
Model Selection, Prediction Intervals and Outlier

Detection for Time Series

David J. Olive ∗

Southern Illinois University

January 11, 2014

Abstract

Model selection for ARIMA models, prediction intervals for a wide variety of

time series models, and the use of response plots for detecting outliers is discussed.

A robust method for time series models that only have AR parameters is also given.
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1. Introduction

Many time series models have the form

Yt = τ +
∑

i

ψiYt−iki +
∑

j

νjet−jkj + et (1)

where {et} are iid with 0 mean and variance σ2
e and Y1, ..., Yn form the time series observed

at times 1, ..., n while the errors et are unobserved random variables. For example, the

Box, Jenkins, and Reinsel (1994) multiplicative seasonal ARIMA(p, d, q) × (P,D,Q)s

time series models have this form.

Next several important time series models will be given. We will use the R software

notation and write a moving average parameter θ and seasonal moving average parameter

Θ with a positive sign. Many references and software will write the model with a negative

sign for the moving average parameters. The backshift operator or lag operator B satisfies

BWt = Wt−1 and BjWt = Wt−j .

A moving average MA(q) times series is

Yt = τ + θ1et−1 + θ2et−2 + · · · + θqet−q + et = τ + (1 + θ1B + · · · + θqB
q)et = τ + θ(B)et

where θ(B) = 1 + θ1B + θ2B
2 + · · · + θqB

q and θq 6= 0.

An autoregressive AR(p) times series is

Yt = τ + φ1Yt−1 + φ2Yt−2 + · · · + φpYt−p + et or (1 − φ1B − · · · − φpB
p)Yt = τ + et,

or φ(B)Yt = τ + et where φ(B) = 1 − φ1B − φ2B
2 − · · · − φpB

p and φp 6= 0.

An autoregressive moving average ARMA(p, q) times series is

Yt = τ + φ1Yt−1 + φ2Yt−2 + · · · + φpYt−p + θ1et−1 + θ2et−2 + · · · + θqet−q + et,
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or φ(B)Yt = τ + θ(B)et where θq 6= 0 and φp 6= 0.

To describe ARIMA models, let the difference operator 5 = (1 − B). Let Xt =

5dYt = (1 − B)dYt be the differenced time series. The first difference is Xt = 5Yt =

(1−B)Yt = Yt−Yt−1. The second difference is Xt = 52Yt = 5(5Yt) = Yt−2Yt−1 +Yt−2.

If Yt follows an ARIMA(p, d, q) model, want Xt to follow a stationary and invertible

ARMA(p, q) = ARIMA(p, 0, q) model. Typically d = 0 or 1, but occasionally d = 2.

Usually τ = 0 if d > 1. The ARIMA(p, d = 1, q) model is Yt = τ + (1 + φ1)Yt−1 + (φ2 −

φ1)Yt−2 + · · ·+(φp−φp−1)Yt−p −φpYt−p−1 +θ1et−1 + · · ·+θqet−q +et. The ARIMA(p, d, q)

model can be written compactly as φ(B)5d Yt = τ + θ(B)et.

The multiplicative seasonal ARIMA models also have backshift and difference no-

tation. Let Φ(B) = 1 − Φ1B
s − Φ2B

2s − · · · − ΦPB
Ps. Let Θ(B) = 1 + Θ1B

s +

Θ2B
2s + · · · + ΘQB

Qs. Let s be the seasonal period. Hence s = 4 for quarterly data

and s = 12 for monthly date. Then the multiplicative ARMA(p,q)×(P,Q)s model satis-

fies φ(B)Φ(B)Yt = τ+θ(B)Θ(B)et. This model is an ARMA(p+Ps, q+Qs) model where

the nonzero coefficients are determined only by p+ P + q+Q coefficients, the AR char-

acteristic polynomial is φ(B)Φ(B) and the MA characteristic polynomial is θ(B)Θ(B).

Let 5sYt = (1 − Bs)Yt = Yt − Yt−s and 5D
s Yt = (1 − Bs)DYt where usually d ≤ 1

and D ≤ 1, d = 2 is rare and D = 2 is very rare. The differenced time series Xt =

5d 5D
s Yt. Then Yt ∼ ARIMA(p, d, q)× (P,D,Q)s if Xt ∼ ARMA(p, q)× (P,Q)s. Also,

φ(B)Φ(B)5d 5D
s Yt = τ + θ(B)Θ(B)et where the default is τ = 0 if d > 0 or D > 0.

