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Abstract

Two simple resistant regression estimators with OP (n−1/2) convergence rate

are presented. Ellipsoidal trimming can be used to trim the cases corresponding to

predictor variables x with large Mahalanobis distances, and the forward response

plot of the residuals versus the fitted values can be used to detect outliers. The first

estimator uses ten forward response plots corresponding to ten different trimming

proportions, and the final estimator corresponds to the “best” forward response

plot. The second estimator is similar to the elemental resampling algorithm, but

sets of O(n) cases are used instead of randomly selected elemental sets.

These two estimators should be regarded as new tools for outlier detection rather

than as replacements for existing methods. Outliers should always be examined
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to see if they follow a pattern, are recording errors, or if they could be explained

adequately by an alternative model. Using scatterplot matrices of fitted values and

residuals from several resistant estimators is a very useful method for comparing

the different estimators and for checking the assumptions of the regression model.

KEY WORDS: diagnostics; outliers; robust regression.
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1 INTRODUCTION

Consider the multiple linear regression (MLR) model

Y = Xβ + e (1.1)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix of predictors,

β is a p × 1 vector of unknown coefficients, and e is an n × 1 vector of errors. The ith

case (yi, x
T
i ) corresponds to the ith element yi of Y and the ith row xT

i of X.

Most regression methods attempt to find an estimate b for β which minimizes some

criterion function Q(b) of the residuals where the ith residual ri = ri(b) = yi−xT
i b. Two

of the most used classical regression methods are ordinary least squares (OLS) and least

absolute deviations (L1). OLS and L1 choose β̂ to minimize

QOLS(b) =
n∑

i=1

r2
i and QL1(b) =

n∑
i=1

|ri|, (1.2)

respectively.

Some high breakdown robust regression methods can fit the bulk of the data even if

certain types of outliers are present. Let r2
(i)(b) denote the squared residuals sorted from

smallest to largest. Suppose that the integer valued parameter cn ≈ n/2. Then the least

median of squares (LMS(cn)) estimator (Hampel 1975) minimizes the criterion

QLMS(b) = r2
(cn)(b). (1.3)

The least trimmed sum of squares (LTS(cn)) estimator (Rousseeuw 1984) minimizes the

criterion

QLTS(b) =
cn∑
i=1

r2
(i)(b), (1.4)
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and the least trimmed sum of absolute deviations (LTA(cn)) estimator (Hawkins and

Olive 1999) minimizes the criterion

QLTA(b) =
cn∑
i=1

|r|(i)(b). (1.5)

Robust regression estimators tend to be judged by their Gaussian efficiency and break-

down value. To formally define breakdown (see Zuo 2001 for references), the following

notation will be useful. Let W denote the n× (p+1) data matrix where the ith case cor-

responds to the ith row (yi, x
T
i ) of W . Let W n

d denote the data matrix where any d of the

cases have been replaced by arbitrarily bad contaminated cases. Then the contamination

fraction is γ = d/n.

If T (W ) is a p × 1 vector of regression coefficients, then the breakdown value of T is

B(T, W ) = min{d

n
: sup
W n

d

‖T (W n
d)‖ = ∞}

where the supremum is over all possible corrupted samples W n
d and 1 ≤ d ≤ n.

A regression estimator basically “breaks down” if d outliers can make the median

absolute residual arbitrarily large. Consider a fixed data set W n
d with ith row (zi, w

T
i ).

If the regression estimator T (W n
d ) = β̂ satisfies ‖β̂‖ = M for some constant M , then

the median absolute residual MED(|zi − β̂
T
wi|) is bounded by maxi=1,...,n ‖yi − β̂

T
xi‖ ≤

maxi=1,...,n[|yi| +∑p
j=1 M |xi,j|] if d < n/2.

Now suppose that ‖β̂‖ = ∞. Since the absolute residual is the vertical distance of

the observation from the hyperplane, the absolute residual |ri| = 0 if the ith case lies on

the regression hyperplane, but |ri| = ∞ otherwise. Hence the median absolute residual

will equal ∞ if fewer than half of the cases lie on the regression hyperplane. This will
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occur unless the proportion of outliers d/n > (n/2 − q)/n → 0.5 as n → ∞ where q is

the number of “good” cases that lie on a hyperplane of lower dimension than p. In the

literature it is usually assumed that the original data is in general position: q = p − 1.

For example, if p = 2, then q = 1 if all cases are distinct: a vertical line can be formed

with one “good” case and with d outliers placed on a point mass.

