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Abstract

The algorithm implementations of high breakdown estimators for regression and

multivariate location and dispersion tend to be impractical to compute or to be zero

breakdown inconsistent estimators. Hence the “robust estimators” used in practice

are often not robust. A simple modification of existing concentration algorithms

for multiple linear regression and multivariate location and dispersion results in

high breakdown robust
√

n consistent estimators that are easy to compute, and

the applications for these estimators are numerous.
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1 INTRODUCTION

The multiple linear regression (MLR) model is

Y = Xβ + e

where Y is an n × 1 vector of dependent variables, X is an n × p matrix of predictors,

β is a p × 1 vector of unknown coefficients and e is an n × 1 vector of errors. The ith

case (xT
i , yi) corresponds to the ith row xT

i of X and the ith element of Y .

A multivariate location and dispersion (MLD) model is a joint distribution for a p×1

random vector x that is completely specified by a p× 1 population location vector µ and

a p× p symmetric positive definite population dispersion matrix Σ. The observations xi

for i = 1, ..., n are collected in an n × p matrix W with n rows xT
1 , ...,xT

n .

Let the p × 1 column vector T (W ) be a multivariate location estimator, and let the

p× p symmetric positive definite matrix C(W ) be a dispersion estimator. Then the ith

squared sample Mahalanobis distance is the scalar

D2
i = D2

i (T (W ),C(W )) = (xi − T (W ))T C−1(W )(xi − T (W )) (1.1)

for each observation xi. Notice that the Euclidean distance of xi from the estimate

of center T (W ) is Di(T (W ), Ip) where Ip is the p × p identity matrix. The classical

Mahalanobis distance corresponds to the sample mean and sample covariance matrix

T (W ) = x =
1

n

n∑

i=1

xi and C(W ) = S =
1

n − 1

n∑

i=1

(xi − T(W ))(xi − T(W ))T.

Assume that (T,C) is the classical estimator (xJ ,SJ ) applied to some subset J of

cn ≈ n/2 cases of the data. The volume of the hyperellipsoid

{z : (z − xJ)T S−1
J (z − xJ) ≤ d2} (1.2)
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is equal to

2πp/2

pΓ(p/2)
dp

√
det(SJ ), (1.3)

and this volume will be positive unless extreme degeneracy is present among the cn cases.

See Johnson and Wichern (1988, pp. 103-104).

Robust estimators are often computed by applying the classical estimator to a subset

of the data. Consider the subset Jo of cn ≈ n/2 observations whose sample covariance

matrix has the minimum determinant among all C(n, cn) subsets of size cn. Let TMCD and

CMCD denote the sample mean and sample covariance matrix of the cn cases in Jo. Then

the minimum covariance determinant MCD(cn) estimator is (TMCD(W ),CMCD(W )).

See Rousseeuw (1984).

Many high breakdown (HB) robust estimators are impractical to compute, so al-

gorithm estimators are used instead. The “elemental basic resampling” algorithm for

robust estimators uses Kn “elemental starts.” For MLR an elemental set consists of p

cases while an elemental set for MLD is a subset of p + 1 cases where p is the number of

variables. The jth elemental fit is a classical estimator (bj or (Tj,Cj)) computed from

the jth elemental set. This fit is the jth start, and for each fit a criterion function that

depends on all n cases is computed. Then the algorithm returns the elemental fit that

optimizes the criterion.

Another important algorithm technique is concentration. Starts are again used, but

they are not necessarily elemental. For multivariate data, let (T0,j,C0,j) be the jth

start and compute all n Mahalanobis distances Di(T0,j,C0,j). At the next iteration, the

classical estimator (T1,j,C1,j) is computed from the cn ≈ n/2 cases corresponding to the
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smallest distances. This iteration can be continued for k steps resulting in the sequence of

estimators (T0,j,C0,j), (T1,j,C1,j), ..., (Tk,j,Ck,j). The result of the iteration (Tk,j,Ck,j) =

(xk,j,Sk,j) is called the jth attractor. For MLR, let b0,j be the jth start and compute all n

residuals ri(b0,j) = yi−bT
0,jxi. At the next iteration, a classical estimator b1,j is computed

from the cn ≈ n/2 cases corresponding to the smallest squared residuals. This iteration

can be continued for k steps resulting in the sequence of estimators b0,j, b1,j, ..., bk,j. The

result of the iteration bk,j is called the jth attractor. The final concentration algorithm

estimator is the attractor that optimizes the criterion. Using k = 10 concentration steps

often works well, and the basic resampling algorithm is a special case with k = 0.

These algorithms are widely used in the literature, and the basic resampling algo-

rithm can be used as long as the criterion can be computed. Concentration algorithms

for multivariate data have been suggested for the MCD criterion. For multiple linear

regression, concentration algorithms have been suggested for the least trimmed sum of

squares (LTS), least trimmed sum of absolute deviations (LTA), and least median of

squares (LMS) criteria. The classical estimators used for these concentration algorithms

are the ordinary least squares (OLS), least absolute deviations (L1) and Chebyshev (L∞)

estimators, respectively. The notation CLTS, CLMS, CLTA and CMCD will be used to

denote concentration algorithms for LTS, LMS, LTA and MCD, respectively. If k > 1,

the jth attractor bk,j has a criterion value at least as small as the criterion value for b1,j

for the CLTS, CLTA and CLMS algorithms. Rousseeuw and Van Driessen (1999) proved

the corresponding result for the CMCD algorithm.