2. Model Selection

Let I be a time series model. The AIC(I) statistic is used to pick a model from
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several ARIMA models. The model Imin with the smallest AIC is always of interest but

often overfits: has too many unnecessary parameters. Imagine fitting an ARIMA(p, d, q)

model where d = 0, 1 or 2 is fixed and p and q run from 0 to j for small j. The number

of parameters in the model for fixed d is p + q + 2 where σ =
√

V (Xt), τ , φ1, ..., φp,

θ1, ..., θq are the parameters. AIC(I) tends to be large when the model does not have

enough terms, to drop as needed terms are added, and then to rise as unnecessary terms

are added. If ∆(I) = AIC(I)−AIC(Imin), then models with ∆(I) ≤ 2 are good, models

with 4 ≤ ∆(I) ≤ 7 are borderline. See Brockwell and Davis (1987, p. 269), Duong

(1984), and Burnham and Anderson (2004).

The initial model to look at is the model II with the smallest number of predictors

such that ∆(II) ≤ 2, and also examine submodels I with fewer predictors than II with

∆(I) ≤ 7. Similar II rules are used Olive (2008, pp. 145, 456) and Olive and Hawkins

(2005) for multiple linear regression and generalized linear models.

The aicmatrix computes ∆(I) = AIC(I) − AIC(Imin) for ARIMA(p,d,q) models

where d is fixed or for ARIMA(p, d, q) × (P,D,Q)s models where d, P,D,Q and s are

fixed, and p and q run from 0 to j for small j = pmax such as pmax = 5. Here Imin

is the ARIMA(pm, d, qm) model or the ARIMA(pm, d, qm) × (P,D,Q)s model with the

smallest AIC(I). This model will have a 0.00 in the aicmatrix. Look for model II with

pI + qI ≤ pm + qm as small as possible such that the aicmatrix entry ≤ 2. It is possible

that II = Imin. Also look at models I with p + q ≤ pI + qI with aicmatrix entries ≤ 7,

especially models with entries ≤ 4. Check that the selected model I does not fail to reject

Ho for Ho: φp = 0 or Ho: θq = 0. Make the usual model checks of plotting the time

series, ACF, PACF, response and residual plots, the ACF and PACF of the residuals,
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and the plot of the Box–Ljung pvalues.

Another useful concept is that of a submodel. If d, P,D, and Q are fixed and model

Ii has pi and qi for i = 1, 2, then I1 is a submodel of I2 if p1 ≤ p2 and q1 ≤ q2. If

∆(I1) ≤ ∆(I) + 2 where I1 is a submodel of I , tentatively eliminate model I . Model

I1 will be a submodel of all models I with aicmatrix entries to the right and below the

model I entry. Hence model I1 is at the upper left corner of a block of models I such

that I1 is a submodel for each model I in the block.

These are rules of thumb: they do not always work but often lead to a good model. If

II is the ARIMA(1,0,1) model, might take an AR(3) or MA(3) model even though these

have 1 more parameter.

aicmat(WWWusage,dd=1,pmax=5,k=15)

$aics q

p 0 1 2 3 4 5 Find I_I by looking at models

0 119.86 38.67 8.74 9.13 8.24 7.72 on and above the diagonal

1 18.10 3.16 5.11 3.44 3.96 5.14 through (5,4) and (4,5) which have

2 11.04 5.15 6.22 4.63 2.10 6.95 p+q <= 9. Interesting models are on

3 0.85 2.80 4.48 3.27 3.62 5.29 or above the diagonal through (3,0),

4 2.79 1.74 5.04 7.94 4.26 6.99 (2,1), (1,2) and (0,3) since they

5 4.72 6.50 2.40 10.50 0.00 1.63 have p+q <= 3.

Example 1. Shown above is the aicmatrix of ∆(I) = AIC(I)− AIC(Imin) for the

R WWW usage time series, which gives the number of users connected to the Internet

through a server every minute where n = 100. First differences were used so d = 1.
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From this output, Imin is the ARIMA(5,1,4) model and II is the ARIMA(3,1,0) model.

