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Abstract

A simple technique for deriving exact confidence intervals for the Pareto and

power distributions is given, and an improved confidence interval for the location

parameter of the half normal distribution is given. A competitor for the Pareto

distribution is obtained by transforming the half normal distribution.
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1 Introduction

The Pareto distribution is used to model economic data such as national incomes. See

Arnold (1983) for additional applications. If Y has a Pareto distribution, Y ∼ PAR(σ, λ),

then the probability density function (pdf) of Y is

f(y) =
σ1/λ

λ y1+1/λ

where y ≥ σ > 0 and λ > 0. The distribution function of Y is F (y) = 1 − (σ/y)1/λ for

y > σ. This family is a scale family when λ is fixed.

Exact 100(1 − α)% confidence intervals (CIs) for σ and λ that are based on the

maximum likelihood estimators (MLEs) will be developed in Section 3 using the fact

that W = log(Y ) has an exponential distribution. Before reviewing inference for the

exponential distribution, the following notation will be useful. Suppose that X ∼ χ2
d has

a chi–square distribution with d degrees of freedom. Let χ2
d,α denote the α percentile of

the χ2
d distribution: P (X ≤ χ2

d,α) = α for 0 < α < 1. Let X ∼ G(ν, λ) indicate that X

has a gamma distribution where ν > 0 and λ > 0. If X ∼ χ2
d, then X ∼ G(d/2, 2). If

Z ∼ N(0, 1) has a standard normal distribution, let P (Z < zα) = α.

If W has an exponential distribution, W ∼ EXP (θ, λ), then the pdf of W is

f(w) =
1

λ
exp

(
−(w − θ)

λ

)

where λ > 0, w ≥ θ and θ is real. This is a location–scale family. If X ∼ EXP (λ), then

X ∼ EXP (0, λ) has a one parameter exponential distribution and X ∼ G(1, λ).

Inference for this distribution is discussed, for example, in Johnson and Kotz (1970,

p. 219) and Mann, Schafer, and Singpurwalla (1974, p. 176). Let W1, ...,Wn be in-
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dependent and identically distributed (iid) EXP (θ, λ) random variables. Let W1:n =

min(W1, ...,Wn). Then the MLE

(θ̂, λ̂) =

(
W1:n,

1

n

n∑

i=1

(Wi − W1:n)

)
= (W1:n,W − W1:n).

Let Dn = nλ̂. For n > 1, an exact 100(1 − α)% confidence interval for θ is

(W1:n − λ̂[(α)−1/(n−1) − 1],W1:n) (1.1)

while an exact 100(1 − α)% CI for λ is


 2Dn

χ2
2(n−1),1−α/2

,
2Dn

χ2
2(n−1),α/2


 . (1.2)

It can be shown that n length of CI (1.1) converges in probability to −λ log(α). By the

central limit theorem, χ2
n ≈

√
2nZ + n ∼ N(n, 2n). Thus χ2

n,α/
√

n ≈
√

2zα +
√

n, and it

can be shown that
√

n length of CI (1.2) converges in probability to λ(z1−α/2 − zα/2).

Suppose that Y = t(W ) and W = t−1(Y ) where W has a pdf fW with parameters θ,

and the transformation t does not depend on any unknown parameters. The pdf of Y is

fY (y) = fW (t−1(y))

∣∣∣∣∣
dt−1(y)

dy

∣∣∣∣∣ .

If W1, ...,Wn are iid with pdf fW (w), assume that the MLE of θ is θ̂W (w) where the wi

are the observed values of Wi and w = (w1, ..., wn)
T . Following Brownstein and Pensky

(2008), if Y1, ..., Yn are iid and the yi are the observed values of Yi, then maximizing the

log likelihood log(LY (θ)) is equivalent to maximizing log(LW (θ)) and the MLE

θ̂Y (y) = θ̂W (w) = θ̂W (t−1(y1), ..., t
−1(yn)). (1.3)

This result is useful since if the MLE based on the Wi has simple inference, then the

MLE based on the Yi will also have simple inference. For example, if W1, ...,Wn are iid
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EXP (θ = log(σ), λ) and Y1, ..., Yn are iid Pareto (σ = eθ, λ), then Y = eW = t(W ) and

W = log(Y ) = t−1(Y ). The MLE of (θ, λ) based on the Wi is (θ̂, λ̂) = (W1:n,W − W1:n).