This result implies that (due to asymptotic equivalence if the breakdown value ≤ 0.5)

breakdown can be computed using the median absolute residual MED(|ri|(W n
d )) instead

of ‖T (W n
d)‖. This result also implies that the breakdown value of a regression estimator

is more of a y–outlier property than an x–outlier property. If the yi’s are fixed, arbitrarily

large x–outliers tend to drive the slope estimates to zero. The result also implies that

the LMS estimator is “best” in terms of breakdown since the LMS estimator minimizes

the “median” squared absolute residual.

Perhaps the simplest affine equivariant high breakdown regression estimator can

be found by computing OLS on the set S of approximately n/2 cases that have yi ∈

[MED(yi)±MAD(yi)] where MED(yi) is the median and MAD(yi) = MED(|yi−MED(yi)|)

is the median absolute deviation of the response variable. To see this, suppose that n is

odd and that the model has an intercept β1. Consider the estimator

β̂M = (MED(yi), 0, ..., 0)
T

which yields the predicted values ŷi ≡ MED(yi). The squared residual

r2
i (β̂M ) ≤ (MAD(yi))

2
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if the ith case is in S. Hence the OLS fit β̂S to the cases in S has

∑
i∈S

r2
i (β̂S) ≤ n(MAD(yi))

2,

and

MED(|ri(β̂S)|) ≤ √
nMAD(yi) < ∞

if MAD(yi) < ∞. Hence the estimator has a high breakdown value, but it only resists

large y–outliers.

There is an enormous literature on the detection of outliers and influential cases for

the multiple linear regression model. The “elemental (basic) resampling” algorithm for

robust regression estimators uses Kn randomly selected “elemental” subsets of p cases

where p is the number of predictors. An estimator is computed from the elemental set and

then a criterion function that depends on all n cases is computed. The algorithm returns

the elemental fit that optimizes the criterion. The efficiency and resistance properties of

the elemental resampling algorithm estimator turn out to depend strongly on the number

of starts Kn used, and many of the most used algorithm estimators are inconsistent with

zero breakdown – see Hawkins and Olive (2002).

Many types of outlier configurations occur in real data, and no single estimator can

perform well on every outlier configuration. A resistant estimator should have good

statistical properties on “clean data” and perform well for several of the most commonly

occuring outlier configurations. Sections 2 and 3 describe two simple resistant estimators.
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2 The Trimmed Views Estimator

Ellipsoidal trimming can be used to create resistant estimators. To perform ellipsoidal

trimming, an estimator (T, C) is computed from the predictor variables where T is a p×1

multivariate location estimator and C is a p × p symmetric positive definite dispersion

estimator. Then the ith squared Mahalanobis distance is the scalar

D2
i ≡ D2

i (T, C) = (xi − T )TC−1(xi − T ) (2.1)

for each vector of observed predictors xi. If the ordered distance D(j) is unique, then j

of the xi’s are in the ellipsoid

{x : (x − T )TC−1(x − T ) ≤ D2
(j)}. (2.2)

The ith case (yi, x
T
i )T is trimmed if Di > D(j). Then an estimator of β is computed from

the untrimmed cases. For example, if j ≈ 0.9n, then about 10% of the cases are trimmed,

and OLS or L1 could be used on the untrimmed cases. Trimming using (T, C) computed

from a subset of the predictors may be useful if some of the predictors are categorical.

A forward response plot is a plot of the fitted values ŷi versus the response yi. Since

MLR is the study of the conditional distribution of yi|xT
i β, the forward response plot is

used to visualize this conditional distribution. If the MLR model holds and the MLR

estimator is good, then the plotted points will scatter about the identity line that has

unit slope and zero intercept. The identity line is added to the plot as a visual aid, and

the vertical deviations from the identity line are equal to the residuals since yi − ŷi = ri.

Modifying the Olive (2002) procedure (for visualizing g in models of the form yi =

g(βTxi, ei)) results in a resistant MLR estimator similar to one proposed by Rousseeuw
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and van Zomeren (1992). First compute (T, C) using the Splus function cov.mcd (see

Rousseeuw and Van Driessen 1999). Trim the M% of the cases with the largest Maha-

lanobis distances, and then compute the MLR estimator β̂M from the untrimmed cases.

Use M = 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90 to generate ten forward response plots

of the fitted values β̂
T

Mxi versus yi using all n cases. (Fewer plots are used for small

data sets if β̂M can not be computed for large M .) These plots are called “trimmed

views,” and as a resistant MLR estimator, the final trimmed views (TV) estimator β̂T,n

corresponds to the plot where the bulk of the plotted points follow the identity line with

smallest variance function, ignoring any outliers. The following example helps illustrate

the procedure.