Interesting models have p + q ≤ 3 with entries ≤ 7. These are the ARIMA(2,1,1),

ARIMA(1,1,2), and ARIMA(1,1,1) models. Since the ARIMA(1,1,1) model is a submodel

of the ARIMA(2,1,1) and ARIMA(1,1,2) models, look at the ARIMA(3,1,0) model II

first, and then at the ARIMA(1,1,1) model.

3. Prediction Intervals

For forecasting, predict Yt+1, ..., Yt+L given the past Y1, ..., Yt. A large sample 100(1−

α)% prediction interval (PI) for Yt+j is (Ln, Un) where the coverage P (Ln ≤ Yt+j ≤ Un) =

1 − δn → 1 − α as n→ ∞.

The shorth estimator will be defined below and used to create large sample PIs that

do not require knowing the distribution of the errors et. If the data are Y1, ..., Yn,

let Y(1) ≤ · · · ≤ Y(n) be the order statistics. Let dxe denote the smallest integer

greater than or equal to x (e.g., d7.7e = 8). Consider intervals that contain c cases

(Y(1), Y(c)), (Y(2), Y(c+1)), ..., (Y(n−c+1), Y(n)). Compute Y(c) − Y(1), Y(c+1) − Y(2), ..., Y(n) −

Y(n−c+1). Then the estimator shorth(c) = (Y(d), Y(d+c−1)) is the interval with the shortest

length.

Suppose the data Y1, ..., Yn are iid and a large sample 100(1 −α)% PI is desired for a

future value Yf such that P (Yf ∈ (Ln, Un)) → 1−α as n→ ∞. The shorth(c) interval is a

large sample 100(1−α)% PI if c/n → 1−α as n→ ∞, that often has the asymptotically

shortest length. If c = dn(1 − α)e, then for large n the coverage of the shorth(c) PI is

about 1 − α− 1.12
√

α/n. See Frey (2013).

Some more notation is needed before deriving PIs for time series. The l step ahead
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forecast for a future value Yt+l is Ŷt(l) and the l step ahead forecast residual is êt(l) =

Yt+l − Ŷt(l). For example, a common choice for model (1) is

Ŷt(l) = τ̂ +
∑

i

ψ̂iY
∗

t+l−iki
+

∑

j

ν̂j ê
∗

t+l−jkj

where êt is the tth residual, Y ∗

t+l−iki
= Yt+l−iki if l − iki ≤ 0, Y ∗

t+l−iki
= Ŷt(l − iki) if

l − iki > 0, ê∗t+l−jkj
= êt+l−jkj if l − jkj ≤ 0, and ê∗t+l−jkj

= 0 if l − jkj > 0, and the

forecasts Ŷt(1), Ŷt(2), ..., Ŷt(L) are found recursively if there is data Y1, ..., Yt. Typically

the residuals êt = êt−1(1) are the 1 step ahead forecast residuals and the fitted or predicted

values Ŷt = Ŷt−1(1) are the 1 step ahead forecasts.

In the simulations, a moving average MA(2) = ARIMA(0,0,2)×(0, 0, 0)1 model, Yt =

τ + θ1et−1 + θ2et−2 + et, will be used. Suppose data Y1, ..., Yn from this model is available.

The R software produces êt and Ŷt = Yt − êt for t = 1, ..., n where Ŷt = Ŷt−1(1) =

τ̂+ θ̂1êt−1+ θ̂2êt−2 and êt(1) = Yt+1− Ŷt(1) for t = 3, ..., n. Also, Ŷn(1) = τ̂+ θ̂1ên+ θ̂2ên−1.

Hence there are n 1 step ahead forecast residuals êt = êt−1(1) available. Similarly,

Ŷt(2) = τ̂ + θ̂2êt for t = 1, ..., n. Hence the 2 step ahead forecast residuals are available

for t = 3, ..., n− 2. Now Ŷt(l) = τ̂ ≈ Y for l > 2. Hence there are n l step ahead forecast

residuals Yt − Y for l > 2 and t = 1, ..., n.