Hence by (1.3) and invariance, the MLE of (σ, λ) based on the Yi is (σ̂, λ̂) where σ̂ =

exp(θ̂) = exp(W1:n) = Y1:n and λ̂ = W − W1:n = 1
n

∑n
i=1 log(Yi) − log(Y1:n).

A competitor for the Pareto distribution, called the hpar distribution, can be created

by transforming the half normal distribution. If W has a half normal distribution, W ∼

HN(µ, σ), then the pdf of W is

f(w) =
2√

2π σ
exp

(
−(w − µ)2

2σ2

)

where σ > 0, w ≥ µ and µ is real. This is a location–scale family that is very similar to

the exponential distribution in shape. Section 2 shows that inference for the half normal

distribution is similar to that of the exponential distribution.

If Y ∼ hpar(θ, λ), then W = log(Y ) ∼ HN(µ = log(θ), σ = λ). If W ∼ HN(µ, σ),

then Y = eW ∼ hpar(θ = eµ, λ = σ). The pdf of Y is

f(y) =
2√
2πλ

1

y
exp

[
−(log(y) − log(θ))2

2λ2

]

where y ≥ θ > 0 and λ > 0. Using (1.3) and Section 2, the MLE is (θ̂, λ̂) where θ̂ = Y1:n

and

λ̂ =

√∑n
i=1[log(Yi) − log(Y1:n)]2

n
.

Section 3 derives exact CIs for the Pareto and power distributions, large sample CIs

for the hpar distribution, and presents a small simulation study. Section 4 gives two

additional transformed distributions.
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2 Inference for the half normal distribution

Suppose W1, ...,Wn are iid HN(µ, σ). Let

Dn =
n∑

i=1

(Wi − W1:n)
2. (2.1)

The MLE of (µ, σ2) is (µ̂, σ̂2) = (W1:n,
1
n
Dn). Pewsey (2002) showed that

W1:n − µ

σΦ−1(1
2

+ 1
2n

)
D→ EXP (1),

(where
D→ denotes convergence in distribution) and noted that (

√
π/2)/n is an approxi-

mation to Φ−1(1
2

+ 1
2n

) based on a first order Taylor series expansion such that

Φ−1(1
2

+ 1
2n

)

(
√

π/2)/n
→ 1.

Thus

n(W1:n − µ)

σ
√

π
2

D→ EXP (1). (2.2)

Using this fact, Pewsey (2002) noted that a large sample 100(1 − α)% CI for µ is

(µ̂ + σ̂ log(α/2)Φ−1(
1

2
+

1

2n
), µ̂ + σ̂ log(1 − α/2)Φ−1(

1

2
+

1

2n
)). (2.3)

Let (Ln, Un) be an exact or large sample 100(1 − α)% CI for θ. If

nδ(Un − Ln)
P→ Aα,

then Aα is the scaled asymptotic length of the CI. Typically δ = 0.5 but superefficient

CIs have δ = 1. The CIs (1.1), (2.3) and (2.4) below are superefficient. For fixed δ and

fixed coverage 1 − α, a CI with smaller Aα is “better” than a CI with larger Aα. The

scaled expected CI length often converges to the scaled asymptotic length, which is often
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easier to compute. If A1,α and A2,α are for two competing CIs with the same δ, then

(A2,α/A1,α)1/δ is a measure of “asymptotic relative efficiency.”

Consider CIs for µ of form (2.3) that use cutoffs α1 and 1−α2 where α1+α2 = α. Since

the exponential distribution is decreasing, the asymptotically shortest CI is obtained by

using as little of the right tail as possible as in (1.1). Thus the large sample 100(1−α)%

CI for µ with the shortest asymptotic scaled length is

(µ̂ + σ̂ log(α) Φ−1(
1

2
+

1

2n
) (1 + 13/n2), µ̂). (2.4)

The term (1 + 13/n2) is a small sample correction factor chosen so that the coverage of

CI (2.4) is close to 0.95 for n ≥ 5. Similar correction factors were used by Olive (2007)

for prediction intervals.