Some concentration algorithms are described in Ruppert (1992), Vı́̌sek (1996), Hawkins

and Olive (1999, 2002) and Rousseeuw and Van Driessen (1999, 2000, 2002). The DGK
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multivariate location and dispersion estimator (Devlin, Gnanadesikan, and Kettenring

1975, 1981) uses the classical estimator computed from all n cases as the only start and

Gnanadesikan and Kettenring (1972, pp. 94–95) provide a similar algorithm.

The Olive (2004a) median ball algorithm (MBA) estimator of MLD uses a typical start

(T0,M,C0,M) = (x0,M ,S0,M) that is the classical estimator applied after trimming the

M% of cases furthest in Euclidean distance from the coordinatewise median MED(W )

where M ∈ {0, 50} (or use, e.g., M ∈ {0, 50, 60, 70, 80, 90, 95, 98}). Then concentration

steps are performed resulting in the Mth attractor (Tk,M ,Ck,M ) = (xk,M ,Sk,M), and the

M = 0 attractor is the DGK estimator. Let (TA,CA) correspond to the attractor that has

the smallest determinant. Then the MBA estimator (TMBA,CMBA) takes TMBA = TA

and

CMBA =
MED(D2

i (TA,CA))

χ2
p,0.5

CA (1.4)

where χ2
p,0.5 is the 50th percentile of a chi–square distribution with p degrees of freedom.

Olive (2002) shows that scaling the best attractor CA results in a better estimate of Σ

if the data is multivariate normal (MVN).

In the literature there are many HB estimators for MLR and MLD that are impractical

to compute such as the CM, maximum depth, GS, LQD, LMS, LTS, LTA, MCD, MVE,

projection, repeated median and S estimators. Two stage estimators that use an initial

high breakdown estimator from the above list are even less practical to compute. These

estimators include the cross–checking, MM, one step GM, one step GR, REWLS, tau

and t type estimators.

The “robust” estimators available from the software are often practical to compute,
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but they tend to be zero breakdown and inconsistent. Hence these “robust” estimators

are not actually robust. A very common error in the literature is to plug in an inconsistent

zero breakdown estimator in place of the HB
√

n consistent estimator that is impractical

to compute (e.g., use PROGRESS, SURREAL, FLTS, FMCD, the elemental algorithms

described above, or the feasible solution algorithms with a fixed number of elemental

starts).

As an illustration, consider the cross checking estimator that uses a classical asymp-

totically efficient estimator if it is “close” to a consistent high breakdown robust estimator

and uses the robust estimator otherwise. The resulting estimator is a high breakdown

asymptotically efficient estimator. He and Wang (1997) show that the all elemental sub-

set approximation to S estimators for MLD is consistent for (µ, aΣ) for some constant

a > 0. This estimator could be used as the robust estimator, but then the cross checking

estimator is impractical. Often an inconsistent zero breakdown MCD algorithm is used

as the robust estimator. Then the resulting estimator is zero breakdown since both the

“robust” estimator and the classical estimator are zero breakdown. This cross checking

estimator is inconsistent since the probability that the “robust” and classical estimators

are “close” does not go to one as the sample size n → ∞.

What is needed to make robust statistics rigorous are easily computed HB
√

n con-

sistent estimators that work well on many of the most important outlier configurations.

Algorithm estimators such as the Rousseeuw and Van Driessen (1999, 2002) FMCD and

FLTS estimators seem very attractive since they are easy to compute, work well on several

of the most important outlier configurations, and perform well in simulations. Never-

theless, results from Hawkins and Olive (2002) suggest that these estimators as well as
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the widely used elemental basic resampling and concentration algorithms produce zero

breakdown inconsistent estimators.

This paper offers remedies. Section 2 derives some of the large sample and breakdown

theory for the basic resampling and concentration algorithm estimators. Section 3 shows

that the MBA estimator is robust and that it is simple to fix the FMCD and FLTS

estimators: adding the classical estimator and an easily computed but biased HB start

(based on a carefully chosen half set) results in easily computed HB
√

n consistent CMCD

and CLTS estimators. The elemental basic resampling PROGRESS lmsreg estimator can

also be modified so that it is asymptotically equivalent to the OLS estimator. Sections

4 and 5 gives examples and applications. For example, using the robust estimators from

Section 3 results in a practical robust cross checking estimator.

2 PROPERTIES OF CONCENTRATION ALGO-

RITHMS

Following Lehmann (1999, pp. 53-54), recall that the sequence of random variables Wn

is tight or bounded in probability, Wn = OP (1), if for every ε > 0 there exist positive

constants Dε and Nε such that P (|Wn| ≤ Dε) ≥ 1− ε for all n ≥ Nε. Also Wn = OP (Xn)

if |Wn/Xn| = OP (1). Wn has the same order as Xn in probability, written Wn �P Xn, if

Wn = OP (Xn) and Xn = OP (Wn).

