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Abstract

The computational complexity of algorithms for robust regression and multi-

variate location and dispersion often increases exponentially with the number of

variables. Many algorithms use Kn trial fits. Partitioning screens out bad trial fits

by evaluating the fits on a subset of the data. The best fits are kept and evaluated

on the entire data set.

Assume that the data set of n = hC cases contains d outliers, and partition the

data set into C disjoint sets of size n/C. It will be shown that each cell contains

approximately d/C outliers if d is large and C is fixed.
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1 INTRODUCTION

The multiple linear regression model is

Y = Xβ + e (1.1)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix of predictors,

and e is an n× 1 vector of errors. The ith case (xT
i , yi) corresponds to the ith row xT

i of

X and the ith row of Y .

A multivariate location and dispersion model is a joint distribution

f(z) ≡ f(z|µ,Σ)

for a p × 1 random vector x that is completely specified by a p × 1 population location

vector µ and a p× p symmetric positive definite population dispersion matrix Σ. Hence

P (x ∈ A) =
∫
A f(z)dz for suitable sets A. The data x1, ..., xn are n iid p × 1 random

vectors from f(z|µ,Σ) and the ith case is xi.

Elemental sets are subsets just large enough estimate the unknown coefficients. For

regression p cases are used to estimate β while for multivariate location and dispersion,

p+1 cases are used to estimate (µ,Σ). In the elemental basic resampling algorithm, Kn

elemental sets are randomly selected, producing the estimators S1,n, ..., SKn,n. Then the

algorithm estimator SA,n is the elemental fit that minimized the criterion Q.

In a concentration algorithm the half set of cases that have the smallest absolute

residuals or Mahalanobis distances from the ith trial fit Si,0,n ≡ Si,n is found. Then an

estimator Si,j,n is computed and the process is repeated for ki steps. Often ki = 10 for

all i or the iteration is performed until convergence. The estimator Si,ki,n is called the
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ith attractor of the ith start Si,0,n. Then the algorithm estimator SA,n is the attractor

that minimized the criterion Q.

In a partitioning algorithm, C subsets Ji of size h cases are randomly selected. Then

D elemental subsets are drawn from each subset Ji, and concentration and evaluation of

the fit uses only the h cases in the subset. Of the CD = K subsets, the M fits with the

smallest criterion values are retained, and then these fits are used as starts on the entire

data set.

Woodruff and Rocke (1994) introduced partitioning for robust algorithms, and the

partitioning step is often much faster than evaluating K elemental sets on all n cases.

Rousseeuw and Van Driessen (1999ab) implement the partitioning step in their concen-

tration step. The basic idea is that sampling theory suggests that if h is large enough,

then fits that have small criterion values evaluated on the h cases should also have small

criterion values when evaluated on all n cases. Hence partitioning is useful for eliminating

bad fits.

Suppose that the data set has n cases and that d of these cases are outliers. If the

data is randomly assigned to C = 2 groups of equal size, then sampling theory suggests

that both subgroups will be similar to the full data set; however, the group size is half

the sample size, and one group will usually have a smaller proportion of outliers than

the other. The following section uses results from multinomial theory to estimate the

proportion of outliers in the subset that contains the fewest outliers.
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2 Outliers and Partitioning

We will partition the data into C cells each of size n/C. Suppose the total number of

outliers in the data set is d. Then the expected number of outliers in any cell is d/C. We

will show that the cell with the smallest number of outliers still has about

d

C
− k

√
d

C
≈ d

C

outliers when d is large and C is fixed. Hence if d is large compared to C, then even

the cleanest of the C partitions has a level of contamination broadly commensurate with

that of the full sample.

First we give some notation. Suppose d of the n cases are contaminated. Then the

proportion of contaminated cases is

γ =
d

n
.

If d identical balls are placed randomly into C urns, and if di denotes the number of balls

in the ith urn, then the joint distribution of (d1, ..., dC) is

multinomial(d, 1/C, ..., 1/C). Since we are constraining each cell to have n/C cases, the

distribution of the C cells will not be multinomial, but a multinomial approximation may

be good if

C <
n(1 − γ)2

16γ

or

7C < n.