The new CI (2.4) has Aα = −σ log(α)
√

π/2 while the CI (2.3) has Aα = −σ[log(1 −

α/2)− log(α/2)]
√

π/2. For a 95% CI, the CI (2.3) has A0.05 = 3.6636σ
√

π/2 while the CI

(2.4) has A0.05 = 2.9957σ
√

π/2. Since δ = 1, the 95% CI (2.3) has about 82% “asymptotic

relative efficiency” compared to the 95% CI (2.4).

Pewsey (2002) suggested that a large sample 100(1 − α)% CI for σ2 is


 Dn

χ2
n−1,1−α/2

,
Dn

χ2
n−1,α/2


 . (2.5)

It can be shown that
√

n length of CI (2.5) converges in probability to σ2
√

2(z1−α/2−

zα/2). This “equal tail” CI has shortest asymptotic length of CIs of form (2.5) that use

cutoffs α1 and 1−α2 where α1 +α2 = α. For fixed n > 25, the CI (2.5) is short since the

χ2
n−1 distribution is approximately symmetric for n > 25. Pewsey (2002) claimed that

Dn
D→ σ2χ2

n−1, which is impossible since the limiting distribution can not depend on the

sample size n. The appendix gives a correct justification of the CI.
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3 Inference for the Pareto, power and hpar distribu-

tions

Suppose Y1, ..., Yn are iid PAR(σ, λ). Arnold (1983) notes that log(Y/σ) ∼ EXP (0, λ)

can be used to simplify many of the results in the literature. The parameter free trans-

formation W = log(Y ) ∼ EXP (θ = log(σ), λ) is even more useful, but this result seems

to be nearly unknown with an exception of Brownstein and Pensky (2008).

Let θ = log(σ), so σ = eθ. By (1.3) the MLE (θ̂, λ̂) = (W1:n,W − W1:n), and by

invariance, the MLE (σ̂, λ̂) = (Y1:n,W −W1:n). Inference is simple. An exact 100(1−α)%

CI for θ is (1.1). A 100(1 −α)% CI for σ is obtained by exponentiating the endpoints of

(1.1), and an exact 100(1 − α)% CI for λ is (1.2).

It is well known that a parameter free one to one transformation makes interval

estimation simple. See, for example, Brownstein and Pensky (2008). The interval for

λ can also be derived using the pivotal nλ̂/λ ∼ G(n − 1, 1) given in Arnold (1983, p.

217) and Muniruzzaman (1957). The interval for σ seems to be new. Arnold (1983, pp.

195, 216-217) states that n log(σ̂/σ)/λ ∼ G(1, 1) and derives a joint confidence region

for σ and 1/λ. Arnold (1983, p. 217) and Grimshaw (1993) suggest using large sample

confidence intervals of the form MLE ±z1−α/2 se(MLE) where se is the standard error.

Also see references in Kuş and Kaya (2007).

Now suppose that Y1, ..., Yn are iid hpar(θ, λ), then W = log(Y ) ∼ HN(µ = log(θ), σ =

λ). Inference is again simple. A large sample 100(1−α)% CI for µ is (2.4). A large sample

100(1 − α)% CI for θ = eµ is obtained by exponentiating the endpoints of (2.4), and a

large sample 100(1 − α)% CI for λ2 is (2.5). Taking square roots of the endpoints gives
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a large sample 100(1 − α)% CI for λ.

Inference for the power distribution is very similar to that of the Pareto distribution.

If Y has a power distribution, Y ∼ power(τ, λ), then the pdf

f(y) =
1

τλ

(
y

τ

) 1
λ
−1

I(0 < y ≤ τ ).

Then W = − log(Y ) ∼ EXP (− log(τ ), λ). Thus (1.2) is an exact 100(1 − α)% CI for λ,

and (1.1) = (Ln, Un) is an exact 100(1 − α)% CI for θ = − log(τ ). Hence (eLn, eUn) is a

100(1 − α)% CI for 1/τ , and (e−Un , e−Ln) is a 100(1 − α)% CI for τ .

A small simulation study used 5000 runs, and cov was the proportion of times the

95% CI contained the parameter. For 5000 runs, an observed coverage between 0.94 and

0.96 gives little evidence that the true coverage differs from the nominal coverage of 0.95.