If Wn = ‖β̂n − β‖ �P n−δ for some δ > 0, then we say that both Wn and β̂n have

rate nδ. Similar notation is used for a k× r matrix A = [ai,j] if each element ai,j has the
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desired property. For example, A = OP (n−1/2) if each ai,j = OP (n−1/2). Notice that if

Wn = OP (n−δ), then nδ is a lower bound on the rate of Wn. As an example, if LMS, OLS

or L1 is used for β̂, then Wn = OP (n−1/3), but Wn �P n−1/3 for LMS while Wn �P n−1/2

for OLS and L1.

Assumption (E1): Assume that x1, ...,xn are iid from an elliptically contoured

ECp(µ,Σ, g) distribution with probability density function

f(z) = kp|Σ|−1/2g[(z −µ)TΣ−1(z −µ)]

where kp > 0 is some constant, µ is a p × 1 location vector and Σ is a p × p positive

definite matrix and g is some known function. Also assume that Cov(x) = aXΣ for some

constant aX > 0. See Johnson (1987, pp. 107-108).

Then the population squared Mahalanobis distance

U ≡ D2(µ,Σ) = (x −µ)TΣ−1(x −µ) (2.1)

has density

h(u) =
πp/2

Γ(p/2)
kpu

p/2−1g(u) (2.2)

and the 50% highest density region has the form of the hyperellipsoid

{z : (z − µ)TΣ−1(z − µ) ≤ U0.5}

where U0.5 is the median of the distribution of U . For example, if the x are MVN, then

U has the χ2
p distribution.

Remark 1. The following results from the literature will be useful for examining the

properties of MLD and MLR estimators.
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a) Butler, Davies and Jhun (1993): The MCD(cn) estimator is a HB
√

n consistent

estimator for (µ, aMCDΣ) where the constant aMCD > 0 depends on the EC distribution.

b) Lopuhaä (1999): If (T,C) is a consistent estimator for (µ, aΣ) with rate nδ where

the constants a > 0 and δ > 0, then the classical estimator (xM ,SM ) computed after

trimming the M% (where 0 < M < 100) of cases with the largest distances Di(T,C) is a

consistent estimator for (µ, aMΣ) with the same rate nδ where aM > 0 is some constant.

Notice that applying the classical estimator to the cn ≈ n/2 cases with the smallest

distances corresponds to M = 50. In the MLR setting, He and Portnoy (1992) consider

applying OLS to the cases with the smallest squared residuals. Again the resulting

estimator has the same rate as the start. Also see Ruppert and Carroll (1980, p. 834),

Dollinger and Staudte (1991, p. 714) and Welsh and Ronchetti (2002).

c) Rousseeuw and Van Driessen (1999): Assume that the classical estimator (xm,j,Sm,j)

is computed from cn cases and that the n Mahalanobis distances Di ≡ Di(xm,j ,Sm,j) are

computed. If (xm+1,j,Sm+1,j) is the classical estimator computed from the cn cases with

the smallest Mahalanobis distances Di, then the MCD criterion det(Sm+1,j) ≤ det(Sm,j)

with equality iff (xm+1,j,Sm+1,j) = (xm,j,Sm,j).

d) Pratt (1959): Let K be a fixed positive integer and let the constant a > 0.

Suppose that (T1,C1), ..., (TK,CK) are K consistent estimators of (µ, aΣ) each with the

same rate nδ. If (TA,CA) is an estimator obtained by choosing one of the K estimators,

then (TA,CA) is a consistent estimator of (µ, aΣ) with rate nδ. Similarly, suppose

that β̂1, ..., β̂K are K consistent estimators of β each with the same rate nδ. If β̂A is an

estimator obtained by choosing one of the K estimators, then β̂A is a consistent estimator

of β with rate nδ.
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e) Olive (2002): Suppose that (Ti,Ci) are consistent estimators for (µ, aiΣ) where

ai > 0 for i = 1, 2. Let Di,1 and Di,2 be the corresponding distances and let R be the

set of cases with distances Di(T1,C1) ≤ MED(Di(T1,C1)). Let rn be the correlation

between Di,1 and Di,2 for the cases in R. Then rn → 1 in probability as n → ∞.

f) Olive (2004a): (x0,50,S0,50) is a high breakdown estimator. If the data distribution

is EC but not spherically symmetric, then for m ≥ 0, Sm,50 underestimates the major axis

and overestimates the minor axis of the highest density region. Concentration reduces but

fails to eliminate this bias. Hence the estimated highest density hyperellipsoid based on

the attractor is “shorter” in the direction of the major axis and “fatter” in the direction

of the minor axis than estimated regions based on consistent estimators. Also, see Croux

and Van Aelst (2002). Arcones (1995) and Kim (2000) showed that x0,50 is a HB
√

n

consistent estimator of µ.

For MLR, if the start is a consistent estimator for β, then so is the attractor if OLS

is used. The following proposition shows that if (T,C) is a consistent start, then the

attractor is a consistent estimator of (µ, aMCDΣ). Hence (µ, aMCDΣ) is the population

parameter estimated by MLD concentration algorithms.

