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Abstract Consider the multiple linear regression model Y = β1 +β2x2+ · · ·+
βpxp +e = xT β+e with sample size n. This paper compares the six shrinkage
estimators: forward selection, lasso, partial least squares, principal components
regression, lasso variable selection, and ridge regression, with large sample
theory and two new prediction intervals that are asymptotically optimal if the
estimator β̂ is a consistent estimator of β. Few prediction intervals have been
developed for p > n, and they are not asymptotically optimal.

For p fixed, the large sample theory for variable selection estimators like
forward selection is new, and the theory shows that lasso variable selection
is

√
n consistent under much milder conditions than lasso. This paper also

simplifies the proofs of the large sample theory for lasso, ridge regression, and
elastic net.

Keywords Forward Selection · Lasso · Partial Least Squares · Principal
Components Regression · Ridge Regression

1 Introduction

This section first reviews six multiple linear regression (MLR) estimators, and
then reviews asymptotically optimal prediction intervals. Suppose that the
response variable Yi and at least one predictor variable xi,j are quantitative
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with xi,1 ≡ 1. Let xT
i = (xi,1, ..., xi,p) = (1 uT

i ) and β = (β1, ..., βp)
T where

β1 corresponds to the intercept. Then the multiple linear regression model is

Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei = xT
i β + ei (1)

for i = 1, ..., n. This model is also called the full model. Here n is the sample
size, and assume that the zero mean random variables ei are independent and
identically distributed (iid) with variance V (ei) = σ2. In matrix notation,
these n equations become

Y = Xβ + e (2)

where Y is an n × 1 vector of response variables, X is an n × p matrix of
predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1
vector of unknown errors. The ith fitted value Ŷi = xT

i β̂ and the ith residual

ri = Yi − Ŷi where β̂ is an estimator of β. Ordinary least squares (OLS) is
often used for inference if n/p is large.

For many regression estimators, a method is needed so that everyone who
uses the same units of measurements for the predictors and Y gets the same
(Ŷ , β̂). A common method is to use the centered response Z = Y −Y where
Y = Y 1, and the n × (p − 1) matrix of standardized nontrivial predictors
W = (Wij) where

∑n
i=1Wij = 0 and

∑n
i=1W

2
ij = n. Note that the sample

correlation matrix of the nontrivial predictors ui is Ru = W T W /n. Then
regression through the origin is used for the model

Z = Wη + e (3)

where the vector of fitted values Ŷ = Y + Ẑ, and β̂ is found from η̂.
There are many methods for estimating β, including forward selection with

OLS, principal components regression (PCR), partial least squares (PLS) due
to Wold (1975), lasso due to Tibshirani (1996), and ridge regression (RR):
see Hoerl and Kennard (1970). Some shrinkage methods do variable selection:
apply OLS to the predictors that had nonzero coefficients. These methods
include least angle regression, lasso, relaxed lasso, and elastic net. See, for
example, Fan and Li (2001), Hastie, Tibshirani, and Wainwright (2015, ch.
5), Sun and Zhang (2012), Tibshirani (1996), and Zou and Hastie (2005). The
Meinshausen (2007) relaxed lasso estimator for multiple linear regression fits
lasso with penalty λn to get a subset of variables with nonzero coefficients,
and then fits lasso with a smaller penalty φn where n is the sample size. A
three stage procedure uses this relaxed lasso estimator for variable selection.

These variable selection estimators have had several names in the literature.
Least angle regression variable selection is the LARS-OLS hybrid estimator
of Efron et al. (2004, p. 421), lasso variable selection is called relaxed lasso
by Hastie, Tibshirani, and Wainwright (2015, p. 12), and the relaxed lasso
estimator with φ = 0 by Meinshausen (2007, p. 376).

Consider choosing η̂ to minimize the criterion

Q(η) = (Z − Wη)T (Z − Wη) + λ1,n

p−1
∑

i=1

|ηi|j (4)
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where λ1,n ≥ 0, and j > 0 are known constants. Then j = 2 corresponds to
ridge regression, and j = 1 corresponds to lasso. In the literature, Q(η)/c is
often used, where c = 2, n, or 2n are common. The residual sum of squares
RSS(η) = (Z − Wη)T (Z − Wη), and λ1,n = 0 corresponds to the OLS

estimator η̂OLS = (W T W )−1W T Z.
These six methods produce M models and use a criterion to select the final

model (e.g., Cp or 10-fold cross validation (CV)). The number of models M
depends on the method. Lasso and ridge regression have a parameter λ. When
λ = 0, the OLS full model is used. These methods also use a maximum value
λM of λ and a grid of M λ values 0 ≤ λ1 < λ2 < · · · < λM−1 < λM . For lasso,
λM is the smallest value of λ such that η̂λM

= 0. Hence η̂λi
6= 0 for i < M .

See James et al. (2013, ch. 6) and Hastie, Tibshirani, and Wainwright (2015,
p. 24).

Variable selection is the search for a subset of predictor variables that can
be deleted with little loss of information if n/p is large, and so that the model
with the remaining predictors is useful for prediction. Following Olive and
Hawkins (2005), a model for variable selection can be described by

xT β = xT
SβS + xT

EβE = xT
SβS (5)

where x = (xT
S ,x

T
E)T , xS is an aS × 1 vector, and xE is a (p− aS)× 1 vector.

Given that xS is in the model, βE = 0 and E denotes the subset of terms
that can be eliminated given that the subset S is in the model. Let xI be the
vector of a terms from a candidate subset indexed by I, and let xO be the
vector of the remaining predictors (out of the candidate submodel). Suppose
that S is a subset of I and that model (5) holds. Then

xT β = xT
SβS = xT

S βS + xT
I/SβI/S + xT

O0 = xT
I βI (6)

where xI/S denotes the predictors in I that are not in S. Since this is true
regardless of the values of the predictors, βO = 0 if S ⊆ I.

To clarify notation, suppose p = 4, a constant x1 = 1 corresponding to
β1 is always in the model, and β = (β1, β2, 0, 0)T . Then the J = 2p−1 = 8
possible subsets of {1, 2, ..., p} that contain 1 are I1 = {1}, S = I2 = {1, 2},
I3 = {1, 3}, I4 = {1, 4}, I5 = {1, 2, 3}, I6 = {1, 2, 4}, I7 = {1, 3, 4}, and
I8 = {1, 2, 3, 4}. There are 2p−aS = 4 subsets I2, I5, I6, and I8 such that S ⊆ Ij .

Also, β̂I7
= (β̂1 , β̂3, β̂4)

T is obtained by regressing Y on xI7
= (x1, x3, x4)

T .
Forward selection forms a sequence of submodels I1, ..., IM where Ij uses

j predictors x∗1, ..., x
∗

j−1, x
∗

j including the constant x∗1 = x1. For j > 1, the
variable x∗j is the variable not in Ij−1 that reduces the residual sum of squares
the most. Often M = min(dn/Je, p) for some integer J such as J = 5, 10, or
20. Here dxe is the smallest integer ≥ x, e.g., d7.7e = 8.

Consider the six methods forward selection with OLS, PCR, PLS, lasso,
lasso variable selection, and ridge regression. When there is a sequence of
M submodels, the final submodel Id needs to be selected. Let the candidate
model I contain a terms, including a constant. For example, let xI and β̂I be
a× 1 vectors for the methods excluding PCR and PLS. Then there are many
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criteria used to select the final submodel Id with ad terms. For a given data
set, the quantities p, n, and σ̂2 act as constants, and a criterion below may add
a constant or be divided by a positive constant without changing the subset
Imin that minimizes the criterion.