The scaled length slen multiplied the length of the CI by
√

n for CIs (1.2) and (2.5)

and by n for CIs (1.1) and (2.4). The n = ∞ lines give the asymptotic values. Programs

hnsim and expsim for R/Splus are available from (www.math.siu.edu/olive/sipack.txt).

Table 1 provides results for CIs (1.1), (1.2), (2.4) and (2.5). The CI (1.1) is for θ

if Y ∼ EXP (θ, λ), for θ = log(σ) if Y ∼ Pareto (σ = eθ, λ), and for θ = − log(τ ) if

Y ∼ power(τ, λ). The CI (1.2) is for λ for all three distributions. The CI (2.4) is for µ if

Y ∼ HN(µ, σ2) or if Y ∼ hpar(θ = eµ, λ = σ). The CI (2.5) is for σ2 if Y ∼ HN(µ, σ2)

and for λ2 if Y ∼ hpar(θ = eµ, λ = σ). The simulations used λ = 1. Using alternative

values would simply change the scaled CI length by a factor of λ. The coverage and

scaled length do not depend on the location parameter.

Table 1 shows that the scaled asymptotic length is a good approximation for the

scaled average length for n = 1000, and not too bad for n = 50. Observed coverages are
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close to 0.95 for all entries. Of course the coverage for the exact intervals (1.1) and (1.2)

is 0.95 for n > 1.

Arnold (1983, pp. 280-281) describes two data sets. The golf data is lifetime earnings

in thousands of dollars for 50 golfers who had earned more that $700,000 through 1980.

The Pareto distribution with σ = 700 and λ̂ = 0.4396 was used to model this data.

Treating both λ and σ as unknown gave λ̂ = 0.428 with 95% CI (0.336,0.591) and

σ̂ = 708 with 95% CI (689.144,708).

The county data consists of the 157 of 254 Texas counties in which total personal

income in millions of dollars exceeded $20 million in 1969. The Pareto distribution with

σ = 20 and λ̂ = 1.179 was used to model this data. Treating both λ and σ as unknown

gave λ̂ = 1.184 with 95% CI (1.025,1.404) and σ̂ = 20.2 with 95% CI (19.741,20.2).

Notice that for both data sets the CI for σ was short and contained the “true value” of

σ. The data sets are available from (www.math.siu.edu/olive/sidata.txt).

4 Some Transformed Distributions

Section 3 gave the Pareto and hpar distributions. If Y ∼ PAR(σ, λ), then W = log(Y ) ∼

EXP (θ = log(σ), λ). If Y ∼ hpar(θ, λ), then W = log(Y ) ∼ HN(µ = log(θ), σ = λ).

Hence the Pareto distribution is obtained by transforming the exponential distribution

and the hpar distribution is obtained by applying the same transformation to the half

normal distribution.

Several other distributions, including the power distribution, are obtained by trans-

forming the exponential distribution. Competitors for these distributions can be obtained
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by transforming the half normal distribution. Before giving two examples, theory for the

one parameter exponential and half normal distributions is needed.

If the Wi are iid EXP (θ, λ) with θ known, then

λ̂θ =

∑n
i=1(Wi − θ)

n
= W − θ

is the UMVUE and MLE of λ, and a 100(1 − α)% CI for λ is


 2Tn

χ2
2n,1−α/2

,
2Tn

χ2
2n,α/2


 . (4.1)

It can be shown that
√

n CI length converges to λ(z1−α/2 − zα/2) in probability.

If the Wi are iid HN(µ, σ) with µ known, then Tn =
∑n

i=1(Wi − µ)2 ∼ G(n/2, 2σ2),

and a 100(1 − α)% CI for σ2 is

(
Tn

χ2
n(1 − α/2)

,
Tn

χ2
n(α/2)

)
. (4.2)

It can be shown that
√

n CI length converges to σ2
√

2(z1−α/2 − zα/2) in probability.

Example 1: One parameter Power vs. hpow.

If Y has a one parameter power distribution, Y ∼ POW (λ), then the pdf of Y is

f(y) =
1

λ
y

1
λ
−1I(0,1)(y) =

1

λ

1

y
I(0,1)(y) exp

[−1

λ
(− log(y))

]

where λ > 0. The cdf of Y is F (y) = y1/λ for 0 ≤ y ≤ 1. W = − log(Y ) is EXP (0, λ).