Typically time series PIs assume normality and are similar to equation (2) below.

There is a large literature on alternative PIs, especially for AR(p) models. See Clements

and Kim (2007), Kabaila and He (2007), Panichkitkosolkul and Niwitpong (2012), Thombs

and Schucany (1990), and Vidoni (2009) for references.

The following normal PI is often used, but typically does not work well unless the l

step ahead forecast is normally distributed. For many time series models, a large sample
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normal 100(1 − α)% PI for Yt+l is

(Ln, Un) = Ŷt(l) ± t1−α/2,n−p−qSE(Ŷt(l)). (2)

Suppose that as n → ∞, Ŷt(l) → E(Yt+l) = µt+l and SE(Ŷt(l)) → SD(Yt+l) = σt+l.

Then P [Yt+l ∈ (Ln, Un)] ≈ P [Yt+l ∈ (µt+l − z1−α/2σt+l, µt+l + z1−α/2σt+l)] =

P [|Yt+l − µt+l| < z1−α/2σt+l] “ ≥ ” 1 − 1
z2

1−α/2

assuming Chebyshev’s inequality holds to

a good approximation. Hence a 95% PI could have coverage as low as 75% and a 99.7%

PI could have coverage as low as 89%.

The next PI ignores the time series structure of the data. Let et = Yt − Y , and let

shorth(dn(1−α)e) = (L̃n, Ũn) be computed from the et. Then the large sample shorth(c1)

100(1 − α)% PI for Yt+l is

(Ln, Un) = (Y + dnL̃n, Y + dnŨn) (3)

where dn = (1 +
15

n
)

√

n− 1

n+ 1
. For stationary invertible ARMA(p, q) models, this PI is

too long for l near 1, but should have short length for large l and if l > q for an MA(q)

model. This PI is the Olive (2013a) PI suggested for Yf when Y1, ..., Yt and Yf are iid.

The following PI is new and takes into account the time series structure of the data.

A similar idea in Masters (1995, p. 305) is to find the l step ahead forecast residuals

and use percentiles to make PIs for Yt+l for l = 1, ..., L. For ARIMA(p, d, q) models, let

c2 = dn(1−αn)e and compute shorth(c2) = (L̃n, Ũn) of the l-step ahead forecast residuals

êt(l). Then a large sample 100(1 − α)% PI for Yt+l is

(Ln, Un) = (Ŷn(l) + L̃n, Ŷn(l) + Ũn) (4)

where 1−αn = min(1−α+0.05, 1−α+(p+q)/n) for α > 0.1 and 1−αn = min(1−α/2, 1−

8



α + 10(p + q)α/n) for α ≤ 0.1. Similar ideas to compensate for the undercoverage of

estimated highest density regions, such as the shorth(c) interval, are used in Olive (2007,

2013b) to create prediction intervals for regression models and prediction regions for

multivariate regression models.

Figure 1 shows a simulated MA(2) time series with n = 100, L = 7 and U(−1, 1)

errors. The horizontal lines correspond to the 95% PI (3). Two of the one hundred

time series points Y1, ...Y100 lie outside of the two lines. All seven of the future cases

Y101, ..., Y107 lie within their large sample 95% PI.

Time

x

0 20 40 60 80 100

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

Figure 1: PIs for an MA(2) Time Series with Uniform(−1, 1) Errors

The simulations used the MA(2) model where the distribution of the white noise {et}

is N(0,1), t5, U(−1, 1) or (EXP(1) - 1). All these distributions have mean 0, but the

fourth distribution is not symmetric. The simulation generates 5000 time series of length

n + L and PIs are found for Yn+1, ..., Yn+L. The simulations used L = 7 and 95% and

50% nominal PIs. The two types of PI used were the normal PI (2), and the possibly

asymptotically optimal PI used which is (3) for Yt+j where j > 2 and (4) for j = 1, 2.
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Table 1: Normal Errors