Let criteria CS(I) have the form

CS(I) = SSE(I) + aKnσ̂
2.

These criteria need a good estimator of σ2 and n/p large. The criterion Cp(I) =
AICS(I) uses Kn = 2 while the BICS(I) criterion uses Kn = log(n). Typically
σ̂2 is the OLS full model

MSE =

n
∑

i=1

r2i
n− p

when n/p is large. See Jones (1946) and Mallows (1973) for Cp.
The following criteria also need n/p large. AIC is due to Akaike (1973)

and BIC to Schwarz (1978).

AIC(I) = n log

(

SSE(I)

n

)

+ 2a, and

BIC(I) = n log

(

SSE(I)

n

)

+ a log(n).

Forward selection with Cp and AIC often gives useful results if n ≥ 5p and
if the final model has n ≥ 10ad. For p < n < 5p, forward selection with Cp

and AIC tends to pick the full model (which overfits since n < 5p) too often,
especially if σ̂2 = MSE. The Hurvich and Tsai (1989) AICC criterion can be
useful if n ≥ max(2p, 10ad).

The EBIC criterion given in Luo and Chen (2013) may be useful when n/p

is not large. Let 0 ≤ γ ≤ 1 and |I| = a ≤ min(n, p) if β̂I is a× 1. We may use
a ≤ min(n/5, p). Then

EBIC(I) = n log

(

SSE(I)

n

)

+a log(n)+2γ log

[(

p

a

)]

= BIC(I)+2γ log

[(

p

a

)]

.

This criterion can give good results if p = pn = O(nk) and γ > 1 − 1/(2k).
Hence we will use γ = 1.

The above criteria can be applied to forward selection and lasso variable
selection. The Cp criterion can also be applied to lasso. See Efron and Hastie
(2016, pp. 221, 231).

Consider predicting a future test response variable Yf given a p × 1 vec-
tor of predictors xf and training data (Y1,x1), ..., (Yn,xn). A large sam-

ple 100(1 − δ)% prediction interval (PI) for Yf has the form [L̂n, Ûn] where

P (L̂n ≤ Yf ≤ Ûn) → 1 − δ as the sample size n → ∞. A large sample
100(1 − δ)% PI is asymptotically optimal if it has the shortest asymptotic
length: the length of [L̂n, Ûn] converges to Us − Ls as n → ∞ where [Ls, Us]
is the population shorth: the shortest interval covering at least 100(1− δ)% of



Comparing Shrinkage Estimators 5

the mass. (A highest density region is a union of intervals such that the sum of
the lengths is minimized given at least 100(1− δ)% coverage. For a unimodal
error distribution with a probability density function, the population shorth
is the population highest density region. See Hyndman (1996) for more about
highest density regions.)

The shorth(c) estimator of the population shorth is useful for making
asymptotically optimal prediction intervals if the data are iid. Let Z(1), ..., Z(n)

be the order statistics of Z1, ..., Zn. Then let the shortest closed interval con-
taining at least c of the Zi be the shorth(c) estimator. Frey (2013) showed that
for large nδ and iid data, the shorth(kn = dn(1 − δ)e) prediction interval has
maximum undercoverage ≈ 1.12

√

δ/n, and used the large sample 100(1− δ)%
PI shorth(c) =

[Z(s), Z(s+c−1)] with c = min(n, dn[1− δ + 1.12
√

δ/n ] e). (7)

Section 2 will develop two prediction intervals that are useful after model
or variable selection where n/p need not be large. Section 3 reviews large
sample theory for the estimators with some new results, and Section 4 gives a
simulation.

2 Prediction Intervals After Model Selection

This section derives asymptotically optimal prediction intervals for the addi-
tive error regression model, Y = m(x) + e, that can be useful after model
selection. Here m(x) is a real valued function and the ei are iid, often with
zero mean and constant variance V (e) = σ2. The large sample theory for pre-
diction intervals is simple for this model. Emphasis will be on the multiple
linear regression model (1) which is a special case with m(x) = xT β. Cai et
al. (2008) proved that the shorth PI works for multiple linear regression. Let
the residuals ri = Yi − m̂(xi) = Yi − Ŷi for i = 1, ..., n. Assume m̂(x) is a
consistent estimator of m(x) such that the sample percentiles [L̂n(r), Ûn(r)]
of the residuals are consistent estimators of the population percentiles [L, U ]
of the error distribution where P (e ∈ [L, U ]) = 1 − δ. Let Ŷf = m̂(xf). Then

P (Yf ∈ [Ŷf + L̂n(r), Ŷf + Ûn(r)] → P (Yf ∈ [m(xf ) +L,m(xf ) +U ]) = P (e ∈
[L, U ]) = 1 − δ as n → ∞. Three common choices are a) P (e ≤ U) = 1 − δ/2
and P (e ≤ L) = δ/2, b) P (e2 ≤ U2) = P (|e| ≤ U) = P (−U ≤ e ≤ U) = 1 − δ
with L = −U , and c) the population shorth is the shortest interval (with
length U − L) such that P [e ∈ [L, U ]) = 1 − δ. The PI c) is asymptotically
optimal while a) and b) are asymptotically optimal on the class of symmetric
zero mean unimodal error distributions. The split conformal prediction interval
(13), described below, estimates [−U, U ] in b).

Prediction intervals based on the shorth of the residuals need a correction
factor for good coverage since the residuals tend to underestimate the errors
in magnitude. With the exception of ridge regression, let d be the number of
“variables” used by the method. Forward selection, lasso, and lasso variable
selection use variables x∗1, ..., x

∗

d while PCR and PLS use variables that are



6 Lasanthi C.R. Pelawa Watagoda, David J. Olive

linear combinations of the predictors Vj = γT
j x for j = 1, ..., d. For PCR, the

variables are the principal components of the (standardized) predictors. (We
could let d = j if j is the degrees of freedom of the selected model if that
model was chosen in advance without model or variable selection. Hence d = j
is not the model degrees of freedom if model selection was used. See Jansen,
Fithian, and Hastie (2015).) See Hong et al. (2018) for why classical prediction
intervals after variable selection fail to work.

For n/p large and d = p, Olive (2013) developed prediction intervals for
models of the form Yi = m(xi)+ei, and variable selection models for (1) have
this form, as noted by Olive (2018). The first new PI, that can be useful even
if n/p is not large, is defined below. This PI modifies the Olive (2013) PI that
can only be computed if n > p. Olive (2007, 2017a, 2017b, 2018) used similar
correction factors for several prediction intervals and prediction regions with
d = p. We want n ≥ 10d so that the model does not overfit.

If the OLS model I has d predictors, and S ⊆ I, then

E(MSE(I)) = E

(

n
∑

i=1

r2i
n− d

)

= σ2 = E

(

n
∑

i=1

e2i
n

)

and MSE(I) is a
√
n consistent estimator of σ2 for many error distributions

by Su and Cook (2012). For a wide range of regression models, extrapolation
occurs if the leverage hf = xT

I,f (XT
I XI)

−1xI,f > 2d/n: if xI,f is too far from
the data xI,1, ...,xI,n, then the model may not hold and prediction can be
arbitrarily bad. These results suggests that

√

n

n− d

√

(1 + hf) ri ≈
√

n+ 2d

n− d
ri ≈ ei.

In simulations for prediction intervals and prediction regions with n = 20d,
the maximum simulated undercoverage was near 5% if qn in (9) is changed to
qn = 1 − δ.