Example 1. Buxton (1920, pp. 232–5) gives 20 measurements of 88 men. Height

was the response variable while an intercept, head length, nasal height, bigonal breadth,

and cephalic index were used as predictors in the multiple linear regression model. Ob-

servation 9 was deleted since it had missing values. Five individuals, cases 61–65, were

reported to be about 0.75 inches tall with head lengths well over five feet! OLS was

used on the untrimmed cases and Figure 1 shows four trimmed views corresponding to

90%, 70%, 40% and 0% trimming. The OLS TV estimator used 70% trimming since this

trimmed view was best. Since the vertical distance from a plotted point to the identity

line is equal to the case’s residual, the outliers had massive residuals for 90%, 70% and

40% trimming. Notice that the OLS trimmed view with 0% trimming “passed through

the outliers” since the cluster of outliers is scattered about the identity line.

For this data set, the relationship between the response variable and the predictors

is very weak, and Hawkins and Olive (2002) suggest that the exact LMS, LTS and LTA
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estimators will also pass through the outliers. (If the outliers were pulled towards −∞,

then the high breakdown estimators would eventually give the outliers weight zero.) As

will be seen in the following section, the estimators produced by the Splus functions

lmsreg and ltsreg also pass through the outliers. When lmsreg replaced OLS in the

TV estimator, the outliers had massive residuals except for the 0% trimming proportion.

The TV estimator β̂T,n has good statistical properties if the estimator applied to the

untrimmed cases (XM,n, Y M,n) has good statistical properties. Candidates include OLS,

L1, Huber’s M–estimator, Mallows’ GM–estimator or the Wilcoxon rank estimator. See

Rousseeuw and Leroy (1987, pp. 12-13, 150). The basic idea is that if an estimator

with OP (n−1/2) convergence rate is applied to a set of nM ∝ n cases, then the resulting

estimator β̂M,n also has OP (n−1/2) rate provided that the response y was not used to

select the nM cases in the set. If ‖β̂M,n − β‖ = OP (n−1/2) for M = 0, ..., 90 then

‖β̂T,n − β‖ = OP (n−1/2) by Pratt (1959).

Let Xn = X0,n denote the full design matrix. Often when proving asymptotic nor-

mality of an MLR estimator β̂0,n, it is assumed that

XT
nXn

n
→ W −1.

If β̂0,n has OP (n−1/2) rate and if for big enough n all of the diagonal elements of

(
XT

M,nXM,n

n

)−1

are all contained in an interval [0, B) for some B > 0, then ‖β̂M,n − β‖ = OP (n−1/2).

The distribution of the estimator β̂M,n is especially simple when OLS is used and the

errors are iid N(0, σ2). Then

β̂M,n = (XT
M,nXM,n)−1XT

M,nY M,n ∼ Np(β, σ2(XT
M,nXM,n)

−1)
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and
√

n(β̂M,n − β) ∼ Np(0, σ2(XT
M,nXM,n/n)−1). Notice that this result does not imply

that the distribution of β̂T,n is normal.

3 The MBA Estimator

Next we describe a simple resistant algorithm estimator, called the median ball algorithm

(MBA). The Euclidean distance of the ith vector of predictors xi from the jth vector of

predictors xj is

Di ≡ Di(xj) ≡ Di(xj, Ip) =
√

(xi − xj)T (xi − xj).

For a fixed xj consider the ordered distances

D(1)(xj), ..., D(n)(xj).

Next, let β̂j(α) denote the OLS fit to the min(p+3+[αn/100], n) cases with the smallest

distances where the approximate percentage of cases used is α ∈ {1, 2.5, 5, 10, 20, 33, 50}.

(Here [x] is the greatest integer function so [7.7] = 7. The extra p + 3 cases are added so

that OLS can be computed for small n and α.) This yields seven OLS fits corresponding

to the cases with predictors closest to xj. A fixed number K of cases are selected at

random without replacement to use as the xj. We use K = 7 as the default. A robust

criterion Q, such as the median squared residual, is used to evaluate the 7K fits and the

OLS fit to all of the data. Hence 7K + 1 OLS fits are generated and the OLS MBA

estimator is the fit that minimizes the criterion Q.

This estimator is simple to program and easy to modify. For example change the

criterion Q or change K. Alternatively, replacing the 7K + 1 OLS fits by L1 fits results
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in the more resistant L1 MBA estimator. In the discussion below, the MBA estimator is

the OLS MBA estimator.

Three ideas motivate this estimator. First, x–outliers, which are outliers in the

predictor space, tend to be much more destructive than y–outliers which are outliers in

the response variable. Suppose that the proportion of outliers is γ and that γ < 0.5.

