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Abstract

Regression is the study of the conditional distribution of the response Y given

the vector of predictors x. In a 1D regression, Y is independent of x given a single

linear combination α+βT x of the predictors. Special cases of 1D regression include

multiple linear regression, logistic regression, generalized linear models and single

index models. An estimated sufficient summary plot of α̂ + β̂
T
xi versus Yi can be

used to study the conditional distribution of Y given x, and should be made for

any 1D regression analysis.
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1 INTRODUCTION

Regression is the study of the conditional distribution Y |x of the response Y given the

(p− 1)× 1 vector of nontrivial predictors x. In a 1D regression model, Y is conditionally

independent of x given a single linear combination βTx of the predictors, written

Y x|βT x.(1.1)

See Cook and Weisberg (1999a, pp. 414-415).

If the 1D regression model holds, then Y x|a+ cβT x for any constants a and c 6= 0.

The quantity a + cβT x is called a sufficient predictor (SP), and an estimated sufficient

predictor (ESP) is α̃ + β̃
T
x where β̃ is an estimator of cβ for some nonzero constant c.

For semiparametric 1D models, the choice a = 0 is often used and sometimes the scaling

is such that β̃ = (1, β̃2, ..., β̃p−1)
T . See Horowitz (1998, pp. 14-16).

Many important regression models satisfy (1.1). The single index model has the form

Y = m(α + βTx) + e,(1.2)

where e is zero mean error that is independent of x. Important theoretical results for

the single index model were given by Brillinger (1977, 1983) and Aldrin, Bφlviken and

Schweder (1993). Li and Duan (1989) extended these results to models of the form

Y = g(α + βT x, e)(1.3)

where g is a bivariate inverse link function.

Generalized linear models (GLM’s), introduced by Nelder and Wedderburn (1972),

are also 1D models, and the following three examples are important. Multiple linear
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regression (MLR) is both a GLM and a single index model with m(α+βTx) = α+βT x.

Logistic regression (LR) is a special case of binomial regression, and the LR model states

that Y1, ..., Yn are independent random variables with

Yi ∼ binomial(mi, ρ(xi)) where P(success|xi) = ρ(xi) =
exp(α + βTxi)

1 + exp(α + βTxi)
,(1.4)

and the binary logistic regression model has mi ≡ 1 for i = 1, ..., n. Loglinear regression

(LLR) is a special case of Poisson regression, and the LLR model states that Y1, ..., Yn

are independent random variables with

Yi ∼ Poisson(µ(xi)) where µ(xi) = exp(α + βTxi).(1.5)

Another example of (1.1) is the response transformation model,

Y = t−1(α + βTx + e),(1.6)

where t−1 is a one to one (typically monotone) function. Hence t(Y ) = α + βTx + e.

Koenker and Geling (2001) note that if Y is the survival time, then many survival models

including the Cox (1972) proportional hazards model are response transformation models.

There are many ways to estimate 1D models, including maximum likelihood for para-

metric models. The literature for estimating cβ when model (1.1) holds is growing, and

Cook and Li (2002) summarize when competing methods such as ordinary least squares

(OLS), sliced inverse regression (SIR), principal Hessian directions (PHD), and sliced

average variance estimation (SAVE) can fail. All four methods frequently perform well

if there are no strong nonlinearities present in the predictors. Further information about

these and related methods can be found, for example, in Brillinger (1977, 1983), Bura and

Cook (2001), Chen and Li (1998), Cook (1998ab, 2000, 2003, 2004), Cook and Critchley
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(2000), Cook and Li (2002), Cook and Weisberg (1991, 1999ab), Fung, He, Liu and Shi

(2002), Li (1991, 1992, 2000), Li and Duan (1989) and Yin and Cook (2002, 2003).

In addition to OLS, specialized methods for 1D models with an unknown inverse

link function (e.g., models (1.2) and (1.3)) have been developed, and often the focus

is on developing asymptotically efficient methods. See the references in Cavanagh and

Sherman (1998), Delecroix, Härdle and Hristache (2003), Härdle, Hall and Ichimura

(1993), Hristache, Juditsky, Polzehl, and Spokoiny (2001), Stoker (1986), Weisberg and

Welsh (1994) and Xia, Tong, Li and Zhu (2002).

Section 2 discusses interpretation of the coefficients β. Section 3 considers plots for

the goodness of fit and lack of fit of the 1D model, while Section 4 considers variable

selection. Section 5 suggests resistant methods and Section 6 gives conclusions.