Next, we give the correction factor and the first new prediction interval.
Let qn = min(1 − δ + 0.05, 1− δ + d/n) for δ > 0.1 and

qn = min(1 − δ/2, 1− δ + 10δd/n), otherwise. (8)

If 1− δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Let

c = dnqne, (9)

and let

bn =

(

1 +
15

n

)

√

n+ 2d

n− d
(10)

if d ≤ 8n/9, and

bn = 5

(

1 +
15

n

)

,

otherwise. As d gets close to n, the model overfits and the coverage will be
less than the nominal. The piecewise formula for bn allows the prediction
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interval to be computed even if d ≥ n. Compute the shorth(c) of the residuals
= [r(s), r(s+c−1)] = [ξ̃δ1

, ξ̃1−δ2
]. Then the first new 100 (1 − δ)% large sample

PI for Yf is

[m̂(xf) + bnξ̃δ1
, m̂(xf) + bnξ̃1−δ2

]. (11)

The second new PI randomly divides the data into two half sets H and V
where H has nH = dn/2e of the cases and V has the remaining nV = n− nH

cases i1, ..., inV
. The estimator m̂H(x) is computed using the training data set

H . Then the validation residuals vj = Yij
− m̂H(xij

) are computed for the
j = 1, ..., nV cases in the validation set V . Find the Frey PI [v(s), v(s+c−1)] of
the validation residuals (replacing n in (7) by nV = n−nH ). Then the second
new 100(1 − δ)% large sample PI for Yf is

[m̂H(xf) + v(s), m̂H(xf ) + v(s+c−1)]. (12)

We can also motivate PI (12) by modifying the justification for the Lei et
al. (2018) split conformal prediction interval

[m̂H(xf) − aq, m̂H(xf ) + aq] (13)

where aq is the 100(1− δ)th quantile of the absolute validation residuals. Also
see Lei (2019). PI (12) is a modification of the split conformal PI that is
asymptotically optimal. Suppose (Yi,xi) are iid for i = 1, ..., n, n+ 1 where
(Yf ,xf) = (Yn+1,xn+1). Compute m̂H(x) from the cases in H . For example,

get β̂H from the cases in H . Consider the validation residuals vi for i =
1, ..., nV and the validation residual vnV +1 for case (Yf ,xf). Since these nV +1
cases are iid, the probability that vt has rank j for j = 1, ..., nV +1 is 1/(nV +1)
for each t, i.e., the ranks follow the discrete uniform distribution. Let t = nV +1
and let the v(j) be the ordered residuals using j = 1, ..., nV . That is, get the
order statistics without using the unknown validation residual vnV +1. Then
v(i) has rank i if v(i) < vnV +1 but rank i+ 1 if v(i) > vnV +1. Thus

P (Yf ∈ [m̂H(xf)+v(k), m̂H(xf )+v(k+b−1)]) = P (v(k) ≤ vnV +1 ≤ v(k+b−1)) ≥

P (vnV +1 has rank between k + 1 and k + b − 1 and there are no tied ranks)
≥ (b − 1)/(nV + 1) ≈ 1 − δ if b = d(nV + 1)(1 − δ)e + 1 and k + b− 1 ≤ nV .
This probability statement holds for a fixed k such as k = dnV δ/2e. The
statement is not true when the shorth(b) estimator is used since the shortest
interval using k = s can have s change with the data set. That is, s is not
fixed. Hence if PI’s were made from J independent data sets, the PI’s with
fixed k would contain Yf about J(1−δ) times, but this value would be smaller
for the shorth(b) prediction intervals where s can change with the data set.
The above argument works if the estimator m̂(x) is “symmetric in the data,”
which is satisfied for multiple linear regression estimators.

The PIs (11) to (13) can be used with m̂(x) = Ŷf = xT
Id

β̂Id
where Id

denotes the index of predictors selected from the model or variable selection
method. If β̂ is a consistent estimator of β, the new PIs (11) and (12) are
asymptotically optimal for a large class of error distributions while the split
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conformal PI (13) needs the error distribution to be unimodal and symmetric
for asymptotic optimality. Since m̂H uses n/2 cases, m̂H has about half the
efficiency of m̂. When p ≥ n, the regularity conditions for consistent estima-
tors are strong. For example EBIC and lasso can have P (S ⊆ Imin) → 1 as
n → ∞. Then forward selection with EBIC and lasso variable selection can
produce consistent estimators. PLS can be

√
n consistent. See the second to

last paragraph of Section 3 for references.
None of the three prediction intervals (11), (12), and (13) dominates the

other two. If a good fitting method, such as forward selection with EBIC or
lasso, is used, and 1.5aS ≤ n ≤ 5aS, then PI (11) can be much shorter than
PIs (12) and (13). For n/d large, PIs (11) and (12) can be shorter than PI
(13) if the error distribution is not unimodal and symmetric; however, PI (13)
is often shorter if n/d is not large since the sample shorth converges to the
population shorth rather slowly. Grübel (1988) shows that for iid data, the
length and center of the shorth(kn) interval are

√
n consistent and n1/3 con-

sistent estimators of the length and center of the population shorth interval.
For a unimodal and symmetric error distribution, the three PIs are asymptot-
ically equivalent, but PI (13) can be the shortest PI due to different correction
factors.

If the estimator is poor, the split conformal PI (13) and PI (12) can have
coverage closer to the nominal coverage than PI (11). For example, if m̂ in-
terpolates the data and m̂H interpolates the training data from H , then the
validation residuals will be huge. Hence PI (12) will be long compared to PI
(11). For a good fitting model, residuals ri tend to be smaller in magnitude
than errors ei. Hence PI (11) needs a complicated correction factor. The val-
idation residuals vj tend to be larger in magnitude than the ei, and thus the
Frey correction factor can be used for PI (12).

Asymptotically optimal PIs estimate the population shorth of the zero
mean error distribution. Hence PIs that use the shorth of the residuals, such as
PIs (11) and (12), are the only easily computed asymptotically optimal PIs for

a wide range of consistent estimators β̂ of β for the multiple linear regression
model (1). Other asymptotically optimal PIs need p fixed or only estimate the
population shorth for unimodal symmetric zero mean error distributions. For
example, the Lei et al. (2018) split conformal prediction interval (13) needs
the latter distributions for asymptotic optimality. If the error distribution is
e ∼ EXP (1) − 1, then the asymptotic length of the 95% PI (11) or (12) is
2.966 while that of the split conformal PI is 2(1.966) = 3.992. The Olive (2007,
2013) asymptotically optimal PIs need n/p large.

3 Large Sample Theory

The prediction intervals (11) and (12) are asymptotically optimal if β̂ is a
consistent estimator of β. The six estimators forward selection with OLS,
principal components regression, partial least squares, lasso, ridge regression,
and lasso variable selection have R programs and large sample theory related
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to that of OLS. This section gives new theory for variable selection estimators
such as forward selection and lasso variable selection, and simplifies the proofs
for lasso and ridge regression. First we will let p be fixed.

Next, we review large sample theory for lasso, ridge regression, and the
elastic net, defined below. Knight and Fu (2000) and Slawski, zu Castell, and
Tutz (2010) proved that lasso, ridge regression, and the elastic net are asymp-

totically equivalent to the OLS full model if λ1,n/
√
n

P→ 0. Knight and Fu
(2000) proved that lasso and ridge regression are consistent estimators of β if
λ1,n = o(n) so λ1,n/n → 0 as n → ∞, and

√
n consistent if λ1,n = O(

√
n) so

λ1,n/
√
n is bounded. Pilz (2020) also has some theory for the elastic net.