Tn = −∑ log(Yi) ∼ G(n, λ), and

λ̂ =
−∑n

i=1 log(Yi)

n

is the UMVUE and MLE of λ. A robust estimator is λ̂R = log(MED(n))/ log(0.5). A

100 (1 − α)% CI for λ is (4.1).
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If Y ∼ hpow(λ), then W = − log(Y ) ∼ HN(0, σ = λ). If W ∼ HN(0, σ), then

Y = e−W ∼ hpow(λ = σ). The pdf of Y is

f(y) =
2√
2πλ

1

y
I(0,1)(y) exp

[
−(log(y))2

2λ2

]

where λ > 0, and Tn =
∑n

i=1[log(Yi)]
2 ∼ G(n/2, 2λ2). The MLE λ̂ =

√∑n
i=1 W 2

i /n and a

large sample 100 (1−α)% CI for λ2 is (4.2). Taking square roots of the endpoints gives a

large sample 100 (1 − α)% CI for λ. A two parameter hpow distribution can be handled

similarly.

Example 2: Truncated extreme value vs. htev.

If Y has a truncated extreme value distribution, Y ∼ TEV (λ), then the pdf of Y is

f(y) =
1

λ
exp

(
y − ey − 1

λ

)
I(y ≥ 0) =

1

λ
eyI(y ≥ 0) exp

[−1

λ
(ey − 1)

]

where λ > 0. The cdf of Y is

F (y) = 1 − exp

[
−(ey − 1)

λ

]

for y > 0. W = eY − 1 is EXP (0, λ), and Tn =
∑

(eYi − 1) ∼ G(n, λ).

λ̂ =

∑
(eYi − 1)

n

is the UMVUE and MLE of λ. A robust point estimator is λ̂R = [exp(MED(n)) −

1]/ log(2). A 100 (1 − α)% CI for λ is (4.1).

If Y ∼ htev(λ), then W = eY − 1 ∼ HN(0, σ = λ). If W ∼ HN(0, σ), then Y =

log(W + 1) ∼ htev(λ = σ). The pdf of Y is

f(y) =
2√
2πλ

exp

(
y − (ey − 1)2

2λ2

)
I(y > 0) =

2√
2πλ

ey exp

(
−(ey − 1)2

2λ2

)
I(y > 0)
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where λ > 0. Tn =
∑n

i=1(e
Yi − 1)2 ∼ G(n/2, 2λ2). The MLE λ̂ =

√∑n
i=1 W 2

i /n and a

large sample 100 (1− α)% CI for λ2 is (4.2). Taking square roots of the endpoints gives

a large sample 100 (1 − α)% CI for λ.

5 Conclusions

The results in this paper are based on Abuhassan (2007), who derives the asymptotic

lengths of the CIs. If Y ∼ PAR(σ, λ), then W = log(Y ) ∼ EXP (θ = log(σ), λ) and the

MLE (θ̂, λ̂) = (W1:n,W −W1:n) for both the Pareto and exponential distributions. Hence

the exact CIs for the exponential distribution are exact CIs for λ and θ = log(λ) for the

Pareto distribution.

Improvements on the Pewsey (2002) confidence intervals and corresponding theory for

the half normal distribution are also given. Several important distributions are obtained

by transforming the exponential distribution. Competitors for these distributions can be

obtained by applying the same transformation to the half normal distribution. Abuhassan

(2007) gives several examples, including the hpar, hpow and htev distributions.

The exponential and half normal distributions are interesting location scale families

because superefficient (rate n instead of rate
√

n) estimators of the location parameter

exist. For example, for the half normal distribution, an approximate α level test of

H0 : σ2 ≤ σ2
o versus HA : σ2 > σ2

0 that rejects H0 if and only if

Dn > σ2
0χ

2
n−1(1 − α) (5.1)

has nearly as much power as the α level uniformly most powerful test when µ is known

if n is large.
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Since W = log(Y ) ∼ EXP (θ = log(σ), λ) if Y ∼ PAR(σ, λ), the large literature

on the exponential distribution can be used to derive methods such as CIs, tests of hy-

potheses and ways for handling censored data for the Pareto distribution. See Fernandez

(2008) and Wu (2008) for alternative approaches.