α n PI j=1 j=2 j=3 j=4 j=5 j=6 j=7

0.05 100 N 0.9396 0.9432 0.9444 0.9436 0.9486 0.9498 0.9462

0.05 100 3.889 4.072 4.198 4.198 4.198 4.198 4.198

0.05 100 A 0.9482 0.9582 0.9550 0.9496 0.9556 0.9590 0.9532

0.05 100 4.143 4.509 4.461 4.461 4.461 4.461 4.461

0.05 1000 N 0.9520 0.9464 0.9476 0.9474 0.9496 0.9524 0.9474

0.05 1000 3.919 4.080 4.179 4.179 4.179 4.179 4.179

0.05 1000 A 0.9520 0.9488 0.9482 0.9446 0.9478 0.9500 0.9482

0.05 1000 3.913 4.086 4.170 4.170 4.170 4.170 4.170

0.5 100 N 0.4840 0.4896 0.5052 0.4980 0.4908 0.4984 0.4910

0.5 100 1.328 1.390 1.433 1.433 1.433 1.433 1.433

0.5 100 A 0.4912 0.4866 0.5052 0.4950 0.4956 0.4920 0.4974

0.5 100 1.391 1.456 1.497 1.497 1.497 1.497 1.497

0.5 1000 N 0.4936 0.4994 0.5000 0.4980 0.5114 0.5030 0.5072

0.5 1000 1.347 1.401 1.436 1.436 1.436 1.436 1.436

0.5 1000 A 0.4876 0.4920 0.4950 0.4940 0.5000 0.4964 0.4952

0.5 1000 1.338 1.392 1.427 1.427 1.427 1.427 1.427
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Table 2: t5 Errors

α n PI j=1 j=2 j=3 j=4 j=5 j=6 j=7

0.05 100 N 0.9366 0.9456 0.9448 0.9422 0.9422 0.9428 0.9434

0.05 100 4.995 5.226 5.385 5.385 5.385 5.385 5.385

0.05 100 A 0.9444 0.9576 0.9504 0.9468 0.9460 0.9492 0.9480

0.05 100 4.995 5.226 5.730 5.730 5.730 5.730 5.730

0.05 1000 N 0.9466 0.9432 0.9484 0.9510 0.9480 0.9494 0.9464

0.05 1000 5.058 5.267 5.396 5.396 5.396 5.396 5.396

0.05 1000 A 0.9466 0.9436 0.9472 0.9510 0.9486 0.9472 0.9454

0.05 1000 5.100 5.336 5.429 5.429 5.429 5.429 5.429

0.5 100 N 0.5568 0.5414 0.5480 0.5436 0.5472 0.5580 0.5554

0.5 100 1.704 1.783 1.838 1.838 1.838 1.838 1.838

0.5 100 A 0.4928 0.4920 0.4910 0.5018 0.4990 0.4986 0.5044

0.5 100 1.518 1.621 1.678 1.678 1.678 1.678 1.678

0.5 1000 N 0.5690 0.5658 0.5514 0.5632 0.5586 0.5574 0.5572

0.5 1000 1.739 1.890 1.855 1.855 1.855 1.855 1.855

0.5 1000 A 0.4968 0.4968 0.4868 0.4940 0.4924 0.4950 0.4878

0.5 1000 1.443 1.533 1.591 1.591 1.591 1.591 1.591
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Table 3: Uniform Errors