2 Interpretation of Coefficients

The interpretation of the coefficients in a 1D model is nearly the same as the interpreta-

tion of the coefficients for multiple linear regression. Denote a model by SP = α+βTx =

α +β1x1 + · · ·+βp−1xp−1. Then βi is the rate of change in the SP associated with a unit

increase in xi when all other predictor variables x1, ..., xi−1, xi+1, ..., xp−1 are held fixed:

βi =
∂ SP

∂xi
for i = 1, ...,p− 1.

The interpretation of βi changes with the model in two ways. First, the interpretation

changes as terms are added and deleted from the SP. Hence the interpretation of β1 differs

for models SP = α+β1x1 and SP = α+β1x1+β2x2. Secondly, the interpretation changes

as the parametric or semiparametric form of the model changes. For multiple linear

4



regression, E(Y |SP ) = SP and an increase in one unit of xi increases the conditional

expectation by βi. For binary logistic regression,

E(Y |SP ) = ρ(SP ) =
exp(SP )

1 + exp(SP )
,

and the change in the conditional expectation associated with a one unit increase in xi

is more complex.

Of course, holding all other variables fixed while changing xi may not be possible.

For example, if SP = α + β1x + β2x
2, then

d SP

dx
= β1 + 2β2x.

The interpretation also changes if interactions and factors are present. Suppose a factor

W is a qualitative random variable that takes on c categories a1, ..., ac. Then the 1D

model will use c − 1 indicator variables Wi = 1 if W = ai and Wi = 0 otherwise, where

one of the levels ai is omitted, e.g., use i = 2, ..., c. Suppose X1 is quantitative and X2 is

qualitative with 2 levels and X2 = 1 for level a2 and X2 = 0 for level a1. Then a first order

model with interaction is SP = α+β1x1+β2x2+β3x1x2. This model yields two unrelated

lines in the sufficient predictor depending on the value of x2: SP = α + β2 + (β1 + β3)x1

if x2 = 1 and SP = α + β1x1 if x2 = 0. If β3 = 0, then there are two parallel lines:

SP = α + β2 + β1x1 if x2 = 1 and SP = α + β1x1 if x2 = 0. If β2 = β3 = 0, then the two

lines are coincident: SP = α + β1x1 for both values of x2. If β2 = 0, then the two lines

have the same intercept: SP = α + (β1 + β3)x1 if x2 = 1 and SP = α + β1x1 if x2 = 0.

In general, as factors have more levels and interactions have more terms, e.g. x1x2x3x4,

the interpretation of the model rapidly becomes very complex.
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3 Goodness of Fit and Lack of Fit Plots

There is an enormous literature for numerical and graphical diagnostics and tests for the

goodness and lack of fit of regression models. See, for example, Agresti and Caffo (2002),

Anderson-Sprecher (1994), Cheng and Wu (1994), Cook (1977, 1986), Heckman and

Zamar (2000), Jiang (2001), Joglekar, Schuenemeyer and LaRiccia (1989), Kauermann

and Tutz (2001), Menard (2000), Pardoe and Cook (2002), Pierce and Schafer (1986),

Simonoff (1998), Simonoff and Tsai (2002), Tang (2001), Theus and Lauer (1999) and

Xia, Li, Tong and Zhang (2004).

A 1D regression is the study of the conditional distribution Y |SP of the response given

the sufficient predictor, and the estimated sufficient summary plot (ESSP or EY plot) of

the estimated sufficient predictor ESP = α̂ + β̂
T
xi versus Yi can be used to visualize

this conditional distribution. The EY plot can be used as a diagnostic for goodness of

fit by adding the estimated parametric mean function and an estimated nonparametric

mean function to the plot. The EY plot is a special case of a model checking plot, see

Cook and Weisberg (1997, 1999a: ch. 17).

If there is only one predictor x, then a plot of x versus Y is an ESSP. Replacing x by

ESP has two major advantages. First, the plot can be made for p− 1 ≥ 1 and secondly,

the possible shapes that the plot can take is greatly reduced. For example, in a plot of

xi versus Yi, the plotted points will fall about some line with slope β and intercept α if

the simple linear regression model holds, but in a plot of ESP = α̂ + β̂
T
xi = Ŷi versus

Yi, the plotted points will fall about the identity line with unit slope and zero intercept

if the multiple linear regression model holds.
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Example 3.1. Tremearne (1911) presents an MLR data set of measurements on

115 people of Hausa nationality. We deleted 3 cases because of missing values and used

height as the response variable Y . The five predictor variables were height when sitting,

height when kneeling, head length, nasal breadth, and span. Figure 1 presents the ESSP,

also called a forward response plot. Notice that the estimated mean function is the

identity line and that the vertical deviation of Yi from the line is equal to the residual

ri = Yi−(α̂+β̂
T
xi). See Chambers, Cleveland, Kleiner and Tukey (1983, p. 280). Points

corresponding to cases with Cook’s distance > min(0.5, 2∗p/n) are shown as highlighted

squares. Figure 1 also shows the residual plot of the ESP versus the residuals, a widely

used diagnostic for lack of fit.