The following results are used to give simpler proofs, and to make compar-
isons of the three estimators and the full model OLS estimator simpler. Since
model selection with λ1, ..., λM is used, we need λ̂1,n to be well behaved.

Assume that the sample correlation matrix

Ru =
W T W

n

P→ V −1. (14)

Note that V −1 = ρu, the population correlation matrix of the nontrivial
predictors ui, if the ui are a random sample from a population. Under (14),
if λ1,n/n→ 0 then

W T W + λ1,nIp−1

n

P→ V −1, and n(W T W + λ1,nIp−1)
−1 P→ V .

Let H = W (W T W )−1W T = (hij), and assume that maxi=1,...,n hii
P→ 0 as

n→ ∞. Then from Sen and Singer (1993, p. 280), the OLS estimator satisfies

√
n(η̂OLS − η)

D→ Np−1(0, σ
2V ). (15)

The following identity from Gunst and Mason (1980, p. 342) is useful for
ridge regression inference: η̂R =

(W T W+λ1,nIp−1)
−1W T Z = (W T W+λ1,nIp−1)

−1W T W (W T W )−1W T Z

= (W T W + λ1,nIp−1)
−1W T Wη̂OLS = Anη̂OLS =

[Ip−1 − λ1,n(W T W + λ1,nIp−1)
−1]η̂OLS = Bnη̂OLS =

η̂OLS − λ1n

n
n(W T W + λ1,nIp−1)

−1η̂OLS

since An − Bn = 0.
The following identity from Efron and Hastie (2016, p. 308), for example,

is useful for inference for the lasso estimator η̂L:

−1

n
W T (Z − Wη̂L) +

λ1,n

2n
sn = 0 or − W T(Z − Wη̂L) +

λ1,n

2
sn = 0
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where the ith element of sn is sin ∈ [−1, 1] and sin = sign(η̂i,L) if η̂i,L 6= 0.
Here sign(ηi) = 1 if ηi > 1 and sign(ηi) = −1 if ηi < 1. Note that sn = sn,η̂

L

depends on η̂L. Thus η̂L

= (W T W )−1W T Z − λ1,n

2n
n(W T W )−1 sn = η̂OLS − λ1,n

2n
n(W T W )−1 sn.

Following Hastie, Tibshirani, and Wainwright (2015, p. 57), the elastic net
estimator η̂EN minimizes

QEN(η) = RSS(η) + λ1‖η‖2
2 + λ2‖η‖1 (16)

where λ1 = (1 − α)λ1,n and λ2 = 2αλ1,n with 0 ≤ α ≤ 1. Also see Zou and
Hastie (2005).

Following Jia and Yu (2010), by standard Karush-Kuhn-Tucker conditions
for convex optimality for Equation (16), η̂EN is optimal if

2W T Wη̂EN − 2WT Z + 2λ1η̂EN + λ2sn = 0, or

(W T W + λ1Ip−1)η̂EN = W T Z − λ2

2
sn, or

η̂EN = η̂R − n(W T W + λ1Ip−1)
−1 λ2

2n
sn. (17)

Hence

η̂EN = η̂OLS−
λ1

n
n(W T W +λ1Ip−1)

−1 η̂OLS−
λ2

2n
n(W T W +λ1Ip−1)

−1 sn

= η̂OLS − n(W T W + λ1Ip−1)
−1 [

λ1

n
η̂OLS +

λ2

2n
sn].

Thus elastic net is consistent if λ1,n/n→ 0 as n → ∞. Note that if λ̂1,n/
√
n

P→
τ and α̂

P→ ψ, then λ̂1/
√
n

P→ (1 − ψ)τ and λ̂2/
√
n

P→ 2ψτ. Also note that

√
n(η̂EN −η) =

√
n(η̂OLS −η)−n(WT W + λ̂1Ip−1)

−1 [
λ̂1√
n

η̂OLS +
λ̂2

2
√
n

sn].

The following theorem, summarizing results from Knight and Fu (2000) and
Slawski, zu Castell, and Tutz (2010), shows that elastic net, lasso, and ridge

regression are asymptotically equivalent to the OLS full model if λ̂1,n/
√
n

P→ 0.
Let η̂A be η̂EN , η̂L, or η̂R. Note that c) follows from b) if ψ = 0, and d) follows

from b) (using 2λ̂1,n/
√
n

P→ 2τ ) if ψ = 1. Recall that we are assuming that p
is fixed.

Theorem 1 Assume that the conditions of the OLS theory (15) hold for
the model Z = Wη + e.

a) If λ̂1,n/
√
n

P→ 0, then

√
n(η̂A − η)

D→ Np−1(0, σ
2V ).
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b) If λ̂1,n/
√
n

P→ τ ≥ 0, α̂
P→ ψ ∈ [0, 1], and sn

P→ s = sη, then

√
n(η̂EN − η)

D→ Np−1

(

−V [(1− ψ)τη + ψτs], σ2V
)

.

c) If λ̂1,n/
√
n

P→ τ ≥ 0, then

√
n(η̂R − η)

D→ Np−1(−τV η, σ2V ).

d) If λ̂1,n/
√
n

P→ τ ≥ 0 and sn
P→ s = sη , then

√
n(η̂L − η)

D→ Np−1

(−τ
2

V s, σ2V

)

.

We can make the six estimators asymptotically equivalent to the OLS
full model: take, for example, λ1n =

√
n/ log(n) for lasso and lasso variable

selection, and make P (d = p) → 1 for forward selection, PCR, PLS, and
lasso variable selection. Lasso and elastic net do variable selection better if
λn/n → 0 and λn/

√
n → ∞ as n → ∞ than if λn/

√
n → 0, as noted by Fan

and Li (2001). PCR tends to be inconsistent if P (d = p) does not go to one.

Usually λ̂1,n is selected using a criterion such as k–fold CV or GCV. It is

not clear whether λ̂1,n = o(n). For the elastic net and lasso, λM/n does not go
to zero as n→ ∞ since η̂ = 0 is not a consistent estimator. Hence λM is likely
proportional to n, and using λi = iλM/M for i = 1, ...,M will not produce a
consistent estimator.

Next, we give large sample theory for OLS variable selection estimators
such as forward selection and lasso variable selection. Suppose that model (5)
holds. Let H = X(XT X)−1XT . Assume the maximum leverage

max
i=1,...,n

xT
iIj

(XT
Ij

XIj
)−1xiIj

→ 0

in probability as n → ∞ for each Ij with S ⊆ Ij where the dimension of Ij

is aj. For the OLS model with S ⊆ Ij ,
√
n(β̂Ij

− βIj
)

D→ Naj
(0, σ2V j) where

(XT
Ij

XIj
)/n

P→ V −1
j . See, for example, Sen and Singer (1993, p. 280). Then

ujn =
√
n(β̂Ij,0 − β)

D→ uj ∼ Np(0, σ
2V j,0) (18)

where V j,0 adds columns and rows of zeros corresponding to the xi not in Ij ,
and V j,0 is singular unless Ij corresponds to the full model.