Johnson and Young (1960) argue that the joint distribution

1√
d
C

C−1
C

(d1 −
d

C
, ..., dC − d

C
)
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≈
√

C

C − 1
(Z1 − Z̄C , ..., ZC − Z̄C)

where Z1, ..., ZC are iid standard normal. Thus the largest number of outliers in a cell

d(C)

and

d

C
+

√
d

C
(Z(C) − Z̄C)

D
=

d

C
+

√
d

C
(Z̄C − Z(1))

have approximately the same distribution. One approximation for the upper 100α per-

centage point of d(C) from a symmetric multinomial distribution is

d

C
+

d

C

√
C − 1

d
Φ−1(1 − α

C
) (2.1)

where Φ is the standard normal cdf. See equation 5 of Johnson and Young (1960)

combined with equation 23 of Nair (1948), David (1981, p. 113), and Kozelka (1956).

For the exact distribution and other approximations, see Freeman (1979). Hence the

upper 100(1 − α) percentage point of d(1), the fewest number of outliers in a cell, is

approximately

[max(
d

C
− d

C

√
C − 1

d
Φ−1(1 − α

C
), 0)]. (2.2)

From Johnson and Young (1960) and Kozelka (1956), the approximation should be useful

for α = 0.05 or α = 0.01 and for

C ≤ min(15,
n

7
).

Note that if α = 0.05, then Equation 2.2 is equal to 0 when

n ≤
(C − 1)[Φ−1(1 − 0.05

C
)]2

γ
.
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A small simulation of 1000 partitions was performed. The 0.05 percentile and the

0.01 percentile of d(1) were close for each value of C, n, and γ used in the simulation.

Table 1 compares (2.2) with the observed 0.05 percentile of d(1) when 1000 partitions

were generated. Although the approximation (2.2) had small error, replacing α by α/5

in (2.2) gave better empirical results.

For algorithm design, note that if we partition the data into C cells M times where

1/M = α, we might find one cell with a contamination proportion as low as

γ −√
γ

√
C − 1

n
Φ−1(1 − α

C
). (2.3)

The above approximations are used when the number of cells C is small. When C is

large, the probability that j cells are clean has an approximate Poisson(λ) distribution

with

λ = C exp(
−d

C
).

See Feller (1957, p. 92-94). Hence

1 − exp(−C exp(
−n

2C
)) ≤ 1 − exp(−C exp(

−d

C
)) ≈ P (d(1) = 0).

With d outliers and C cells, we expect about

C(1 − 1

C
)d

of the cells to be clean. See Feller (1957, p. 226).
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Table 1: Observed 0.05 Percentile for d(1) vs (10.2)

C

n γ d 4 4 6 6 12 12

obs (2.2) obs (2.2) obs (2.2)

24 .042 1 0 0 0 0 0 0

24 .125 3 0 0 0 0 0 0

24 .25 6 0 0 0 0 0 0

24 .5 12 1 0 0 0 0 0

48 .042 2 0 0 0 0 0 0

48 .125 6 0 0 0 0 0 0

48 .25 12 0 0 0 0 0 0

48 .5 24 3 1 1 0 0 0

96 .042 4 0 0 0 0 0 0

96 .125 12 0 0 0 0 0 0

96 .25 24 2 1 1 0 0 0

96 .5 48 7 5 4 1 1 0
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Table continued

C

n γ d 4 4 6 6 12 12

obs (2.2) obs (2.2) obs (2.2)

240 .042 10 0 0 0 0 0 0

240 .125 30 3 2 1 0 0 0

240 .25 60 9 7 4 3 1 0

240 .5 120 22 19 13 10 5 2

480 .042 20 1 0 0 0 0 0

480 .125 60 8 7 4 3 1 0

480 .25 120 21 19 12 10 4 2

480 .5 240 49 44 30 26 12 8

960 .042 40 4 3 2 1 0 0

960 .125 120 21 19 11 10 3 2

960 .25 240 47 44 28 26 11 8

960 .5 480 105 98 66 60 28 24
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