
Prediction Intervals in the Presence of Outliers

David J. Olive∗

Southern Illinois University

July 21, 2003

Abstract

This paper presents a simple procedure for computing prediction intervals when

the data comes from a population that produces a small percentage of easily de-

tected randomly occurring outliers. The multiple linear regression model with

normal errors is used to illustrate the procedure.
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1 INTRODUCTION

Outliers are observations that are far from the bulk of the data and can cause classical

estimators to perform very poorly. Typing and recording errors may create outliers, and a

data set can have a large proportion of outliers if there is an omitted categorical variable

(e.g. gender, species, or geographical location) where the data behaves differently for

each category. Outliers should always be examined to see if they follow a pattern, are

recording errors, or if they could be explained adequately by a more complicated model.

Recording errors can sometimes be corrected and omitted variables can be included, but

often there is no simple explanation for a group of data which differs from the bulk of

the data.

Assume that the population that generates the data is such that a certain proportion

γ of the cases will be easily identified but randomly occurring unexplained outliers where

γ < α < 0.2, and assume that remaining proportion 1 − γ of the cases will be well

approximated by the statistical model.

A common suggestion for examining a data set that has unexplained outliers is to

run the analysis on the full data set and to run the analysis on the “cleaned” data set

with the outliers deleted. Then the statistician may consult with the collectors of the

data in order to decide which analysis is “more appropriate.” Although the analysis of

the cleaned data may be useful for describing the bulk of the data, the analysis is not

very useful if prediction or description of the entire population is of interest.

Similarly, the analysis of the full data set will likely be unsatisfactory for prediction

since numerical statistical methods tend to be inadequate when outliers are present.
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Classical estimators will frequently fit neither the bulk of the data nor the outliers well,

while an analysis from a good practical robust estimator (if available) should be similar

to the analysis of the cleaned data set.

Hence neither of the two analyses alone is appropriate for prediction or description

of the actual population. Instead, information from both analyses should be used. The

cleaned data will be used to show that the bulk of the data is well approximated by

the statistical model, but the full data set will be used along with the cleaned data for

prediction and for description of the entire population.

To illustrate the above discussion, consider the multiple linear regression model

Y = Xβ + e (1.1)

where Y is an n× 1 vector of dependent variables, X is an n× p matrix of predictors, β

is a p× 1 vector of unknown coefficients, and e is an n× 1 vector of errors. The ith case

(Yi, x
T
i ) corresponds to the ith row xT

i of X and the ith element Yi of Y . Since prediction

intervals are desired, also assume that the errors ei are independent identically distributed

(iid) random variables from a normal distribution with zero mean and variance σ2.

Finding prediction intervals for future observations is a standard problem in multiple

linear regression. Let β̂ denote the ordinary least squares (OLS) estimator of β and let

MSE =

∑n
i=1 r2

i

n − p

where ri = Yi −xT
i β̂ is the ith residual. Following Neter, Wasserman and Kutner (1983,

p. 246), if the errors are iid normal, then a (1 − α)100% prediction interval (PI) for a

new observation Yh(new) corresponding to a vector of predictors xh is given by

Ŷh ± t1−α/2,n−pse(pred) (1.2)
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where Ŷh = xT
h β̂, P (t ≤ t1−α/2,n−p) = 1 − α/2 where t has a t distribution with n − p

degrees of freedom, and

se(pred) =
√

MSE(1 + xT
h (XT X)−1xh).

For discussion, suppose that 1 − γ = 0.92 so that 8% of the cases are outliers. If

interest is in a 95% PI, then using the full data set will fail because outliers are present,

and using the “clean” data set with the outliers deleted will fail since only 92% of future

observations will behave like the “clean” data.

A simple remedy is to create a nominal 100(1 − α)% PI for future cases from this

population by making a classical 100(1 − α∗) PI from the clean cases where

1 − α∗ = (1 − α)/(1 − γ). (1.3)

Since this PI is valid when Yh(new) is clean, if no outliers will fall in the PI then

P(Yh(new) is in the PI) ≈ P(Yh(new) is in the PI and clean) =

P(Yh(new) is in the PI | Yh(new) is clean) P(Yh(new) is clean) ≈ (1 − α∗)(1 − γ) = (1 − α).