Proposition 1 (See appendix for proof). Assume that (E1) holds and that (T,C) is a

consistent estimator of (µ, aΣ) with rate nδ where the constants a > 0 and δ > 0, then

the classical estimator (xm,j,Sm,j) computed after trimming the cn ≈ n/2 of cases with

the largest distances Di(T,C) is a consistent estimator for (µ, aMCDΣ) with the same

rate nδ. Hence MED(D2
i (xm,j,Sm,j)) is a consistent estimator of U0.5/aMCD.

The following proposition proves that the elemental and “h–set” basic resampling
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algorithms produce inconsistent zero breakdown estimators and strongly suggests that

concentration algorithms that use K starts of size h also perform poorly. The basic

resampling result is remarkable since it is free of the criterion. If someone invents a

new high breakdown, highly efficient estimator, we immediately know that the elemental

basic resampling algorithm approximation that uses K starts will be inconsistent with

zero breakdown. Assume that h ≥ p for MLR and that h ≥ p+1 for multivariate location

and dispersion. Hawkins and Olive (2002) proved the following result for elemental sets,

and a similar result holds if the size of the jth start hj depends on j but the sizes are

bounded: hj ≤ B for j = 1, ...,K for some fixed positive integer B.

Proposition 2 (See appendix for proof). Suppose that each start uses h randomly

selected cases and that the number of starts Kn ≡ K does not depend on n (e.g.,

K = 3000). Then i) the (“h-set”) basic resampling estimator is inconsistent.

ii) The k–step concentration algorithms for CLTS and CMCD are inconsistent.

iii) For equivariant MLR estimators the breakdown value is bounded above by K/n, and

for CMCD the breakdown value is bounded above by K(h − p)/n.

Notice that for a fixed data set, β = β̂ + u where the bias vector u = β − β̂. As

long as u is small compared to β̂, the robust MLR estimator should be useful. Lemma 3

below suggests that u will be small for many small data sets when the basic resampling

algorithm is used. The bias vector should be even smaller after concentration.

Lemma 3 (See appendix for proof). Suppose that Kn ≡ K random starts of size h

are selected and let Q(1) ≤ Q(2) ≤ · · · ≤ Q(B) correspond to the order statistics of the

criterion values of the B = C(n, h) possible starts of size h. Let R be the rank of the
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smallest criterion value from the K starts. If P (R ≤ Rα) = α, then

Rα ≈ B[1− (1 − α)1/K].

Remark 2. If K = 500, then with 95% probability about 1 in 10000 elementals

sets will be better than the best elemental start found from the elemental concentration

algorithm. From Feller (1957, pp. 211-212),

E(R) ≈ 1 +
B

K + 1
, and Var(R) ≈ KB2

(K + 1)2(K + 2)
≈ B2

K2
.

Remark 3. Hawkins and Olive (2002) showed that MLR algorithms that use Kn

randomly selected elemental starts have a rate ≤ K1/p
n and may have a rate ≤ K1/2p

n .

Increasing the number of elemental sets to Kn = nδ for 1 ≤ δ ≤ 3 produces an estimator

with a poor computational time and a poor convergence rate.

We certainly prefer to use consistent estimators whenever possible. When the start

subset size hn ≡ h and the number of starts Kn ≡ K are both fixed, the estimator is

inconsistent. The situation changes dramatically if the start subset size hn = g(n) → ∞

as n → ∞. In particular, if several starts with rate n1/2 are used, the final estimator also

has rate n1/2. The drawback to these algorithms is that they often do not have enough

outlier resistance. Again the basic resampling result below is free of the criterion. The

conditions in Proposition 4ii hold, for example, if the classical estimator is applied to

hn cases randomly drawn from a distribution with a covariance matrix Cov(x) = aXΣ.

Then each of the K starts estimates (µ, aXΣ) with rate [hn]
1/2.

Proposition 4 (See appendix for proof). Suppose Kn ≡ K starts are used and that all

starts have subset size hn = g(n) ↑ ∞ as n → ∞. Assume that the estimator applied to
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the subset has rate nδ. i) For the hn-set basic resampling algorithm, the MLR algorithm

estimator has rate [g(n)]δ.

ii) If each of the K estimators (Ti,Ci) is a [g(n)]δ consistent estimator for (µ, aΣ) (i.e.,

ai ≡ a for i = 1, ...,K), then the MLD hn-set basic resampling algorithm estimator has

rate [g(n)]δ.

iii) Under mild regularity conditions (e.g., given by He and Portnoy 1992), the CLTS

estimator has rate [g(n)]δ.

iv) The CMCD estimator has rate [g(n)]δ if assumption (E1) holds.

v) The DGK estimator has rate n1/2 if assumption (E1) holds.

vi) The MBA estimator has rate n1/2 if (E1) holds and the distribution is spherically

symmetric.

Suppose that the concentration algorithm covers cn cases. Then Hawkins and Olive

(2002) suggested that concentration algorithms using K starts each consisting of h cases

can handle roughly a percentage γo of huge outliers where

γo ≈ min(
n − cn

n
, 1 − [1 − (0.2)1/K]1/h)100% (2.3)

if n is large. Empirically, this value seems to give a rough approximation for many

simulated data sets.