α n PI j=1 j=2 j=3 j=4 j=5 j=6 j=7

0.05 100 N 0.9904 0.9796 0.9820 0.9794 0.9780 0.9818 0.9800

0.05 100 2.254 2.359 2.433 2.433 2.433 2.433 2.433

0.05 100 A 0.9816 0.9756 0.9756 0.9702 0.9730 0.9776 0.9754

0.05 100 2.132 2.342 2.388 2.388 2.388 2.388 2.388

0.05 1000 N 1.0000 0.9898 0.9826 0.9830 0.9834 0.9822 0.9844

0.05 1000 2.263 2.357 2.416 2.416 2.416 2.416 2.416

0.05 1000 A 0.9548 0.9486 0.9494 0.9512 0.9514 0.9506 0.9478

0.05 1000 1.913 2.094 2.182 2.182 2.182 2.182 2.182

0.5 100 N 0.3860 0.4096 0.4088 0.4136 0.4178 0.4078 0.4258

0.5 100 0.770 0.805 0.831 0.831 0.831 0.831 0.831

0.5 100 A 0.4644 0.4698 0.4780 0.4798 0.4738 0.4916 0.4886

0.5 100 0.954 0.984 1.004 1.004 1.004 1.004 1.004

0.5 1000 N 0.3996 0.4094 0.4138 0.4164 0.4094 0.4146 0.4260

0.5 1000 0.778 0.810 0.829 0.829 0.829 0.829 0.829

0.5 1000 A 0.4894 0.4904 0.4868 0.4940 0.4924 0.4950 0.4878

0.5 1000 0.963 0.974 0.982 0.982 0.982 0.982 0.982
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Table 4: EXP(1) - 1 Errors

α n PI j=1 j=2 j=3 j=4 j=5 j=6 j=7

0.05 100 N 0.9348 0.9470 0.9392 0.9448 0.9426 0.9432 0.9432

0.05 100 3.861 4.043 4.164 4.164 4.164 4.164 4.164

0.05 100 A 0.9430 0.9580 0.9472 0.9484 0.9508 0.9512 0.9458

0.05 100 3.485 4.075 4.041 4.041 4.041 4.041 4.041

0.05 1000 N 0.9466 0.9504 0.9464 0.9438 0.9480 0.9442 0.9432

0.05 1000 3.914 4.078 4.178 4.178 4.178 4.178 4.178

0.05 1000 A 0.9490 0.9544 0.9452 0.9462 0.9466 0.9444 0.9430

0.05 1000 3.092 3.554 3.773 3.773 3.773 3.773 3.773

0.5 100 N 0.5204 0.5390 0.5480 0.5494 0.5512 0.5412 0.5430

0.5 100 1.322 1.385 1.428 1.428 1.428 1.428 1.428

0.5 100 A 0.4924 0.5078 0.5064 0.4930 0.5080 0.5070 0.4944

0.5 100 0.850 0.963 1.031 1.031 1.031 1.031 1.031

0.5 1000 N 0.5238 0.5434 0.5512 0.5686 0.5586 0.5504 0.5522

0.5 1000 1.346 1.401 1.436 1.436 1.436 1.436 1.436

0.5 1000 A 0.4956 0.4876 0.4908 0.4966 0.5012 0.4950 0.4944

0.5 1000 0.725 0.882 0.964 0.964 0.964 0.964 0.964
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These two types of PIs are denoted by N and A respectively in the tables. The simulated

coverages and average lengths of the PI are shown.

With 5000 runs, coverages between 0.94 and 0.96 suggest that there is no reason to

believe that the nominal coverage is not 0.95, while coverages between 0.48 and 0.52

suggest that there is no reason to believe that the nominal coverage is not 0.5.

From table 1 for normal errors, note that for n = 1000, the coverages and lengths of

PIs (3) and (4) were very similar to the those of PI (2). PIs (3) and (4) were longer than

the normal PI (2) for n = 100 and normal errors. From table 2 for t5 errors, the 95%

normal PI (2) worked well, but the nominal 50% normal PI (2) had coverage that was

too high and the average lengths were too large. The alternative PIs had coverage near

50% with shorter average lengths. From table 3 for uniform errors, the normal PIs (2)

were too long and the coverage was too high for 95% PIs. The alternative PIs (3) and (4)

had coverage closer to the nominal level with good coverage for n = 1000. From table 4

with EXP(1) - 1 errors, for 95% PIs the normal PIs (2) were longer than the alternative

PIs (3) and (4). For the 50% PIs, the normal PIs (2) were too long with coverage that

was too high. The alternative PIs (3) and (4) were shorter with good coverage.

4. Outlier Detection

Oultiers are cases that lie far away from the pattern set by the bulk of the data, and

can be detected from the plot of t versus Yt and from the response plot of Ŷt versus Yt

with the identity line that has zero intercept and unit slope added as a visual aid. In

both plots Yt is on the vertical axis, and the vertical deviations of Yt from the identity

line are the residuals êt = Yt − Ŷt. The residual plot of Ŷt versus êt is also useful.
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Suppose equations Yt = (1,xT
t )β + et can be put in matrix form Y = Xβ + e where

X is of full rank with more rows than columns p+1 and β = (φ0,φ
T )T = (φ0, φ1, ..., φp)

T .