Let Imin correspond to the set of predictors selected by a variable selection
method such as forward selection or lasso variable selection. If β̂I is a × 1,

form the p× 1 vector β̂I,0 from β̂I by adding 0s corresponding to the omitted
variables. Also use zero padding for the model Imin. For example, if p = 4
and β̂Imin

= (β̂1, β̂3)
T , then the observed the variable selection estimator

β̂V S = β̂Imin,0 = (β̂1, 0, β̂3, 0)T . As a statistic, β̂V S = β̂Ik,0 with probabilities
πkn = P (Imin = Ik) for k = 1, ..., J where there are J subsets. For example, if
each subset contains at least one variable, then there are J = 2p − 1 subsets.
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Pötscher (1991) used the conditional distribution of β̂V S |(β̂V S = β̂Ik,0) to

find the distribution of wn =
√
n(β̂V S − β). Let W = WV S = k if β̂V S =

β̂Ik,0 where P (WV S = k) = πkn for k = 1, ..., J. Then (β̂V S:n,WV S:n) =

(β̂V S ,WV S) has a joint distribution where the sample size n is usually sup-

pressed. Note that β̂V S = β̂IW ,0. Define P (A|Bk)P (Bk) = 0 if P (Bk) = 0. Let

β̂
C

Ik,0 be a random vector from the conditional distribution β̂Ik,0|(WV S = k).

Let wkn =
√
n(β̂Ik,0 − β)|(WV S = k) ∼ √

n(β̂
C

Ik,0 − β). Denote Fz(t) =
P (z1 ≤ t1, ..., zp ≤ tp) by P (z ≤ t). Then

Fwn
(t) = P [n1/2(β̂V S − β) ≤ t] =

J
∑

k=1

P [n1/2(β̂V S − β) ≤ t|(β̂V S = β̂Ik,0)]P (β̂V S = β̂Ik,0) =

J
∑

k=1

P [n1/2(β̂Ik,0 − β) ≤ t|(β̂V S = β̂Ik,0)]πkn

=
J
∑

k=1

P [n1/2(β̂
C

Ik,0 − β) ≤ t]πkn =
J
∑

k=1

Fwkn
(t)πkn.

Hence β̂V S has a mixture distribution of the β̂
C

Ik,0 with probabilities πkn, and
wn has a mixture distribution of the wkn with probabilities πkn.

Charkhi and Claeskens (2018) showed that wjn =
√
n(β̂

C

Ij ,0 − β)
D→ wj if

S ⊆ Ij for the MLE with AIC. Here wj is a multivariate truncated normal
distribution (where no truncation is possible) that is symmetric about 0. Hence
E(wj) = 0, and Cov(wj) = Σj exits. Pelawa Watagoda and Olive (2019)

defined β̂MIX to be a random vector with a mixture distribution of the β̂Ik,0

with probabilities equal to πkn. Hence β̂MIX = β̂Ik,0 with same probabilities

πkn of the variable selection estimator β̂V S , but the Ik are randomly selected.

Note that both
√
n(β̂MIX −β) and

√
n(β̂V S−β) are selecting from the ukn =√

n(β̂Ik,0 −β) and asymptotically from the uj of Equation (18). The random

selection for β̂MIX does not change the distribution of ujn, but selection bias
does change the distribution of the selected ujn to that of wjn. Similarly,
selection bias does change the distribution of the selected uj to that of wj .
Let W = WV S,∞ where P (W = k) = πk.

The first assumption in Theorem 2 is P (S ⊆ Imin) → 1 as n → ∞. Then
the variable selection estimator corresponding to Imin underfits with probabil-
ity going to zero, and the assumption holds under regularity conditions if BIC
or AIC is used. See Charkhi and Claeskens (2018) and Claeskens and Hjort
(2008, pp. 70, 101, 102, 114, 232). For multiple linear regression with Mallows

(1973) Cp or AIC, see Li (1987), Nishii (1984), and Shao (1993). Let β̂Imin

be the OLS estimator applied to a constant and the variables with nonzero
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shrinkage estimator coefficients. If the shrinkage estimator is a consistent es-
timator of β, then P (S ⊆ Imin) → 1 as n → ∞. See Zhao and Yu (2006,

p. 2554). The reasonable Theorem 2 assumption that wjn
D→ wj may not be

mild. Rathnayake and Olive (2020) extend this theory to many other variable
selection estimators such as generalized linear models. Charkhi and Claeskens
(2018) have a related result for forward selection with AIC when the iid errors
are N(0, σ2).

Theorem 2 Assume P (S ⊆ Imin) → 1 as n → ∞, and let β̂V S = β̂Ik,0

with probabilities πkn where πkn → πk as n → ∞. Denote the positive πk by

πj. Assume wjn =
√
n(β̂

C

Ij,0 − β)
D→ wj. Then

wn =
√
n(β̂V S − β)

D→ w (19)

where the cdf of w is Fw(t) =
∑

j πjFwj
(t). Thus w is a mixture distribution

of the wj with probabilities πj.

Proof. a) Since wn has a mixture distribution of the wkn with probabili-
ties πkn, the cdf of wn is Fwn

(t) =
∑

k πknFwkn
(t) → Fw(t) =

∑

j πjFwj
(z)

at continuity points of the Fwj
(t) as n→ ∞. �

If P (S ⊆ Imin) → 1 as n → ∞, then β̂V S is a
√
n consistent estimator of

β since selecting from a finite number J of
√
n consistent estimators (even on

a set that goes to one in probability) results in a
√
n consistent estimator by

Pratt (1959). By both this result and Theorem 2, the lasso variable selection
and elastic net variable selection estimators are

√
n consistent if lasso and

elastic net are consistent.
We expect that prediction intervals will often work better for smaller sam-

ple sizes for estimators with better large sample theory. For fixed p, the forward
selection with Cp and lasso variable selection estimators β̂Imin,0 are

√
n con-

sistent by Theorem 2, and PLS is
√
n consistent by Cook and Forzani (2018,

2019). Note that β̂Imin
and β̂V S = β̂Imin,0 give the same prediction intervals

(11) to (13). Lasso and ridge regression have the next best large sample the-
ory, and PCR has the worst. PCR may give good prediction if the column
space of X is approximately the column space of W d, where the columns of
W d are the d PCR components used by the PCR estimator. The two column
spaces are equal if d = p. Even if p > n, lasso variable selection may outper-
form lasso if XT

Imin
XImin

is not ill conditioned, where Imin corresponds to the
variables with nonzero lasso coefficients, including a constant. Lasso may out-
perform lasso variable selection if XT

Imin
XImin

is ill conditioned. Belloni and
Chernozhukov (2013) suggest lasso variable selection can outperform lasso.

If p > n, the regularity conditions for β̂ to be a consistent estimator of β

are much stronger, and a simplifying structure is usually needed. One widely
used structure is that the model is sparse: the subset S in (5) has aS small.
Results from Hastie, Tibshirani, and Wainwright (2015, pp. 20, 296, ch. 6, ch.
11) and Luo and Chen (2013) suggest that lasso, lasso variable selection, and
forward selection with EBIC can perform well for sparse models, especially
if the nontrivial predictors are nearly orthogonal or nearly uncorrelated. A
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second widely used structure is Y ∼ Nn(Xβ, σ2In). Then Y = XIβI + eI

follows a multiple linear regression model for every subset I. Some models have
smaller σ2

I , and n(XT
I XI)

−1 should not be ill conditioned for forward selection
and lasso variable selection. If p > n, under two sets of strong regularity
conditions, PLS can be

√
n consistent or inconsistent. See Chun and Keleş

(2010), Cook (2018), Cook and Forzani (2018, 2019), and Cook, Helland, and
Su (2013).

The simulations have parameters ψ and k, where ψ determines the correla-
tion of the k nontrivial predictors and aS = k+1. For n/p not large, the model
will be sparse if k = 1 or k = 19. The nontrivial predictors are independent
and hence uncorrelated if ψ = 0. In the simulation, Y ∼ Nn(Xβ, σ2In) when
the errors are iid N(0, 1). A third simplifying structure occurs when ψ = 0.9.
Then all of the nontrivial predictors are very highly correlated with the line
in the direction of (1, ..., 1)T, and the first PCR component or a small group
of predictors may be useful for prediction.

