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Abstract

For linear models, the response and residual plots can be used to check the

model for goodness and lack of fit. The plots can also be used to visualize the

linear model in the background of the data, to check for linearity or nonlinearity,

constant variance or nonconstant variance, to choose a response transformation

and to compare competing models such as the full model versus a reduced model

or least squares versus a robust regression estimator. The plots can be modified to

incorporate information from regression diagnostics and robust regression.
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1. INTRODUCTION

The linear model is Y = Xβ +e where Y is an n×1 vector of response variables, X

is an n × p matrix of predictors, β is a p × 1 vector of unknown coefficients and e is an

n× 1 vector of errors. The ith case (xT
i , Yi) corresponds to the ith row xT

i of X and the

ith element of Y , and Yi = xi,1β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei for i = 1, ..., n.

Multiple linear regression, analysis of covariance and many analysis of variance (anova)

models are linear models.

Suppressing the dependence on i, assume that the conditional distribution Y |xT β has

unknown probability density function (pdf) f(y − xTβ), a location family with location

parameter = sufficient predictor = SP = xTβ. Then Y |SP has pdf f(y−SP ), the error

distribution has pdf f(y), and the linear model is Y = SP + e with conditional mean

function E(Y |SP ) = SP and conditional variance function V (Y |SP ). The constant

variance assumption is V (Y |SP ) ≡ σ2, and if the error distribution is normal, e ∼

N(0, σ2), then Y |SP ∼ N(SP, σ2). The estimated sufficient predictor ESP = xT β̂ = Ŷ

is the fitted value, and the residual r = Y − Ŷ where β̂ is an estimator of β. Note that

Y = ESP + r.

A residual plot can be defined to be a plot of aTw versus r where a is a known vector

and w is a vector of potential predictors. Then a response plot is similar to a residual

plot, but uses the response Y on the vertical axis instead of the residual r.

These plots are crucial in the dimension reduction literature. In a 1D regression

model, the response Y is independent of the predictors x given the sufficient predictor

SP = xT β. Then the response plot of the estimated sufficient predictor ESP = xT β̂
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versus Y is also called an estimated sufficient summary plot, and is used to visualize the

1D regression model in the background of the data. See Cook (1998, p. 10). When there

is a single nontrivial predictor x, a scatterplot of x versus Y is a response plot. Brillinger

(1983) recognized that the response plot can be used to visualize the conditional mean

function E(Y |SP ) of a 1D regression model. The response plot has long been used to

visualize the coefficient of determination R2 in multiple linear regression. See Chambers,

Cleveland, Kleiner and Tukey (1983, p. 280). Response plots are called marginal model

plots and model checking plots by Cook and Weisberg (1997, 1999, p. 396).

Unless otherwise stated, we will consider response and residual plots that use the

fitted values xT β̂ = Ŷ on the horizontal axis. Now Y = Ŷ + r, and ignoring the

residuals gives the line Y = Ŷ , so the plotted points scatter about the identity line

with unit slope and zero intercept. Since the vertical deviations from the identity line

are the residuals ri = Yi − Ŷi, the response plot simultaneously shows the response,

fitted values and residuals. The estimated conditional mean function is the identity line:

̂E(Y |SP ) = xT β̂.

Let the iid error model be the linear model where the zero mean constant variance

errors are iid from a unimodal distribution that is not highly skewed. Then the zero

mean assumption holds without loss of generality if the linear model contains a constant

and E(e) exists. Under the iid error model, if the fitted values take on many values, then

the plotted points should scatter about the identity line in a (roughly) evenly populated

band while the plotted points in the residual plot should scatter about the r = 0 line in a

(roughly) evenly plotted band. Deviations from the evenly populated band suggest that

something is wrong with the iid error model.
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Many anova models satisfy the iid error model, but often the fitted values do not

take on many values. Consider the one way anova model with k treatments and m ≥ 5

replications per treatment. The plotted points still scatter about the identity or r = 0

line, but there are k dot plots corresponding to the k treatments. The dot plots should

have similar spread and shape if the one way anova model assumptions are reasonable.