However, if the data set is multivariate and the bulk of the data falls in one com-

pact ellipsoid while the outliers fall in another hugely distant compact ellipsoid, then a

concentration algorithm using a single start can sometimes tolerate nearly 25% outliers.

For example, suppose that all p + 1 cases in the elemental start are outliers but the

covariance matrix is nonsingular so that the Mahalanobis distances can be computed.
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Then the classical estimator is applied to the cn ≈ n/2 cases with the smallest distances.

Suppose the percentage of outliers is less than 25% and that all of the outliers are in this

“half set.” Then the sample mean applied to the cn cases should be closer to the bulk of

the data than to the cluster of outliers. Hence after a concentration step, the percentage

of outliers will be reduced if the outliers are very far away. After the next concentration

step the percentage of outliers will be further reduced and after several iterations, all cn

cases will be clean. (For outliers of this type, using cn ≈ 2n/3 might be able to handle

an outlier percentage near 33%.)

The Rousseeuw and Van Driessen (1999) DD plot is a plot of classical versus robust

Mahalanobis distances and is very useful for detecting outliers. In a small simulation

study, 20% outliers were planted for various values of p. If the outliers were distant

enough, then the minimum DGK distance for the outliers was larger than the maximum

DGK distance for the nonoutliers, and thus the outliers were separated from the bulk of

the data in the DD plot. For example, when the clean data comes from the Np(0, Ip) dis-

tribution and the outliers come from the Np(2000 1, Ip) distribution, the DGK estimator

with 10 concentration steps was able to separate the outliers in 17 out of 20 runs when

n = 9000 and p = 30. With 10% outliers, a shift of 40, n = 600 and p = 50, 18 out of 20

runs worked. Olive (2004a) showed similar results for the Rousseeuw and Van Driessen

(1999) FMCD algorithm and that the MBA estimator could often correctly classify up

to 49% hugely distant outliers.

The following proposition shows that it is very difficult to drive the determinant of

the dispersion estimator from a concentration algorithm to zero.
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Proposition 5 (See appendix for proof). Consider the CMCD and MCD estimators

that both cover cn cases. For multivariate data, if at least one of the starts is nonsingular,

then the CMCD estimator CA is less likely to be singular than the high breakdown MCD

estimator CMCD.

Notice that concentration algorithm estimators with very good rates are easy to con-

struct. The DGK estimator works for multivariate data. For MLR, let the start have

rate n1/2 and apply k = 10 OLS concentration steps. Let β̂Q,n be the robust estimator

that the concentration estimator is approximating, e.g., LMS.

Proposition 6 (See appendix for proof). Suppose that the concentration estimator

β̂A,n is approximating the estimator β̂Q,n. If β̂Q,n has rate nδ1 and β̂A,n has rate nδ2,

then ‖β̂Q,n − β̂A,n‖ = OP (n−min(δ1,δ2)).

The following proposition shows that it is easy to construct high breakdown concen-

tration algorithms for MLR. Olive (2005) showed that OLS applied to the cn cases with

Yi closest to the sample median of the Yi provides a high breakdown start (that is affine

equivariant but not regression equivariant).

Proposition 7 (See appendix for proof). The concentration algorithm estimator for

CLTS, CLTA or CLMS is a high breakdown estimator if it includes a high breakdown

start.

3 IMPROVING CONCENTRATION ALGORITHMS

This section shows that it is simple to modify existing concentration algorithms such that

the resulting HB estimators have good statistical properties. For the MLD estimators,
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we will be interested in the attractor that minimizes the determinant det(Sk,M) and in

the attractor that minimizes the volume criterion

√
det(Sk,M)[MED(D2

i )]
p, (3.1)

(see Rousseeuw and Leroy 1987, p. 259) which is proportional to the volume of the

hyperellipsoid

{z : (z − xk,M )TS−1
k,M (z − xk,M ) ≤ d2} (3.2)

where d2 = MED(D2
i (xk,M ,Sk,M)). The following theorem shows that the MBA estima-

tor has good statistical properties.

Theorem 8 (See appendix for proof). Suppose (E1) holds.

i) If (TA,CA) is the attractor that minimizes the volume criterion (3.1), then (TA,CA)

is a HB
√

n consistent estimator of (µ, aMCDΣ).

ii) If (TA,CA) is the attractor that minimizes det(Sk,M ), then (TA,CA) is a HB
√

n

consistent estimator of (µ, aMCDΣ). Hence the MBA estimator is a HB
√

n consistent

estimator.

The following theorem shows that fixing the inconsistent zero breakdown elemental

CMCD algorithm is simple. Just add the two MBA starts.

Theorem 9 (See appendix for proof). Suppose (E1) holds and that the CMCD al-

gorithm uses Kn ≡ K randomly selected elemental starts (e.g., K = 200), the start

(T0,0,C0,0) and the start (T0,50,C0,50). Then this CMCD estimator is a HB
√

n con-

sistent estimator. If the EC distribution is not spherically symmetric, then the CMCD

estimator is asymptotically equivalent to the DGK estimator.