Then the least squares estimator β̂LS = (XTX)−1XT Y , φ̂0,LS = Y − φ̂
T

LSx, and

φ̂LS = Σ̂
−1

x Σ̂x,Y . The population parameters are φ0 = E(Y ) − φT
LSE(x) and φ =

φLS = Σ−1
x Σx,Y . The stationary AR(p) model can be put in this form, with xt =

(Yt−1, ..., Yt−p)
T and Y = Yt. Here Σ̂x and Σ̂x,Y are the usual estimated covariance

matrices used when wi = (xi, Yi)
T are iid from some population. Write the AR(p)

equations Yt = φ0 + φ1Yt−1 + · · · + φpYt−p + et in matrix form Y = Xβ + e or
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1 Yn−1 Yn−2 . . . Yn−p
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ep+1

ep+2

...

en

























.

Under mild conditions on the white noise {et} with zero mean and variance σ2
e (nor-

mality is not needed),
√
n(φ̂−φ)

D→ Np(0, σ
2
eΣ

−1
x ), and

√
n(β̂−β)

D→ Np+1(0, σ
2
eC) where

lim
n→∞

XT X

n
→ C−1. Hence β̂ ≈ Np+1(β, σ̂

2
e(X

TX)−1). So tests from ordinary multiple

linear regression can be applied to AR(p) time series, and SE(β̂i) =
√

σ̂2
e(X

T X)−1
ii .

A robust estimator for ARIMA(p, d, 0) data can be created by plugging in a robust

estimator of multivariate location and dispersion. Let

w =









x

Y









, E(w) = µw =









E(x)

E(Y )









=









µx

µY









, and Cov(w) = Σw =









Σx,x Σx,Y

ΣY,x ΣY,Y









.
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Let (T,C) = (µ̃w, Σ̃w) be a robust estimator of multivariate location and dispersion.

Then the robust plug in estimator φ̃0 = µ̃Y − φ̃
T
µ̃x and φ̃ = Σ̃

−1

x Σ̃x,Y . The robust

estimator (T,C) used will be the RMVN estimator of Olive and Hawkins (2010) and

Zhang, Olive and Ye (2012) that has been used to make robust estimators of multiple

linear regression and multivariate linear regression. See Olive (2013c). The robust AR(p)

estimator is not yet backed by theory and should be used as an outlier diagnostic.

Example 2. Here we examine outliers for the AR(p) model and use the Cryer and

Chan (2008) R package TSA data set deere1 which gives 82 consecutive values for the

amount of deviation from a specified target value in an industrial machining process at

Deere & Co. If there is an outlier at Yk where k is not too close to 1 or n, then fitted

values will use the outlier for t = k + 1, ..., k + p. So the outlier appears p + 1 times in

the equations for the AR(p) model.

An AR(2) model will be used for the Deere time series, and the plot of the time series

in Figure 2 shows that there is one large outlier. Figure 3 shows the response and residual

plots for the AR(2) model. Only one outlier, instead of two, appears in the fitted values

since φ̂1 = 0.027 is quite small. The plots for the robust fit are similar and are not shown.

The outlier Y27 is changed from 30 to a more reasonable value 8 to create “cleaned

data.” The robust AR(2) model was refit using the cleaned data resulting in “cleaned

fitted values.” In the original data, cases Y7 and Y76 were changed to 25 and 26. The fitted

values from the robust AR(2) models versus the cleaned fitted values showed some tilt.

Next cases Y7 and Y76 were changed to 250 and 260. Figure 4 shows fitted values from

the robust AR(2) models versus the cleaned fitted values with the identity line added as

a visual aid. The two sets of fitted values for the bulk of the data are similar since big
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Figure 3: Response and Residual Plots for the AR(2) Model
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Figure 4: Fitted Values from the Cleaned Data Versus Robust Fitted Values from the

Data with 3 Outliers

outliers are easier to detect.

5. Discussion

The aicmatrix is also somewhat useful for GARCH models. The aicmatrix is made in

one of the R time series help files. Using II and submodels helps to quickly find a small

number of good models to examine.