Example 3.2. Figure 2 shows the ESSP for an artificial binary LR data set with the

estimated mean function

ρ̂(ESP ) =
exp(ESP )

1 + exp(ESP )

added as a visual aid. Divide the ESP into J “slices” each containing approximately

n/J cases, and then compute the sample mean = sample proportion of the Y ′s in each

slice and add the resulting step function to the ESS plot. This is done in Figure 2

with J = 10 slices. This step function is a simple nonparametric estimator of the mean

function ρ(SP ), and if the step function follows the estimated LR mean function (the

logistic curve) closely, then the LR model fits the data well. The plot of these two curves is

a graphical approximation of the goodness of fit tests described in Hosmer and Lemeshow

(1980, 2000, pp. 147–156). For the binary logistic regression model, the residuals do not

behave very well, but the Cook (1996) binary response plot (not shown) is a useful plot
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for examining lack of fit.

Example 3.3. Figure 3 shows the ESSP for an artificial LLR data set with the

estimated mean function

µ̂(ESP ) = exp(ESP )

added as a visual aid. The lowess curve is represented as a jagged curve to distinguish it

from the estimated LLR mean function (the exponential curve) in Figure 3. If the lowess

curve follows the exponential curve closely (except possibly for the largest values of the

ESP), then the LLR model fits the data well.

Simple diagnostic plots for the loglinear regression model can also be made using

weighted least squares (WLS). Let Zi = Yi if Yi > 0, and let Zi = 0.5 if Yi = 0. Then

the minimum chi–square estimator (α̂M , β̂M) of the parameters (α,β) in a LLR model

is found from the WLS regression of log(Zi) on xi with weights wi = Zi. Equivalently,

use the OLS regression (without intercept) of
√

Zi log(Zi) on
√

Zixi. The minimum chi–

square estimator tends to be consistent if n is fixed and all n counts Yi increase to ∞

while the loglinear regression maximum likelihood estimator tends to be consistent if the

sample size n → ∞. See Agresti (2002, pp. 611-612) and Powers and Xie (2000, p.

284). However, the two estimators are often close for many data sets. This result and

the equivalence of the minimum chi–square estimator to an OLS estimator suggest the

following diagnostic plots. Let (α̃, β̃) be an estimator of (α,β).

For a loglinear regression model, a weighted forward response plot is a plot of
√

ZiESP =

√
Zi(α̃+ β̃

T
xi) versus

√
Zi log(Zi). The weighted residual plot is a plot of

√
Zi(α̃+ β̃

T
xi)

versus the “WMLR” residuals rWi =
√

Zi log(Zi) −
√

Zi(α̃ + β̃
T
xi).
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If the loglinear regression model is appropriate and if the estimators are reasonable,

then the plotted points in the weighted forward response plot should follow the identity

line. Cases with large WMLR residuals may not be fit very well by the model. Figure

4 shows the diagnostic plots for the artificial data using both the minimum chi–square

estimator and the LLR MLE. Although the plots based on the MLE are attractive, more

research is needed to determine when such plots are useful for contingency tables.

Example 3.4. Following Brillinger (1977, 1983) and Cook and Weisberg (1999a,

p. 432), let (âo, b̂o) denote the OLS estimate obtained from the OLS multiple linear

regression of Y on x. The OLS view is a plot of b̂
T

o x versus Y . If the 1D regression

model is appropriate, then the OLS view will frequently be a useful estimated sufficient

summary plot. Hence the OLS predictor b̂
T

o x is a useful ESP. For a single index model

with unknown mean function m, assume that the lowess curve is a reasonable estimator

for m and add both the lowess curve and the step function based on slices to the EY

plot (perhaps using the OLS ESP). As a diagnostic for goodness of fit, check that both

the plotted points and the step function follow the lowess curve.