The following theorem shows that is simple to improve the CLTS and lmsreg esti-
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mators by adding two carefully chosen attractors. Hawkins and Olive (2002) suggested

the CLTS estimator given in Theorem 10i and Maronna and Yohai (2002) claim that

this CLTS estimator is consistent. Notice that the hybrid CLTS estimator has rate
√

n

while the rate of LTS is unknown. Also note that lmsreg is an inconsistent zero break-

down estimator but the modification to lmsreg is high breakdown and asymptotically

equivalent to OLS. Hence the modified estimator has a
√

n rate which is higher than the

n1/3 rate of the LMS estimator. Let β̂k,OLS denote the attractor that results when β̂OLS

is the start. Let bk be the attractor from the start consisting of OLS applied to the cn

cases closest to the median of the Yi and let β̂k,B = 0.99bk. Then β̂k,B is a HB biased

estimator of β (biased if β 6= 0, see Olive 2005).

Theorem 10 (See appendix for proof). i) Suppose that the CLTS algorithm uses

Kn ≡ K randomly selected elemental starts (e.g., K = 500) and the attractors β̂k,OLS

and β̂k,B. Then the resulting estimator is a HB
√

n consistent estimator if β̂OLS is
√

n

consistent, and the estimator is asymptotically equivalent to β̂k,OLS.

ii) Suppose a basic resampling algorithm is used for a HB criterion that is minimized by

a consistent estimator for β (e.g., for LMS or LTS). Also assume that the algorithm uses

Kn ≡ K randomly selected elemental starts (e.g., K = 500), the start β̂OLS and the start

β̂k,B. The resulting HB estimator is asymptotically equivalent to the OLS estimator if

the OLS estimator is a consistent estimator of β.

Recall that the criterion is evaluated on the attractors. Then from the proof of the

above theorem, it can be seen that the
√

n consistent attractor can be replaced by any

√
n consistent estimator, say β̂D, and the resulting estimator will be a HB

√
n consistent
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estimator that is asymptotically equivalent to β̂D. Good choices for β̂D are OLS, L1,

the Wilcoxon rank estimator, β̂k,OLS, the Mallows GM estimator and estimators that

perform well when heteroscedasticity is present.

4 EXAMPLES

We examined several data sets from the archive (http://www.math.siu.edu/olive/ol-

bookp.htm) to illustrate the DGK, MBA and FMCD estimators. For each data set

the d outliers were deleted and then made the first d cases in the data set. Then the last

n−m cases were deleted so that the outliers could not be detected in the DD plot. The

Buxton (1920) data cyp.lsp consists of measurements bigonal breadth, cephalic index,

head length, height and nasal height. For cases 61–65, the heights were about 0.75 inches

with head lengths well over 5 feet. The DGK, FMCD and MBA estimators failed when

there were 21, 14 and 10 cases remaining, respectively.

The Gladstone (1905-6) data consists of the variables age, ageclass, breadth, brnweight,

cause, cephalic, circum, head height, height, length, sex and size. There were 267 cases

and cases 230, 254, 255, 256, 257 and 258 were outliers corresponding to infants. The

variables ageclass, cause and sex were categorical and caused the FMCD estimator to

be singular. Hence these three variables were deleted and there were 6 outliers and 9

variables. The DGK, FMCD and MBA estimators failed when there were 30, 20 and 18

cases remaining, respectively.

The Schaaffhausen (1878) data museum.lsp consists of the variables head length, head

breadth, head height, lower jaw length, face length, upper jaw length, height of lower jaw,
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eye width, traverse diagonal length and cranial capacity. There were 60 cases and the first

47 were humans while the remaining 13 cases were apes (outliers). The DGK, FMCD

and MBA estimators failed when there were 38, 34 and 26 cases remaining, respectively.

All three estimators gave similar DD plots when all of the cases were used and the

DGK estimator had considerable outlier resistance. For MLD, concentration is a very

effective technique even if the classical estimator is used as the only start. For two of

the data sets, the MBA estimator failed when the number of outliers was equal to the

number of clean cases, as might be expected from a HB estimator.

Rocke and Woodruff (1996) suggest that the hardest shape that outliers can take is

when they have the same covariance matrix as the clean data but shifted mean. We

found that estimators based on concentration estimators were much more effective on

such data sets than estimators based on the basic resampling algorithm.

5 APPLICATIONS AND CONCLUSIONS

The MBA estimator is robust and the hybrid CMCD estimator of Theorem 9 that uses the

2 MBA starts as well as 200 randomly chosen elemental starts will be a HB
√

n consistent

estimator that is asymptotically equivalent to the DGK estimator. This CMCD estimator

is also about twice as fast as the current zero breakdown inconsistent FMCD estimator.

The CLTS estimator of Theorem 10i should use at least K = 500 elemental starts and

should outperform the estimator of Theorem 10ii that uses K = 10000 starts.

Although the estimators in Section 3 are very attractive, there is still room for im-

provement. The MBA estimator is useful for data mining where speed is crucial. HB
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MLR estimators can be made using HB MLD estimators (and vice verca), and the HB

MLR estimators that use the MBA or hybrid CMCD estimator may have greater outlier

resistance than the estimators from Theorem 10. These estimators can also be used to

correctly implement some two stage estimators, including the cross checking estimator.