4 Examples and Simulations

Suppose that n ≥ 10d where model I has d predictors, including a constant.
Response plots of the fitted values Ŷ versus the response Y are useful for
checking linearity, checking whether the error distribution is skewed, and for
detecting outliers. See Brillinger (1977, 1983) and Cook and Weisberg (1999,
pp. 417, 425, 432). Suppose the plotted points in the response plot and residual
plot of Ŷ vs. r scatter about the identity line with zero intercept and unit slope
and r = 0 line in roughly even bands. For OLS forward selection with Cp, we
suggest n ≥ 5p and n ≥ 10dImin

. A model with n < 5d overfits. Much larger
values of n may be needed if the error distribution is skewed or multimodal.
In the forward selection simulations, PI (11) often had good coverage but was
rather long if n ≈ 5p. See the following example. The Hurvich and Tsai (1989)
AICC criterion can be useful when n ≥ max(2p, 10dImin

).
Example 1. The Hebbler (1847) data was collected from n = 26 districts

in Prussia in 1843. See (http://parker.ad.siu.edu/Olive/sldata.txt). We will
study the relationship between Y = the number of women married to civilians
in the district with the predictors x1 = constant, x2 = pop = the population
of the district in 1843, x3 = mmen = the number of married civilian men in
the district, x4 = mmilmen = the number of married men in the military in
the district, and x5 = milwmn = the number of women married to husbands
in the military in the district. Sometimes the person conducting the survey
would not count a spouse if the spouse was not at home. Hence Y and x3 are
highly correlated but not equal. Similarly, x4 and x5 are highly correlated but
not equal. Y = x3 + e is a good model.

Consider PI (11). Forward selection selected the model with the minimum
Cp while the other methods used 10-fold CV. PLS and PCR used (p compo-
nents) the OLS full model with 90% PI length 2395.74, forward selection used
a constant and mmen with PI length 2114.72, ridge regression had PI length
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d) Lasso Variable Selection

Fig. 1 Marry Data Response Plots.

20336.58, lasso and lasso variable selection used a constant, mmen, and pop
with lengths 8482.62 and 2226.53, respectively. Figure 1 shows the response
plots for forward selection, ridge regression, lasso, and lasso variable selection.
The response plots for PLS, PCR, and the OLS full model were identical and
similar to those of forward selection and lasso variable selection. The plots
suggest that the MLR model is appropriate since the plotted points scatter
about the identity line. The 90% pointwise PI (11) bands are also shown, and
consist of two lines parallel to the identity line. These bands are very narrow
in Figure 1 a) and d).

We used 5-fold CV with coverage and average 95% PI length to compare
the forward selection models. All 4 models had 100% coverage with 5-fold
CV (the 26 large sample 95% PIs formed using 5-fold CV each contained
the corresponding Yi). Hence the model with the shortest average PI length
should be selected. The average PI lengths were 2591.243, 2741.154, 2902.628,
and 2972.963 for the models with 2 to 5 predictors.

Example 1 illustrates a useful diagnostic that would be slow to simulate.
Modify k–fold cross validation to compute the PI coverage and average PI
length on all M models. Then n PIs are made for Yi using xf = xi for
i = 1, ..., n. The coverage is the proportion of times the n PIs contained Yi.
When n is small, 2% undercoverage might be acceptable, but as n increases the
amount of undercoverage should decrease to zero so that models that produce
undercoverage are not favored. For example, choose the model Id with the
shortest average PI length given that the nominal large sample 100(1 − δ)%
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Fig. 2 Response Plots for Example 2.

PI had coverage

≥ cn = max(1 − δ − 1

3
√
n
, 1 − δ − 0.02).

If no model Ii had coverage ≥ cn, pick the model with the largest coverage.
Example 2. Suppose Y = β1 + β2x2 + · · · + β101x101 + e = x2 + e is

simulated with n = 100 and p = 101. This model is sparse and lasso performs
well. Ridge regression shrinks too much and β̂1 is poor, but the correlation
cor(Ŷ RR,Y ) = 0.91. See Figure 2 which has the 90% pointwise PI (11) bands.

A scaled shrinkage estimator is obtained by regressing Y on Ŷ to get β̂s where

β̂is = b̂β̂i for i = 2, ..., p and β̂1s = â+ b̂β̂1 and β̂ is the estimator such as ridge
regression. See Olive (2020, ch. 8) for R code. In the simulations for sparse
models, lasso sometimes shrinks too much but lasso variable selection helps.
Scaled shrinkage estimators may be useful if the population model or fitted
model is not sparse.

Simulation

For the simulation, we used several R functions including forward selection
(FS) as computed with the regsubsets function from the leaps library, prin-
cipal components regression (PCR) with the pcr function and partial least
squares (PLS) with the plsr function from the pls library, and ridge regres-
sion (RR) and lasso with the cv.glmnet function from the glmnet library.
Lasso variable selection (LVS) was applied to the selected lasso model.

The simulation generated (Yi,xi) for i = 1, ..., n, n+ 1 where (Yf ,xf) =
(Yn+1,xn+1). Then a 95% prediction interval from a regression method was
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Table 1 Simulated Large Sample 95% PI Coverages and Lengths, ei ∼ N(0,1)

n p ψ k FS lasso LVS RR PLS PCR
100 20 0 1 cov 0.9644 0.9750 0.9666 0.9560 0.9438 0.9772

len 4.4490 4.8245 4.6873 4.5723 4.4149 5.5647
100 40 0 1 cov 0.9654 0.9774 0.9588 0.9274 0.8810 0.9882

len 4.4294 4.8889 4.6226 4.4291 4.0202 7.3393
100 200 0 1 cov 0.9648 0.9764 0.9268 0.9584 0.6616 0.9922

len 4.4268 4.9762 4.2748 6.1612 2.7695 12.412
100 50 0 49 cov 0.8996 0.9719 0.9736 0.9820 0.8448 1.0000

len 22.067 6.8345 6.8092 7.7234 4.2141 38.904
200 20 0 19 cov 0.9788 0.9766 0.9788 0.9792 0.9550 0.9786

len 4.9613 4.9636 4.9613 5.0458 4.3211 4.9610
200 40 0 19 cov 0.9742 0.9762 0.9740 0.9738 0.9324 0.9792

len 4.9285 5.2205 5.1146 5.2103 4.2152 5.3616
200 200 0 19 cov 0.9728 0.9778 0.9098 0.9956 0.3500 1.0000

len 4.8835 5.7714 4.5465 22.351 2.1451 51.896
400 20 0.9 19 cov 0.9664 0.9748 0.9604 0.9726 0.9554 0.9536

len 4.5121 10.609 4.5619 10.663 4.0017 3.9771
400 40 0.9 19 cov 0.9674 0.9608 0.9518 0.9578 0.9482 0.9646

len 4.5682 14.670 4.8656 14.481 4.0070 4.3797
400 400 0.9 19 cov 0.9348 0.9636 0.9556 0.9632 0.9462 0.9478

len 4.3687 47.361 4.8530 48.021 4.2914 4.4764
400 400 0 399 cov 0.9486 0.8508 0.5704 1.0000 0.0948 1.0000

len 78.411 37.541 20.408 244.28 1.1749 305.93
400 800 0.9 19 cov 0.9268 0.9652 0.9542 0.9672 0.9438 0.9554

len 4.3427 67.294 4.7803 66.577 4.2965 4.6533

made. This process was repeated for 5000 runs and the proportion of runs (cov)
where the PI contained Yf was recorded along with the average length (len) of
the 5000 PIs. Let x = (1 uT )T where u is the (p − 1) × 1 vector of nontrivial
predictors. In the simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I)
where the m = p− 1 elements of the vector wi are iid N(0,1). Let the m×m
matrix A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j. Then the

vector ui = Awi so that Cov(ui) = Σu = AAT = (σij) where the diagonal
entries σii = [1+(m−1)ψ2] and the off diagonal entries σij = [2ψ+(m−2)ψ2].
Hence the correlations are cor(xi, xj) = ρ = (2ψ+(m−2)ψ2)/(1+(m−1)ψ2)
for i 6= j where xi and xj are nontrivial predictors. If ψ = 1/