If the zero mean errors are iid from a highly skewed unimodal distribution, then the

estimated conditional mean function is still the identity line in the response plot. Hence

the plotted points still scatter about the identity line and the r = 0 line. It may be

necessary to add a scatterplot smoother such as lowess as a visual aid. If the scatterplot

smoother is close to the identity line and r = 0 line in the response and residual plots,

respectively, then linearity is reasonable. Cook and Weisberg (1997) suggest a graphical

check on the constant variance assumption.

Unless otherwise stated, assume the iid error model is a useful approximation for the

data. The response and residual plots are best for n > 5p. If p < n < 2p, then the

linear model is seriously “overfitting” the data, and the two plots may only be useful for

detecting large deviations from the linear model. For n > 5p, the following four sections

use the plots for checking goodness and lack of fit, linearity or nonlinearity, constant

or nonconstant variance, for detecting outliers and influential cases, and for comparing

competing models such as the full model versus a reduced model or OLS versus a robust

regression estimator. The response plots can be used to choose a response transformation.

Information from regression diagnostics and robust regression can be incorporated into

the plots. The appendix reviews some concerns about robust regression.
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2. GOODNESS AND LACK OF FIT

Cook and Weisberg (1997, 1999, pp. 74, 397) suggest using the response plot for

assessing the linear model while Olive and Hawkins (2005) suggest that the response

and residual plots are crucial for visualizing the model and for examining lack of fit. If

the normal error model is appropriate, then Y |SP ≈ N(ESP, σ̂2). The response plot

suggests that the iid error model is reasonable if the plotted points follow the identity

line in an evenly populated band or if the dot plots have similar shape and spread. To

use the response plot to visualize the model, mentally examine a narrow vertical strip

about Ŷ = ŷ. The cases in the strip have numbers near ŷ on average for linear models

with E(e) = 0. The response plot suggests that linearity is reasonable but the constant

variance assumption is not reasonable if the plot is linear and the cases in different narrow

bands have clearly different variability.

Example 1. Wood (1973) provides data where the octane number is predicted from 3

feed compositions and the log of a combination of process conditions. The OLS response

and residual plots in Figure 1 suggest that the model is linear but the constant variance

assumption may not be reasonable. There appear to be three groups of data. Tremendous

profit can be gained by raising the octane number by one point, and the two cases with

the largest fitted values Ŷ ≈ 97 were of the greatest interest.

Example 2. SAS Institute (1985, p. 126) uses clover data to illustrate the one

way anova model. The response variable is the nitrogen content of red clover plants

inoculated with six strains of bacteria, and each strain has five replicates. Figure 2 shows

the response and residual plots. Moore (2007, p. 634) states that the one way anova F
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test is approximately correct if max(S1, ..., Sk) ≤ 2min(S1, ..., Sk) where Si is the sample

standard deviation of the ith group. Replace the standard deviations by the ranges of the

dot plots when examining the response and residual plots. Linearity seems reasonable,

but the approximately constant variance assumption may not hold.

Suppose the full model Y = Xβ +e is a useful approximation to the data. To check

a submodel or reduced model, Olive and Hawkins (2005) suggest making the response

and residual plots for the full and submodel. Also make an RR plot of the residuals

from the submodel versus the residuals from the full model, and make an FF plot which

replaces the residuals with the fitted values. If the submodel is good, then its response

and residual plots will look similar to those of the full model and the plotted points in

the FF and RR plots will cluster tightly about the identity line.

Marginal residual plots of the individual predictors versus the residuals are also useful

for checking lack of fit. Cook and Weisberg (1997) and Sheather (2009, pp. 193-195)

show that marginal response plots are useful for checking goodness of fit.

For 1D regression, including generalized linear models and many survival analysis

models, it is well known that near replicates of x can be used to form lack of fit tests.

If β̂ is a good estimator of β, then cases corresponding to points in a narrow vertical

slice of the response plot are near replicates of xT β, and narrow slices of xT β̂ tend to

contain far more cases than narrow slices of x. This point has been missed in much of

the literature. See, for example, Miller, Neill and Sherfey (1999).