We would like the algorithm to have at least one “center” xj that is not an outlier. The

probability of drawing a center that is not an outlier is approximately 1 − γK > 0.99

for K ≥ 7 and this result is free of p. Secondly, by using the different percentages of

coverages, for many data sets there will be a center and a coverage that contains no

outliers. Thirdly, since only a fixed number (7K + 1) of fits with OP (n−1/2) rate are

computed, the MBA estimator has an OP (n−1/2) convergence rate (by Pratt 1959).

Example 1 continued. When comparing different estimators, it is useful to make

an RR plot which is simply a scatterplot matrix of the residuals from the various esti-

mators. Figure 2 shows the RR plot applied to the Buxton (1920) data for the Splus

estimators lsfit, l1fit, lmsreg (denoted by ALMS), ltsreg (denoted by ALTS), and

the MBA estimator. Note that only the MBA estimator gives large absolute residuals to

the outliers.

Table 1 compares the TV, MBA, lmsreg, ltsreg, L1 and OLS estimators on 7 data

sets available from the author’s website (http://www.math.siu.edu/olive/ol-bookp.htm).

The column headers give the file name while the remaining rows of the table give the

sample size n, the number of predictors p, the amount of trimming M used by the TV

estimator, the correlation of the residuals from the TV estimator with the corresponding

alternative estimator, and the cases that were outliers. If the correlation was greater
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than 0.9, then the method was effective in detecting the outliers, and the method failed,

otherwise. Sometimes the trimming percentage M for the TV estimator was picked after

fitting the bulk of the data in order to find the good leverage points and outliers.

Notice that the TV, MBA and OLS estimators were the same for the Gladstone data

and for the major data which had two small y–outliers. For the Gladstone data, there is

a cluster of infants that are good leverage points, and we attempt to predict brain weight

with the head measurements height, length, breadth, size and cephalic index. Originally,

the variable length was incorrectly entered as 109 instead of 199 for case 119, and the

glado data contains this outlier. In 1997, lmsreg was not able to detect the outlier while

ltsreg did. Due to changes in the Splus 2000 code, lmsreg now detects the outlier but

ltsreg does not.

Both the TV and MBA estimators have resistance comparable to that of lmsreg. A

data set in Table 1 where lmsreg outperforms the MBA estimator is the Douglas M.

Hawkins’ nasty data. The MBA estimator may be superior to lmsreg for data sets such

as the Buxton data where the bulk of the data follow a very weak linear relationship and

there is a single cluster of outliers. The ltsreg estimator should not be used since it is

inconsistent and is rarely able to detect x–outliers.

The MBA estimator depends on the sample of 7 centers drawn and changes each time

the function is called. After running MBA several times, sometimes there is a forward

response plot or RR plot that differs greatly from the other plots. This feature is useful

for data sets like the nasty data. On the other hand, in ten runs on the Buxton data,

about nine RR plots will look like Figure 2, but in about one RR plot the MBA estimator

will also pass through the outliers.
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4 Conclusions and Extensions

The author’s website contains a file rpack.txt of several Splus functions including the mba

and tv functions. When some of the variables are categorical, the TV estimator may not

work because the covariance estimator used for trimming is singular. A simple solution

is to perform the trimming using only the continuous predictors. This technique is not

necessary for the MBA estimator since the Euclidean distance works for categorical and

continuous predictors.

In the literature there are many high breakdown estimators that are impractical to

compute such as the CM, maximum depth, GS, LQD, LMS, LTS, LTA, MCD, MVE,

projection, repeated median and S estimators. Two stage estimators that use an initial

high breakdown estimator from the above list are even less practical to compute. These

estimators include the cross–checking, MM, one step GM, one step GR, REWLS, tau and

t type estimators. Implementations of the two stage estimators tend to use an inconsistent

zero breakdown initial estimator, resulting in a zero breakdown final estimator that is

often inconsistent. No single robust algorithm estimator seems to be very good, and for

any given estimator, it is easy to find outlier configurations where the estimator fails.

Hawkins and Olive (2002) discuss outlier configurations that can cause problems for

robust regression algorithm estimators.

Often the assumptions needed for large sample theory are better approximated by the

distribution of the untrimmed data than by the entire data set, and it is often suggested

that the statistical analysis should be run on the “cleaned data set” where the outliers

have been deleted. For the MLR model, the forward response plot should always be
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made and is a useful diagnostic for goodness of fit and for detecting outliers. The TV

and MBA estimators use these facts to produce simple resistant estimators with the good

OP (n−1/2) convergence rate. These two estimators should be regarded as new tools for

outlier detection rather than as replacements for existing methods.