For example, to derive robust estimators, follow Olive (2008, Ch. 3), and let MED(W )

and MAD(W ) = MED(|W −MED(W )|) be the population median and median absolute

deviation. Let MED(n) and MAD(n) be the sample versions. For the exponential distri-

bution, MED(W ) = θ + λ log(2) and MAD(W ) = λ/2.0781. Hence robust point estima-

tors for both the exponential and Pareto distributions are θ̂R = MED(n)−1.440 MAD(n),

λ̂R = 2.0781 MAD(n) and σ̂R = exp(θ̂R). For the golf data, λ̂R = 0.449 and σ̂R = 741.435

while for the county data λ̂R = 1.118 and σ̂R = 21.410

6 Appendix

For iid half normal data, note that Tn =
∑n

i=1(Wi − µ)2 ∼ G(n/2, 2σ2), and

Dn =
n∑

i=1

(Wi − W1:n)
2 =

n∑

i=1

(Wi − µ + µ − W1:n)
2 =

n∑

i=1

(Wi − µ)2 + n(µ − W1:n)
2 + 2(µ −W1:n)

n∑

i=1

(Wi − µ).

Hence

Dn = Tn +
1

n
[n(W1:n − µ)]2 − 2[n(W1:n − µ)]

∑n
i=1(Wi − µ)

n
,

or

Dn − Tn

σ2
=

1

n

1

σ2
[n(W1:n − µ)]2 − 2[

n(W1:n − µ)

σ
]

∑n
i=1(Wi − µ)

nσ
(6.1)
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or
Dn − Tn

σ2

D→ −χ2
2.

To see the convergence, consider the last two terms of (6.1). By (2.2) the first

term converges to 0 in distribution while the second term converges in distribution to a

−2EXP (1) or −χ2
2 distribution since

∑n
i=1(Wi −µ)/(σn) is the sample mean of HN(0,1)

random variables and E(X) =
√

2/π when X ∼ HN(0, 1).

Let Tn−p =
∑n−p

i=1 (Wi − µ)2 ∼ σ2χ2
n−p. Then

Dn = Tn−p +
n∑

i=n−p+1

(Wi − µ)2 − Vn (6.2)

where Vn

σ2

D→ χ2
2. Hence Dn

Tn−p

D→ 1. Thus a large sample 100(1 − α)% confidence interval

for σ2 is

 Dn

χ2
n−p,1−α/2

,
Dn

χ2
n−p,α/2


 . (6.3)

For finite samples, the choice of p is important. Since W1:n > µ, notice that Tn =

∑
(Wi − µ)2 >

∑
(Wi − W1:n)

2 = Dn, and Dn/σ
2 ≈ χ2

n−p + χ2
p − χ2

2 where χ2
p is replaced

by 0 for p = 0. Hence p = 0 is too small while p > 2 is too large. Thus p = 1 or

p = 2 should be used. Pewsey (2002) used p = 1 and the simulations showed that the

confidence interval coverage was good for n as small as 20. For n = 5 a nominal 95%

interval appears to have coverage between 0.94 and 0.95 with a length that is about half

that of the CI that uses p = 2. The p = 2 CI appears to have coverage between 0.95 and

0.96. We followed Pewsey (2002) and used p = 1.
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Table 1: CIs for Exponential, Pareto, Power, HN and Hpar Distributions

(1.2) (1.2) (1.1) (1.1) (2.5) (2.5) (2.4) (2.4)

n cov slen cov slen cov slen cov slen

5 0.9532 7.2453 0.9526 4.4954 0.9554 15.1766 0.9534 4.4727

10 0.9492 5.1485 0.9538 3.5812 0.9450 8.2714 0.9440 3.7436

20 0.9534 4.5400 0.9456 3.2543 0.9494 6.6917 0.9436 3.6591

50 0.9534 4.1096 0.9498 3.0861 0.9460 5.9051 0.9458 3.6732

100 0.9494 4.0112 0.9482 3.0390 0.9508 5.7201 0.9436 3.7099

1000 0.9504 3.9361 0.9492 3.0055 0.9480 5.5633 0.9524 3.7506

∞ 0.95 3.9199 0.95 2.9957 0.95 5.5437 0.95 3.7546
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