Remark 3.1. The ESSP is also a useful visual aid for whether the predictors x

are needed in the given model, e.g., for the ANOVA F or deviance test of Ho : β = 0

versus HA : β 6= 0. For MLR, LLR and the binary LR models, if the predictors are not

needed in the model, then E(Yi|xi) should be estimated by the sample mean Y . If the

predictors are needed, then E(Yi|xi) should be estimated by the appropriate function of

the ESP = α̂ + β̂
T
xi. If it is clear that no horizontal line fits either the data or the

estimated nonparametric mean function as well as the estimated mean function (as in

Figures 1, 2 and 3), then the predictors are needed. For single index models, if the lowess

9



curve fits the data and the step function better than any horizontal line, then again the

predictors are needed.

4 Variable Selection

Variable selection is the search for a subset of variables that can be deleted without

important loss of information. Assume that there exists a subset S of predictor variables

such that if xS is in the 1D model, then none of the other predictors is needed in the

model. Write E for these (‘extraneous’) variables not in S, partitioning x = (xT
S ,xT

E)T .

Then

SP = α + βT x = α + βT
SxS + βT

ExE = α + βT
S xS.(4.1)

The extraneous terms that can be eliminated given that the subset S is in the model

have zero coefficients: βE = 0.

Now suppose that I is a candidate subset of predictors and that S ⊆ I. Then

SP = α + βT x = α + βT
S xS = α + βT

I xI ,

(if I includes predictors from E, these will have zero coefficients). For any subset I that

includes all relevant predictors, the correlation

corr(α + βTxi, α + βT
I xI,i) = 1.(4.2)

This observation suggests that variable selection for 1D regression models is simple in

principle. For each value of j = 1, 2, ..., p− 1 nontrivial predictors, keep track of subsets

I that provide the largest values of corr(ESP,ESP(I)). Any such subset for which the

correlation is high is worth closer investigation and consideration. Experience suggests
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that if corr(ESP,ESP(I)) > 0.95, then the EY plots based on the full model x and the

submodel xI will be nearly identical, visually.

Olive and Hawkins (2005) show that if the 1D ESP and the OLS ESP satisfy

|corr(ESP,OLS ESP)| > 0.95,(4.3)

then existing variable selection algorithms, originally meant for multiple linear regression

and based on OLS and the Jones (1946) and Mallows (1973) Cp criterion, can often be

used for 1D models. In particular, the Furnival and Wilson (1974) procedure can be used

to search all subsets if p < 30.

The method is very simple: check that Equation (4.3) holds, perform the OLS re-

gression of Y on x, and then perform the OLS variable selection procedure (e.g., forward

selection or backward elimination). Assume that the submodel xI plus a constant has k

terms. Then keep track of submodels I with small k that satisfy Cp(I) close to or less

than 2k. The basic idea is that if the correlation corr(r, rI) of the OLS residuals from the

full model and the submodel tends to one, then so does corr(OLS ESP, OLS ESP(I)),

and the simple screen Cp(I) ≤ 2k corresponds to

corr(r, rI) ≥
√

1 − p

n
.

In the literature, the screen Cp(I) ≤ k is often suggested, but in simulations for multiple

linear regression, logistic regression and single index models, the true model S satisfied

Cp(S) ≤ k for about 60% of the simulated data sets, but S satisfied Cp(S) ≤ 2k for about

97% of the data sets.

There is a massive literature for variable selection for multiple linear regression, and

the literature for 1D models is growing. See, for example, Claeskins and Hjort (2003),
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Efron, Hastie, Johnstone and Tibshirani (2004), Fan and Li (2001, 2002), Hastie (1987),

Lawless and Singhai (1978), Naik and Tsai (2001), Nordberg (1982), Nott and Leonte

(2004) and Tibshirani (1996). For generalized linear models, forward selection and back-

ward elimination based on the AIC criterion are often used. See Agresti (2002, pp.

211-217) or Cook and Weisberg (1999a, pp. 485, 536-538).

5 Resistant Estimation

The presence of strong nonlinearities in the predictors or the presence of outliers can

cause 1D regression methods to fail, but the 1D methods often work well if the pre-

dictors follow an elliptically contoured distribution. The literature on outlier resistant

methods for multiple linear regression is enormous, and the literature for outlier resis-

tant methods of other parametric 1D models is rapidly growing. These methods often

use M-estimators, weighted likelihoods or trimmed likelihoods. See, for example, Can-

toni and Ronchetti (2001), Choi, Hall and Presnell (2000), Croux and Haesbroeck (2003),

Gervini (2005), Heritier and Ronchetti (2004), Luceño (1998), Markatou, Basu and Lind-

say (1997), Morgenthaler (1992), Müller and Neykov (2003), Olive (2005) and Rousseeuw

and Christmann (2001). Outlier resistant methods for general methods such as SIR are

less common, but see Gather, Hilker and Becker (2001, 2002).