Assume that there are nc clean cases and no outlying cases where nc + no = n. Then

the formula for this PI is

Ŷh ± t1−α∗/2,nc−pse(pred) (1.4)

where Ŷh and se(pred) are obtained after performing OLS on the nc clean cases. For

example, if α = 0.1 and γ = 0.08, then 1−α∗ ≈ 0.98. Since γ will be estimated from the

data, the coverage will be approximately valid.
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2 An Example

The following example illustrates the procedure. STATLIB provides a data set that

is available from the website (http://lib.stat.cmu.edu/datasets/bodyfat). The data set

(contributed by Roger W. Johnson) includes 252 cases, 14 predictor variables, and a

response variable Y = bodyfat. The correlation between Y and the first predictor x1 =

density is extremely high, and the plot of x1 versus Y looks like a straight line except

for four points. If simple linear regression is used, the residual plot of the fitted values

versus the residuals is curved and five outliers are apparent. The curvature suggests that

x2
1 should be added to the model, but the least squares fit does not resist outliers well. If

the five outlying cases are deleted, four more outliers show up in the plot. The residual

plot for the quadratic fit looks reasonable after deleting cases 6, 48, 71, 76, 96, 139, 169,

182 and 200. Cases 71 and 139 were much less discrepant than the other seven outliers.

These nine cases appear to be outlying at random: if the purpose of the analysis

was description, we could say that a quadratic fits 96% of the cases well, but 4% of the

cases are not fit especially well. If the purpose of the analysis was prediction, deleting

the outliers and then using the clean data to find a 99% PI would not make sense if

4% of future cases are outliers. To create a nominal 90% PI for future cases from this

population, make a classical 100(1−α∗) PI from the clean cases where 1−α∗ = 0.9/(1−γ).

For the bodyfat data, we can take 1 − γ ≈ 1 − 9/252 ≈ 0.964 and 1 − α∗ ≈ 0.94. Notice

that (0.94)(0.96) ≈ 0.9.

Figure 1 is useful for presenting the analysis. The top two plots have the nine outliers

deleted. Figure 1a is a forward response plot of the fitted values Ŷi versus the response
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Yi while Figure 1b is a residual plot of the fitted values Ŷi versus the residuals ri. These

two plots suggest that the multiple linear regression model fits the bulk of the data well.

Next consider using weighted least squares where cases 6, 48, 71, 76, 96, 139, 169, 182

and 200 are given weight zero and the remaining cases weight one. Figure 1c and 1d give

the forward response plot and residual plot for the entire data set. Notice that seven of

the nine outlying cases can be seen in these plots.

ARC (Cook and Weisberg 1999) was used to make the residual plots to find outliers

and to find prediction intervals. After making the residual plot, the outliers can be

highlighted and deleted from the data set. It took less that five minutes to detect the

outliers graphically. The classical 90% PI using x = (1, 1, 1)T and all 252 cases was

Ŷh ± t0.95,249se(pred) = 46.3152± 1.651(1.3295) = (44.12, 48.51). When the 9 outliers are

deleted, nc = 243 cases remain. Hence the 90% PI using equation (1.4) with 9 cases

deleted was Ŷh ± t0.97,240se(pred) = 44.961 ± 1.88972(0.0371) = (44.89, 45.03). Notice

that the classical PI is about 31 times longer than the new PI.

The focus of this article is on prediction intervals for multiple linear regression, but

similar ideas hold for prediction intervals in the location model. Whitmore (1986) gives

a useful introduction to prediction intervals in the location model, and Horn (1988) gives

a partial solution for obtaining prediction intervals when the underlying distribution has

heavy tails. Fisher and Horn (1994) discuss robust prediction intervals in the regression

setting.
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Figure 1: Plots for Summarizing the Entire Population
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