Plots and simulations were done in R. See R Development Core Team (2011). Pro-

grams are in the collection of functions tspack.txt. See (http://lagrange.math.siu.edu/Olive/

tspack.txt). The function aicmat makes the aicmatrix for ARIMA(p, d, q) models with

d fixed while the function saics makes the aicmatrix for ARIMA(p, d, q) × (P,D,Q)s

models with d, P,D,Q and s fixed. The function pimasim was used to simulate the

prediction intervals. The function robar fits a robust AR(p) model.

REFERENCES

18



Box, G., Jenkins, G.M., and Reinsel, G. (1994), Time Series Analysis: Forecasting and

Control, 3rd ed., Prentice Hall, Englewood Cliffs, NJ.

Brockwell, P.J., and Davis, R.A. (1987), Time Series: Theory and Methods, Springer,

New York, NY.

Burnham, K.P., and Anderson, D.R. (2004), “Multimodel Inference Understanding AIC

and BIC in Model Selection,” Sociological Methods & Research, 33, 261-304.

Clements, M.P., and Kim, N. (2007), “Bootstrapping Prediction Intervals for Autore-

gressive Time Series,” Computational Statistics & Data Analysis, 51, 3580-3594.

Cryer, J.D., and Chan, K.-S. (2008), Time Series Analysis: with Applications in R, 2nd

ed., Springer, New York, NY.

Duong, Q.P. (1984), “On the Choice of the Order of Autoregressive Models: a Ranking

and Selection Approach,” Journal of Time Series Analysis, 5, 145-157.

Frey, J. (2013), “Data-Driven Nonparametric Prediction Intervals,” Journal of Statisti-

cal Planning and Inference, 143, 1039-1048.

Kabaila, P., and He, Z. (2007), “Improved Prediction Limits for AR(p) and ARC(p)

Processes,” Journal of Time Series Analysis, 29, 213-223.

Masters, T. (1995), Neural, Novel, & Hybrid Algorithms for Time Series Prediction,

Wiley, New York, NY.

Olive, D.J. (2007), “Prediction Intervals for Regression Models,” Computational Statis-

tics & Data Analysis, 51, 3115-3122.

Olive, D.J. (2008), Applied Robust Statistics, Unpublished Online Text, see (http://

lagrange.math.siu.edu/Olive/ol-bookp.htm).

Olive, D.J. (2013a), “Asymptotically Optimal Regression Prediction Intervals and Pre-

19



diction Regions for Multivariate Data,” International Journal of Statistics and Prob-

ability, 2, 90-100.

Olive, D.J. (2013b), “Plots, Prediction and Testing in the Multivariate Linear Model,”

unpublished manuscript, (http://lagrange.math.siu.edu/Olive/ppmultreg.pdf).

Olive, D.J. (2013c), Robust Multivariate Linear Regression, unpublished manuscript,

(http://lagrange.math.siu.edu/Olive/pprobmreg.pdf).

Olive, D. J., and Hawkins, D. M. (2005), “Variable Selection for 1D Regression Models,”

Technometrics, 47, 43-50.

Olive, D.J., and Hawkins, D.M. (2010), “Robust Multivariate Location and Dispersion,”

Preprint, see (http://lagrange.math.siu.edu/Olive/pphbmld.pdf).

Panichkitkosolkul, W., and Niwitpong, S.-A. (2012), “Prediction Intervals for the Gaus-

sian Autoregressive Processes Following the Unit Root Tests,” Model Assisted Statis-

tics and Applications, 7, 1-15.

R Development Core Team (2011), “R: a Language and Environment for Statistical

Computing,” R Foundation for Statistical Computing, Vienna, Austria, (www.R-

project.org).

Thombs, L.A. and Schucany, W.R. (1990), “Bootstrap Prediction Intervals for Autore-

gression,” Journal of the American Statistical Association, 85, 486-492.

Vidoni, P. (2009), “A Simple Procedure for Computing Improved Prediction Intervals

for Autoregressive Models,” Journal of Time Series Analysis, 30, 577-590.

Zhang, J., Olive, D.J., and Ye, P. (2012), “Robust Covariance Matrix Estimation With

Canonical Correlation Analysis,” International Journal of Statistics and Probability,

1, 119-136.

20