Several authors have noted that ellipsoidal trimming is an effective method for making

regression graphics methods such as SIR resistant to the presence of strong nonlinearities.

See Brillinger (1991), Cook (1998a, p. 152), Cook and Nachtsheim (1994), Heng-Hui

(2001), Lexin, Cook and Nachtsheim (2004), and Olive (2002, 2004b).

12



To perform ellipsoidal trimming, an estimator (T,C) is computed where T is a (p −

1) × 1 multivariate location estimator and C is a (p − 1) × (p − 1) symmetric positive

definite dispersion estimator. Then the ith squared Mahalanobis distance is the scalar

D2
i = (xi − T )TC−1(xi − T )(5.1)

for each vector of observed predictors xi. If the ordered distances D(i) are unique, then

j of the xi are in the ellipsoid

{x : (x − T )TC−1(x − T ) ≤ D2
(j)}.(5.2)

The ith case (yi,x
T
i )T is trimmed if Di > D(j). Then an estimator of cβ is computed

from the untrimmed cases. For example, if j ≈ 0.9n, then about 10% of the cases are

trimmed, and OLS could be used on the remaining cases. The resulting ESP is outlier

resistant if a resistant estimator (T,C) (such as the Olive 2004a estimator) is used.

The following procedure was suggested by Olive (2002, 2004b). First compute (T,C)

using the Splus function cov.mcd (see Rousseeuw and Van Driessen 1999). Trim the

K% of the cases with the largest Mahalanobis distances, and then compute the OLS

estimator (α̂K, β̂K) from the untrimmed cases. Use K = 0, 10, 20, 30, 40, 50, 60, 70, 80,

and 90 to generate ten plots of β̂
T

Kx versus y using all n cases. These plots will be called

“OLS trimmed views.” Notice that K = 0 corresponds to the OLS view. The best OLS

trimmed view is the trimmed view with a smooth mean function and the smallest variance

function and is the estimated sufficient summary plot. If K∗ = E is the percentage of

cases trimmed that corresponds to the best trimmed view, then β̂
T

Ex is the estimated

sufficient predictor.

13



Example 5.1. To illustrate the above discussion, an artificial data set with 200

trivariate vectors xi was generated. The marginal distributions of xi,j are iid lognormal

for j = 1, 2, and 3. Since the response yi = sin(βT xi)/β
Txi where β = (1, 2, 3)T , the

random vector xi is not elliptically contoured and the function m is strongly nonlinear.

The cov.mcd estimator was used for trimming, and Weisberg (2002) was used to produce

the SIR, PHD and SAVE ESPs. Figure 5 shows the EY plots for SIR, PHD, SAVE, and

OLS. Figure 6 shows that the EY plots based on trimming greatly improved the SIR,

SAVE and OLS methods. Replacing the OLS trimmed views by alternative MLR esti-

mators often produced good EY plots, and for single index models, the lmsreg estimator

often worked the best. Table 1 shows the estimated sufficient predictor coefficients b̂

when the sufficient predictor coefficients are c(1, 2, 3)T . Only the SIR, SAVE, OLS and

lmsreg trimmed views produce estimated sufficient predictors that are highly correlated

with the sufficient predictor. For this example, the lmsreg trimmed view (not shown)

gave the best EY plot.

6 CONCLUSIONS

Heuristically, this paper has shown that OLS output still gives relevant results for the

class of the 1D models. β̂OLS estimates cβ, OLS variable selection is useful, the partial

F test is useful in that FI ≤ 1 (which is equivalent to Cp(I) ≤ k) suggests that the

submodel I is good, and the OLS EY plot can be used to visualize the mean function.

The EY plot is used to visualize the conditional distribution of Y |x, or, equivalently,

of Y |SP. This plot should be made for any 1D analysis and emphasizes the goodness of
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fit of the 1D model. Although a residual plot of W versus r can be very important, the

plot emphasizes lack of fit and is used to visualize the conditional distribution r|W of

the residuals given W .

Another application of the EY plot is to choose between k 1D regression models where

k is small. Examples include choosing a frequentist or a Bayesian model; a proportional

hazards model or one of several competing 1D survival models; a logistic, probit or com-

plementary log–log model in binary regression; a full or sub model in variable selection.

