Find the shorth [L̂nr, Ûnr ] of the residuals and use PI
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[Ŷf + L̂nr , Ŷf + Ûnr ] where Ŷf = ĥ(xf ). See Olive (2013a). For multiple linear regression see

Olive (2007) for n ≥ 10p and Pelawa Watagoda and Olive (2020) for PIs that can work for

variable selection and model selection estimators even if n/p is not large. Also see Lei et al.

(2018).

For a parametric multivariate regression model, y ∼ D(x), there are m response variables

y = (Y1, ..., Ym)T . To find a prediction region for yf |xf , generate y∗

1, ...,y
∗

B where the iid

y∗

i ∼ D̂(xf ). A large sample 100(1−δ)% prediction region for yf that is analogous to PI (3)

applies the Olive (2013a, 2017a: p. 152) prediction region to the y∗

i . Olive (2017ab, 2018)

gave nonparametric prediction regions for the multivariate linear regression model.

There are not many references for prediction intervals for GLMs and GAMs. The pre-

diction intervals tend to have complicated correction factors, lack software, tend to be only

applicable to the GLM full model when n ≥ 10p, and tend to not be asymptotically optimal.

The PIs tend to be constructed using Chebyshev’s inequality, percentiles of D̂, or Bayesian

predictive distributions. See Cai et al. (2008), Hall and Maiti (2006), Hall and Rieck (2001),

Lawless and Fredette (2005), Ueki and Fueda (2007), Vidoni (2001, 2003), Wasef Hattab

(2016), and Wood (2005). The highest density Bayesian credible interval is the population

shorth of the posterior distribution, and Chen and Shao (1999) and Olive (2014, p. 364)

used the shorth estimator to estimate Bayesian credible intervals.

Generalized linear models were introduced by Nelder and Wedderburn (1972). Useful

references for generalized additive models include Hastie and Tibshirani (1986, 1990) and

Wood (2017). Yee (2015) considers many parametric (multivariate) regression models.

The simulations were done in R. See R Core Team (2018). We used several R functions

including lasso with the cv.glmnet functions from the Friedman et al. (2015) glmnet library.

The Wood (2017) library mgcv was used for fitting a generalized additive model, and the

Venables and Ripley (2010) library MASS was used for backward elimination. The Therneau

and Grambsch (2000) survival library and Lumley (2009) leaps library were also used.

The data for examples 1 and 2 are available from (http://parker.ad.siu.edu/Olive/sldata.

txt). The data for example 3 is available from (https://cran.r-project.org/web/packages/alr3/
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index.html) corresponding to Weisberg (2005). The three data sets are also available from

the Cook and Weisberg (1999) Arc software. The collection of Olive (2021) R functions

slpack, available from (http://parker.ad.siu.edu/Olive/slpack.txt), has some useful functions

for the inference. Table entries for Poisson regression were made with prpisim2 while en-

tries for binomial regression were made with brpisim. Table entries for Weibull regression

were made with wpisim. The functions prpiplot2 and lrpiplot were used to make Fig-

ures 1 and 2. The function prplot can be used to check the full Poisson regression model

for overdispersion. The function prplot2 can be used to check other Poisson regression

models such as a GAM or lasso. See Olive (2021, ch. 4). Sample R code is available from

(http://parker.ad.siu.edu/Olive/ppRcodepigam.pdf).
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