The Maronna and Zamar (2002) OGK estimator may be a competitor to the MBA and

CMCD estimators, but theory is needed. See Mehrotra (1995) for a similar estimator.

Exact computation of the MCD estimator is surveyed by Bernholt and Fischer (2004).

For any given estimator, it is easy to find outlier configurations where the estimator

fails. One of the most useful techniques for robust statistics is to make scatterplot matri-

ces of residuals and of fitted values, or of Mahalanobis distances from several estimators

including starts and attractors. Keep track of the best starts and attractors that have

desirable properties including i) rate n1/2, ii) high breakdown and iii) affine equivariance

combined with a low value of the criterion.

Many papers have been written that need a HB consistent estimator of MLD. Since

no practical HB estimator was available, inconsistent zero breakdown estimators were

often used in implementations, resulting in zero breakdown estimators that were often

inconsistent (although perhaps useful as diagnostics).

Applications of the robust
√

n consistent CLTS and CMCD estimators are numerous.

For example, robustify the ideas in the following papers by using the CMCD estima-

tor instead of the FMCD, MCD or MVE estimator. Binary regression: see Croux and

Haesbroeck (2003). Canonical correlation analysis: see Branco, Croux, Filzmoser, and

Oliviera (2005). Discriminant analysis: see He and Fung (2000). Factor analysis: see

Pison, Rousseeuw, Filzmoser, and Croux (2003). Analogs of Hotelling’s T 2 test: see
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Willems, Pison, Rousseeuw, and Van Aelst (2002). Longitudinal data analysis: see He,

Cui and Simpson (2004). Multiple linear regression: see He, Simpson and Wang (2000).

Robust asymptotically efficient MLR estimators can be made by using this modified t-

type estimator to create a cross checking estimator. See He (1991) and Davies (1993).

Resistant regression: see Olive (2005). Multivariate analysis diagnostics: the Rousseeuw

and Van Driessen (1999) DD plot of classical Mahalanobis distances versus CMCD dis-

tances should be used for multivariate analysis much as Cook’s distances are used for

MLR. Olive (2002) shows that the plotted points in the DD plot will follow the identity

line with zero intercept and unit slope if the data distribution is multivariate normal

(MVN), and will follow a line with zero intercept but non–unit slope if the data distribu-

tion is elliptically contoured but not MVN. Multivariate regression: see Rousseeuw, Van

Aelst, Van Driessen and Agulló (2004). Principal components: see Hubert, Rousseeuw,

and Vanden Branden (2005). Asymptotically efficient estimators of MLD: see He and

Wang (1996).

Regression via Dimension Reduction: Regression is the study of the conditional dis-

tribution of the response Y given the vector of predictors x = (1,wT )T where w is the

vector of nontrivial predictors. Make a DD plot of the classical Mahalanobis distances

versus the robust distances computed from w. If w comes from an elliptically contoured

distribution, then the plotted points in the DD plot should follow a straight line through

the origin. Give zero weight to cases in the DD plot that do not cluster tightly about “the

best straight line” through the origin (often the identity line with unit slope), and run a

weighted regression procedure. This technique can increase the resistance of regression

procedures such as sliced inverse regression (SIR, see Li, 1991) and MAVE (Xia, Tong,
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Li, and Zhu, 2002). Also see Cook and Nachtsheim (1994) and Li, Cook and Nachtsheim

(2004). Gather, Hilker and Becker (2001, 2002) also develop a robust version of SIR.

Visualizing 1D Regression: In a 1D regression model the response Y is independent

of the predictors x given βT x. Generalized linear models and single index models are im-

portant special cases. Resistant methods that use trimming for visualizing 1D regression

are given in Olive (2002, 2004b).

APPENDIX: MATHEMATICAL PROOFS

Proof of Proposition 1. The result follows by Remark 1b if a50 = aMCD. But by

Remark 1e the overlap of cases used to compute (xm,j,Sm,j) and (TMCD,CMCD) goes

to 100% as n → ∞. Hence the two sample covariance matrices Sm,j and CMCD both

estimate the same quantity aMCDΣ. QED

Proof of Proposition 2. To prove i) and ii), notice that each start is inconsistent.

Hence each attractor is inconsistent by He and Portnoy (1992) for the CLTS and Lopuhaä

(1999) for CMCD. Choosing from K inconsistent estimators still results in an inconsistent

estimator. To prove iii) for MLR, replace one observation in each start by a high leverage

case (with y tending to ∞). For multivariate data with h ≥ p + 1, replace h− p cases so

that the start is singular and the covariance matrix can not be computed. QED

Proof of Lemma 3. If Wi is the rank of the ith start, then W1, ...,WK are iid discrete

uniform on {1, ..., B} and R = min(W1, ...,WK). If r is an integer in [1, B], then

P (R ≤ r) = 1 − (
B − r

B
)K.