√
cp, then

ρ → 1/(c + 1) as p → ∞ where c > 0. As ψ gets close to 1, the predictor
vectors cluster about the line in the direction of (1, ..., 1)T . Let Yi = 1+1xi,2+
· · ·+ 1xi,k+1 + ei for i = 1, ..., n. Hence β = (1, .., 1, 0, ..., 0)T with k + 1 ones
and p − k − 1 zeros. The zero mean errors ei were iid from five distributions:
i) N(0,1), ii) t3, iii) EXP(1) - 1, iv) uniform(−1, 1), and v) 0.9 N(0,1) + 0.1
N(0,100). Normal distributions usually appear in simulations, and the uniform
distribution is the distribution where the shorth undercoverage is maximized
by Frey (2013). Distributions ii) and v) have heavy tails, and distribution iii)
is not symmetric.

The population shorth 95% PI lengths estimated by the asymptotically
optimal 95% PIs are i) 3.92 = 2(1.96), ii) 6.365, iii) 2.996, iv) 1.90 = 2(0.95),
and v) 13.490. The simulation used 5000 runs, so an observed coverage in [0.94,
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0.96] gives no reason to doubt that the PI has the nominal coverage of 0.95.
The simulation used p = 20, 40, 50, n, or 2n; ψ = 0, 1/

√
p, or 0.9; and k = 1, 19,

or p − 1. The OLS full model fails when p = n and p = 2n, where regularity
conditions for consistent estimators are strong. The values k = 1 and k = 19
correspond to sparse models since a model is sparse if aS = k + 1 is small in
Equation (5). Lasso, lasso variable selection, and forward selection with EBIC
can perform well for sparse models when n/p is not large. If k = p − 1 and
p ≥ n, then the model is dense. When ψ = 0, the predictors are uncorrelated,
when ψ = 1/

√
p, the correlation goes to 0.5 as p increases and the predictors

are moderately correlated. For ψ = 0.9, the predictors are highly correlated
with 1 dominant principal component, a setting favorable for PLS and PCR.
The simulated data sets are rather small since the some of the R estimators
are rather slow.

The simulations were done in R. See R Core Team (2016). The results were
similar for all five error distributions, and we show some results for the normal
and shifted exponential distributions. A much larger simulation study is in
Pelawa Watagoda (2017). Tables 1 and 2 show some simulation results for PI
(11) where forward selection used Cp for n ≥ 10p and EBIC for n < 10p. The
other methods minimized 10-fold CV. For forward selection, the maximum
number of variables used was approximately min(dn/5e, p). Ridge regression
used the same d that was used for lasso.

For n ≥ 5p, coverages tended to be near or higher than the nominal value
of 0.95. The average PI length was often near 1.3 times the asymptotically
optimal length for n = 10p and close to the optimal length for n = 100p.Cp and
EBIC produced good PIs for forward selection, and 10-fold CV produced good
PIs for PCR and PLS. For lasso and ridge regression, 10-fold CV produced
good PIs if ψ = 0 or if k was small, but if both k ≥ 19 and ψ ≥ 0.5, then
10-fold CV tended to shrink too much and the PI lengths were often too long.
Lasso did appear to select S ⊆ Imin since lasso variable selection was good.

For n/p not large, good performance needed stronger regularity conditions,
and all six methods can have problems. PLS tended to have severe undercov-
erage with small average length, but sometimes performed well for ψ = 0.9.
The PCR length was often too long for ψ = 0. If there was k = 1 active
population predictor, then forward selection with EBIC, lasso, and lasso vari-
able selection often performed well. For k = 19, forward selection with EBIC
often performed well, as did lasso and lasso variable selection for ψ = 0. For
dense models with k = p − 1 and n/p not large, there was often undercover-
age. Here forward selection with EBIC would use about the maximum of n/5
variables. Then coverage was low in Table 1 for n = 100, p = 50 and k = 49.
Let d− 1 be the number of active nontrivial predictors in the selected model.
For N(0, 1) errors, ψ = 0, and d < k, an asymptotic population 95% PI has
length 3.92

√
k − d+ 1. Note that when the (Yi,u

T
i )T follow a multivariate

normal distribution, every subset follows a multiple linear regression model.
EBIC occasionally had undercoverage, especially for k = 19 or p − 1, which
was usually more severe for ψ = 0.9 or 1/

√
p.
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Table 2 Simulated Large Sample 95% PI Coverages and Lengths, ei ∼ EXP (1)− 1

n p ψ k FS lasso LVS RR PLS PCR
100 20 0 1 cov 0.9622 0.9728 0.9648 0.9544 0.9460 0.9724

len 3.7909 4.4344 4.3865 4.4375 4.2818 5.5065
2000 20 0 1 cov 0.9506 0.9502 0.9500 0.9488 0.9486 0.9542

len 3.1631 3.1199 3.1444 3.2380 3.1960 3.3220
200 20 0.9 1 cov 0.9588 0.9666 0.9664 0.9666 0.9556 0.9612

len 3.7985 3.6785 3.7002 3.7491 3.5049 3.7844
200 20 0.9 19 cov 0.9704 0.9760 0.9706 0.9784 0.9578 0.9592

len 4.6128 12.1188 4.8732 12.0363 3.3929 3.7374
200 200 0.9 19 cov 0.9338 0.9750 0.9564 0.9740 0.9440 0.9596

len 4.6271 37.3888 5.1167 56.2609 4.0550 4.6994
400 40 0.9 19 cov 0.9678 0.9654 0.9492 0.9624 0.9426 0.9574

len 4.3433 14.7390 4.7625 14.6602 3.6229 4.1045

Table 3 Validation Residuals: Simulated Large Sample 95% PI Coverages and Lengths,
ei ∼ N(0,1)

n,p,ψ,k FS CFS LVS CLVS Lasso CL RR CRR
200,20, 0,19 cov 0.9574 0.9446 0.9522 0.9420 0.9538 0.9382 0.9542 0.9430

len 4.6519 4.3003 4.6375 4.2888 4.6547 4.2964 4.7215 4.3569
200,40,0,19 cov 0.9564 0.9412 0.9524 0.9440 0.9550 0.9406 0.9548 0.9404

len 4.9188 4.5426 5.2665 4.8637 5.1073 4.7193 5.3481 4.9348
200,200, 0,19 cov 0.9488 0.9320 0.9548 0.9392 0.9480 0.9380 0.9536 0.9394

len 7.0096 6.4739 5.1671 4.7698 31.1417 28.7921 47.9315 44.3321
400,20,0.9,19 cov 0.9498 0.9406 0.9488 0.9438 0.9524 0.9426 0.9550 0.9426