There are two approaches that are useful for detecting outliers in the MLR setting.

The first approach is to compute several algorithm estimators as well as OLS and L1.

Then use plots to detect outliers, to check the goodness of fit of the MLR model, and

to compare the different estimators. In particular, make the forward response plots and

residuals plots for each estimator. Then make the RR plot and the FF plot, which is a

scatterplot matrix of the response and the fitted values from the different estimators. An

advantage of the FF plot is that the forward response plots of the different estimators

appear in the scatterplot matrix. This technique can be modified if a parametric model

is used. For example, add the maximum likelihood estimator, a Bayesian estimator or

an estimator that works well in the presence of heteroscedasticity.

The second approach is to make an adaptive estimator from two or more estimators.

The cross–checking estimator uses an asymptotically efficient estimator if it is close to

the robust estimator but uses the robust estimator otherwise. If the robust estimator is

a high breakdown consistent estimator, then the cross–checking estimator is both high

breakdown and asymptotically efficient. Plots of residuals and fitted values from both

estimators should still be made since the probability that the robust estimator is chosen

when outliers are present is less than one. The proofs in He (1991, p. 304), He and

Portnoy (1992, p. 2163) and Davies (1993, pp. 1889-1891) need the robust estimator

to be consistent, and lmsreg and ltsreg are inconsistent since they use a fixed number
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(3000) of elemental sets. It needs to be shown that using n elemental starts or using a

consistent start in an LTS concentration algorithm (see Hawkins and Olive 2002) results

in a consistent estimator. The conjectured consistency of such an algorithm is in the

folklore (see Maronna and Yohai 2002), but no proofs of these conjectures are available.

Although both the TV and MBA estimators have the good OP (n−1/2) convergence

rate, their efficiency under normality may be very low. (We could argue that the TV and

OLS estimators are asymptotically equivalent on clean data if 0% trimming is always

picked when all 10 plots look good.) Using the TV and MBA estimators as the initial

estimator in the cross–checking estimator results in a resistant (easily computed but zero

breakdown) asymptotically efficient final estimator. High breakdown estimators that

have high efficiency tend to be impractical to compute.

The ideas used in this paper have the potential for making many methods resistant.

First, suppose that the MLR model (1.1) holds but Var(e) = σ2Σ and Σ = V V ′

where V is known and nonsingular. Then V −1Y = V −1Xβ + V −1e, and the TV and

MBA estimators can be applied to Ỹ = V −1Y and X̃ = V −1X provided that OLS

is fit without an intercept. Similarly, the minimum chi squared estimators for several

generalized linear models can be fit with an OLS regression (without an intercept) that

uses appropriate Ỹ and X̃. See Agresti (2002, p. 611).

Secondly, many 1D regression models where yi is independent of xi given the sufficient

predictor xT
i β can be made resistant by making EY plots of the estimated sufficient

predictor xT
i β̂ versus yi for the 10 trimming proportions. Since 1D regression is the

study of the conditional distribution of yi given xT
i β, the EY plot is used to visualize

this distribution and needs to be made anyway. These plots were called trimmed views
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by Olive (2002) where the data sets were assumed to be clean.

Thirdly, for nonlinear regression models of the form yi = m(xi, β) + ei, the fitted

values are ŷi = m(xi, β̂) and the residuals are ri = yi − ŷi. The points in the FY plot of

the fitted values versus the response should follow the identity line. The TV estimator

would make FY and residual plots for each of the trimming proportions. The MBA

estimator with the median squared residual criterion can also be used for many of these

models.
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Table 1: Summaries for Seven Data Sets, cor(TV,Method) is the Correlation of the

Residuals from TV(M) and the Alternative Method

summary/file Buxton Gladstone glado hbk major nasty wood

cor(TV,MBA) 0.997 1.0 0.455 0.960 1.0 -0.004 0.9997

cor(TV,LMSREG) -0.114 0.671 0.938 0.977 0.981 0.9999 0.9995

cor(TV,LTSREG) -0.048 0.973 0.468 0.272 0.941 0.028 0.214

cor(TV,L1) -0.016 0.983 0.459 0.316 0.979 0.007 0.178

cor(TV,OLS) 0.011 1.0 0.459 0.780 1.0 0.009 0.227

outliers 61-65 none 119 1-10 3,44 2,6,...,30 4,6,8,19

n 87 247 247 75 112 32 20

p 5 7 7 4 6 5 6

M 70 0 30 90 0 90 20
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Figure 1: 4 Trimmed Views for the Buxton Data
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Figure 2: RR Plot for the Buxton Data
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