Solve the above equation α = P (R ≤ Rα) for Rα. QED

Proof of Proposition 4. i) The hn = g(n) cases are randomly sampled without replace-
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ment. Hence the classical estimator applied to these g(n) cases has rate [g(n)]δ. Thus all

K starts have rate [g(n)]δ, and the result follows by Pratt (1959). ii) The result follows

by Pratt (1959). iii) and iv) By He and Portnoy (1992) for CLTS and by Lopuhaä (1999)

for CMCD, all K attractors have [g(n)]δ rate, and the result follows by Pratt (1959). v)

The DGK estimator uses K = 1 and hn = n, and the k concentration steps are performed

after using the classical estimator as a start. Hence the result follows by Lopuhaä (1999).

vi) Each of the K starts in the MBA algorithm is
√

n consistent (if M > 0 then the

(MED(W ), Ip) = (T−1,C−1) can be regarded as the start). Hence the result follows by

Proposition 1 and Pratt (1959). QED

Proof of Proposition 5. If all of the starts are singular, then the Mahalanobis distances

cannot be computed and the classical estimator can not be applied to cn cases. Suppose

that at least one start was nonsingular. Then CA and CMCD are both sample covariance

matrices applied to cn cases, but by definition CMCD minimizes the determinant of such

matrices. Hence 0 ≤ det(CMCD) ≤ det(CA). QED

Proof of Proposition 6. ‖β̂Q,n − β̂A,n‖ ≤ ‖β̂Q,n − β‖ + ‖β̂A,n − β‖ = OP (n−δ1) +

OP (n−δ2) = OP (n−min(δ1,δ2)). QED

Proof of Proposition 7. Olive (2005) showed that an MLR estimator is high breakdown

if the median absolute residual stays bounded under high contamination. Concentration

insures that the criterion function of the cn ≈ n/2 absolute residuals gets smaller. QED

Proof of Theorem 8. i) The estimator is HB since (x0,50,S0,50) is a high breakdown

estimator and hence has a bounded volume if up to nearly 50% of the cases are outliers.

If the distribution is spherically symmetric then the result follows by Proposition 4vi.

Otherwise, the hyperellipsoid corresponding to the highest density region has at least one
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major axis and at least one minor axis. The estimators with M > 0 trim too much data

in the direction of the major axis and hence the resulting attractor is not estimating the

highest density region. But the DGK estimator (M = 0) is estimating the highest density

region. Thus the probability that the DGK estimator is the attractor that minimizes the

volume goes to one as n → ∞, and (TA,CA) is asymptotically equivalent to the DGK

estimator (Tk,0,Ck,0).

ii) The estimator is HB since 0 < det(SMCD) ≤ det(CA) ≤ det(S0,50) < ∞ if up to

nearly 50% of the cases are outliers. If the distribution is spherically symmetric then the

result follows by Proposition 4vi. Otherwise, the estimators with M > 0 trim too much

data in the direction of the major axis and hence the resulting attractor is not estimating

the highest density region. Hence Sk,M is not estimating aMCDΣ. But the DGK estimator

Sk,0 is a
√

n consistent estimator of aMCDΣ and ‖SMCD −Sk,0‖ = OP (n−1/2). Thus the

probability that the DGK attractor minimizes the determinant goes to one as n → ∞,

and (TA,CA) is asymptotically equivalent to the DGK estimator (Tk,0,Ck,0). QED

Proof of Theorem 9. The estimator is HB since 0 < det(SMCD) ≤ det(CCMCD) ≤

det(S0,50) < ∞ if up to nearly 50% of the cases are outliers. Notice that the DGK

estimator is the attractor for (T0,0,C0,0). Under (E1), the probability that the attractor

from a randomly drawn elemental set gets arbitrarily close to the MCD estimator goes to

zero as n → ∞. But DGK − MCD = OP (n−1/2). Since the number of randomly drawn

elemental sets K does not depend on n, the probability that the DGK estimator has a

smaller criterion value than that of the best elemental attractor also goes to one. Hence if

the distribution is spherically symmetric then (with probability going to one) one of the

MBA attractors will minimize the criterion value and the result follows. If (E1) holds

24



and the distribution is not spherically symmetric, then the probability that the DGK

attractor minimizes the determinant goes to one as n → ∞, and (TCMCD,CCMCD) is

asymptotically equivalent to the DGK estimator (Tk,0,Ck,0). QED

Proof of Theorem 10. Proposition 7 shows that concentration and basic resampling

algorithms that use a HB start are HB, and β̂k,B is a HB estimator.

i) By He and Portnoy (1992), the OLS attractor β̂k,OLS is
√

n consistent estimator. As

n → ∞, the estimator that minimizes the LTS criterion gets arbitrarily close to β since

the LTS estimator is consistent by Maš̈ıček (2004). Since β̂k,B is a biased estimator of

β, with probability tending to one, the OLS attractor will have a smaller criterion value.

With probability tending to one, the OLS attractor will also have a smaller criterion

value than the criterion value of the attractor from a randomly drawn elemental set (by

Lemma 3 and He and Portnoy 1992, also see Remark 4 in Hawkins and Olive 2002). Since

K randomly elemental sets are used, the CLTS estimator is asymptotically equivalent to

the OLS attractor.

ii) As in the proof of i), the OLS estimator will minimize the criterion value with

probability tending to one as n → ∞. QED
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