len 4.4153 4.1981 4.5849 4.3591 9.4405 8.9728 9.2546 8.8054
400,40,0.9,19 cov 0.9504 0.9404 0.9476 0.9388 0.9496 0.9400 0.9470 0.9410

len 4.7796 4.5423 4.9704 4.7292 13.3756 12.7209 12.9560 12.3118
400,400,0.9,19 cov 0.9480 0.9398 0.9554 0.9444 0.9506 0.9422 0.9506 0.9408

len 5.2736 5.0131 4.9764 4.7296 43.5032 41.3620 42.6686 40.5578
400,800,0.9,19 cov 0.9550 0.9474 0.9522 0.9412 0.9550 0.9450 0.9550 0.9446

len 5.3626 5.0943 4.9382 4.6904 60.9247 57.8783 60.3589 57.3323

Tables 3 and 4 show some results for PIs (12) and (13). Here forward
selection using the minimum Cp model if nH ≥ 10p and EBIC otherwise. The
coverage was very good. Labels such as CFS and CLVS used PI (13). For lasso
variable selection , the program sometimes failed to run for 5000 runs, e.g., if
the number of variables selected d = nH . In Table 3, PIs (12) and (13) are
asymptotically equivalent, but PI (13) had shorter lengths for moderate n. In
Table 4, PI (12) is shorter than PI (13) asymptotically, but for moderate n,
PI (13) was often shorter.

Table 5 shows some results for PIs (11) and (12) for lasso and ridge re-
gression. The header lasso indicates PI (11) was used while vlasso indicates
that PI (12) was used. PI (12) tended to work better when the fit was poor
while PI (11) was better for n = 2p and k = p−1. The PIs are asymptotically
equivalent for consistent estimators.
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Table 4 Validation Residuals: Simulated Large Sample 95% PI Coverages and Lengths,
ei ∼ EXP (1)− 1

n,p,ψ,k FS CFS LVS CLVS Lasso CL RR CRR
200,20,0,1 cov 0.9596 0.9504 0.9588 0.9374 0.9604 0.9432 0.9574 0.9438

len 4.6055 4.2617 4.5984 4.2302 4.5899 4.2301 4.6807 4.2863
2000,20,0,1 cov 0.9560 0.9508 0.9530 0.9464 0.9544 0.9462 0.9530 0.9462

len 3.3469 3.9899 3.3240 3.9849 3.2709 3.9786 3.4307 3.9943
200,20,0.9,1 cov 0.9564 0.9402 0.9584 0.9362 0.9634 0.9412 0.9638 0.9418

len 3.9184 3.8957 3.8765 3.8660 3.8406 3.8483 3.8467 3.8509
200,20,0.9,19 cov 0.9630 0.9448 0.9510 0.9368 0.9554 0.9430 0.9572 0.9420

len 5.0543 4.6022 4.8139 4.3841 9.8640 9.0748 9.5218 8.7366
200,200,0.9,19 cov 0.9570 0.9434 0.9588 0.9418 0.9552 0.9392 0.9544 0.9394

len 5.8095 5.2561 5.2366 4.7292 31.1920 28.8602 47.9229 44.3251
400,40,0.9,19 cov 0.9476 0.9402 0.9494 0.9416 0.9584 0.9496 0.9562 0.9466

len 4.6992 4.4750 4.9314 4.6703 13.4070 12.7442 13.0579 12.4015

Table 5 PIs (11) and (12): Simulated Large Sample 95% PI Coverages and Lengths

n p ψ k dist lasso vlasso RR vRR
100 20 0 1 cov N(0,1) 0.9750 0.9632 0.9564 0.9606

len 4.8245 4.7831 4.5741 5.3277
100 20 0 1 cov EXP(1)−1 0.9728 0.9582 0.9546 0.9612

len 4.4345 5.0089 4.4384 5.6692
100 50 0 49 cov N(0,1) 0.9714 0.9606 0.9822 0.9618

len 6.8345 22.3265 7.7229 27.7275
100 50 0 49 cov EXP(1)−1 0.9716 0.9618 0.9814 0.9608

len 6.9460 22.4097 7.8316 27.8306
400 400 0 399 cov N(0,1) 0.8508 0.9518 1.0000 0.9548

len 37.5418 78.0652 244.1004 69.5812
400 400 0 399 cov EXP(1)−1 0.8446 0.9586 1.0000 0.9558

len 37.5185 78.0564 243.7929 69.5474

The collection of Olive (2020) R functions slpack, available from (http://
parker.ad.siu.edu/Olive/slpack.txt), has some useful functions for the infer-
ence. Tables 1 and 2 were made with mspisim. For PI (12), the function
valvspisim2 is for forward selection using the minimumCp model if nH ≥ 10p
and EBIC otherwise, and the function also computes the split conformal PI.
The function valrrpisim2 simulates lasso and ridge regression. The function
valrelpisim simulates the lasso variable selection model corresponding to
the lasso model chosen with 10-fold CV. This function sometimes fails with
5000 runs. For example, the function fails if the number of variables selected
d ≥ n/2. Tables 3 and 4 used these three functions. The function pifold can
be used to do k-fold CV with PI coverage and average length. The function
AERplot2 makes a response plot with pointwise PIs (11) added. The function
srrpisim can be used to simulate PIs for the scaled lasso and scaled ridge
regression estimators of Example 2, and was used for Table 5.
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5 Conclusion

Let p be fixed. Then β̂V S = β̂Imin,0 is
√
n consistent for forward selection with

Cp and for lasso variable selection by Theorem 2. If aS < p, then lasso tends
not to be

√
n consistent if lasso selects S with high probability by Fan and

Li (2001). PLS appears to be
√
n consistent by results in Cook and Forzani

(2018, 2019). PCR tends to be inconsistent unless P (d = p) → 1 as n → ∞.
It is not clear if ridge regression, as implemented by the glmnet package in
R, is consistent. In the simulations with n ≥ 5p, forward selection with Cp or
EBIC, lasso variable selection, and PLS performed best. A recent survey for
principal component regression is Artigue and Smith (2019). Using lasso or for-
ward selection on the principal components may improve principal component
regression, although this method may use the full OLS model too often.

If n/p is not large, regularity conditions for consistent estimators are strong.
PLS is unreliable since sometimes PLS is inconsistent and sometimes

√
n con-

sistent by Cook and Forzani (2018, 2019). PCR was also unreliable. In the sim-
ulations, forward selection with EBIC and lasso variable selection performed
best for sparse models. Suppose a researcher picks a method, say PLS. Then
fit PLS and several competing methods. Using response plots and checking
PIs (12) and (13) for coverage and average lengths on the validation set may
suggest that PLS is useful or that an alternative method may be better for
prediction.

As noted in Section 2, none of the three prediction intervals (11), (12), and
(13) dominates the other two. The new prediction intervals (11) and (12) are

asymptotically optimal for a large class of error distributions if β̂ is a consis-
tent estimator of β. Prediction intervals described in Lei et al. (2018) and the
new prediction intervals (11) and (12) are among the only prediction intervals
that may be useful when the error distribution is unknown and n/p is small.
PI (12) modified the split conformal PI (13) to be asymptotically optimal on
a much larger class of error distributions. See Wasserman (2014) and Butler
and Rothman (1980) for PIs related to PI (13). Denham (1997) gave a PI for
PLS when the number of PLS components Vj is selected in advance. Also, see
Romera (2010). Mohie El–Din and Shafay (2013) also derived prediction inter-
vals based on order statistics. Lin, Foster, and Ungar (2012) noted that lasso
and related methods can perform poorly in the presence of multicollinearity.
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