Make an EY plot for each of the k competing models and choose the model correspond-

ing to the best plot. Cook and Olive (2001) illustrate such a procedure for response

transformations. Similar procedures may be effective for the 1D models given by Carroll

and Ruppert (1984), Horowitz (1996), Sarker (1985) and Yeo and Johnson (2000).
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Olive, D.J. (2005). Two simple resistant regression estimators. Computat. Statist. Data

Analys. to appear.

Olive, D.J. and Hawkins, D.M. (2005). Variable selection for 1D regression models.

Technom. to appear.

Pardoe, I. and Cook, R.D. (2002). A graphical method for assessing the fit of a logistic

regression model. Amer. Statist. 56 263-272.

Pierce, D.A. and Schafer, D.W. (1986). Residuals in generalized linear models. J. Amer.

Statist. Assoc. 81 977-986.

Powers, D.A. and Xie, Y. (2000). Statistical Methods for Categorical Data Analysis.

Academic Press, San Diego.

Rousseeuw, P.J. and Christmann, A. (2001). Measuring overlap in binary regression.

Computat. Statist. Data Analys. 37 65-75.

22



Rousseeuw, P.J. and Van Driessen, K. (1999). A fast algorithm for the minimum co-

variance determinant estimator. Technom. 41 212-223.

Sarker, N. (1985). Box-Cox transformation and the problem of heteroscedasticity. Com-

mun. Statist. Th. Meth. 14 363-379.

Simonoff, J.S. (1998). Logistic regression, categorical predictors, and goodness-of-fit: it

depends on who you ask. Amer. Statist. 52 10-14.

Simonoff, J.S. and Tsai, C.-L. (2002). Score tests for the single index model. Technom.

44 142-151.

Stoker, T.M. (1986). Consistent estimation of scaled coefficients. Econometrica 54

1461-1481.

Tang, M.L. (2001). Exact goodness-of-fit test for binary logistic model. Statist. Sinica

11 199-212.

Theus, M. and Lauer, S.R.W. (1999). Visualizing loglinear models. J. Computat.

Graph. Statist. 8 396-412.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist.

Soc. Ser. B 58 267-288.

Tremearne, A.J.N. (1911). Notes on some Nigerian tribal marks. J. Roy. Anthropolog-

ical Institute of Great Britain and Ireland 41 162-178.

Weisberg, S. (2002). Dimension reduction regression in R. J. Statist. Software 7 web-

page (http://www.jstatsoft.org).

Weisberg, S. and Welsh, A.H. (1994). Adapting for the missing link. Ann. Statist. 22

1674-1700.

Xia, Y.C., Li, W.K., Tong, H. and Zhang , D. (2004). A goodness-of-fit test for single-

23



index models. Statist. Sinica 14 34-39.

Xia, Y., Tong, H., Li, W.K. and Zhu, L.-X. (2002). An adaptive estimation of dimension

reduction space (with discussion and rejoinder). J. Roy. Statist. Soc. Ser. B 64 363-

410.

Yeo, I.K. and Johnson, R. (2000). A new family of power transformations to improve

normality or symmetry. Biometrika 87 954-959.

Yin X.R. and Cook, R.D. (2002). Dimension reduction for the conditional kth moment

in regression. J. Roy. Statist. Soc. Ser. B 64 159-175.

Yin, X. and Cook, R.D. (2003). Estimating central subspaces via inverse third moments.

Biometrika, 90 113-125.

24



Table 1: Estimated Sufficient Predictors Coefficients Estimating c(1, 2, 3)T

method b1 b2 b3

OLS View 0.0032 0.0011 0.0047

90% Trimmed OLS View 0.086 0.182 0.338

SIR View −0.394 −0.361 −0.845

10% Trimmed SIR VIEW −0.284 −0.473 −0.834

SAVE View −1.09 0.870 -0.480

40% Trimmed SAVE VIEW 0.256 0.591 0.765

PHD View −0.072 −0.029 −0.0097

90% Trimmed PHD VIEW −0.558 −0.499 −0.664

70% Trimmed LMSREG VIEW 0.143 0.287 0.428
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Figure 1: Residual and Forward Response Plots for the Tremearne Data. Highlighted

Cases Have Large Cook’s Distances.
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Figure 4: Diagnostic Plots for Loglinear Regression
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Figure 5: Estimated Sufficient Summary Plots Without Trimming
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