There is an enormous literature on tests and diagnostics for goodness and lack of fit

for linear models. See references in Cheng and Wu (1994), Peña and Slate (2006) and Su

and Yang (2006). Diagnostics for heteroscedasticity include Cook and Weisberg (1983,
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1997).

3. GENERALIZED LEAST SQUARES

In this section the assumptions of the iid error model are relaxed. The generalized least

squares (GLS) model Y = Xβ + e is a linear model with E(e) = 0, but Cov(e) = σ2V

where V is a known n × n positive definite matrix. The weighted least squares (WLS)

model with weights w1, ..., wn is the special case of the GLS model where V is diagonal:

V = diag(v1, ..., vn) and wi = 1/vi. The GLS estimator

β̂GLS = (XTV −1X)−1XT V −1Y . (1)

The fitted values are Ŷ GLS = Xβ̂GLS .

Following Freedman (2005, p. 54), the feasible generalized least squares (FGLS) model

is the same as the GLS estimator except that V = V (θ) is a function of an unknown

q × 1 vector of parameters θ. Let the estimator of V be V̂ = V (θ̂). Then the FGLS

estimator

β̂FGLS = (XT V̂
−1

X)−1XT V̂
−1

Y . (2)

The fitted values are Ŷ FGLS = Xβ̂FGLS . The feasible weighted least squares (FWLS)

estimator is the special case of the FGLS estimator where V = V (θ) is diagonal. Hence

the estimated weights ŵi = 1/v̂i = 1/vi(θ̂).

The GLS estimator can be transformed to a linear model Z = Uβ + ε where E(ε) =

0 and Cov(ε) = σ2In. One transformation uses the numerically unstable Cholesky

decomposition: there is a nonsingular n × n matrix K such that V = KKT . Let

Z = K−1Y , U = K−1X and ε = K−1e.

7



An alternative transformation uses the spectral theorem and is a special case of the

singular value decomposition: there is a symmetric, nonsingular n × n matrix R such

that V = RR. Let Z = R−1Y , U = R−1X and ε = R−1e. This method has better

computational properties than transformation based on the Cholesky decomposition.

The response and residual plots can be made for the transformed model to check the

linearity and constant variance assumptions as in the previous section, assuming that the

distribution of ε is not highly skewed. If the plots are good, then the GLS model may be

a reasonable approximation for the data. Similar plots can be made for FGLS since the

FGLS estimator can also be found from the OLS regression (without an intercept) of Z

on U where V (θ̂) = RR. But now U is a random matrix instead of a constant matrix.

The plots based on the transformed model give both a check on linearity and on

whether the model using V (or V̂ ) gives a good approximation of the data, provided

that n > 5(p + q + 1) where q = 0 for GLS. Plots based on the GLS residuals and fitted

values should be similar to those based on OLS since, under regularity conditions, both

OLS and GLS provide consistent estimators of β. Then the plotted points scatter about

the identity and r = 0 lines, but usually not in evenly populated bands. Hence these

plots can not be used to check whether the GLS model with V is a good approximation

to the data.

If the plots for the transformed model show high leverage points or outliers while the

response plot based on OLS is linear without outliers, then the GLS model may be poor.

Then it may be better to use the consistent but inefficient OLS estimator along with the

sandwich estimator.

Sheather (2009, ch. 9, ch. 10) makes the residual plots based on the Cholesky
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decomposition and shows that many linear models with serially correlated errors (e.g.

AR(1) errors) and many linear mixed models can be fit with FGLS. Houseman, Ryan

and Coull (2004) also use the Cholesky decomposition. Montgomery, Peck and Vining

(2006, pp. 182-183) make residual plots based on the spectral theorem.

Additional diagnostics are given by Banejee and Frees (1997), Cook and Weisberg

(1983), De Gruttola, Ware and Louis (1987), Polasek (1984) and Shi and Chen (2009).

Long and Ervin (2000) discuss methods for obtaining standard errors when the constant

variance assumption is violated.

4. DETECTION OF OUTLIERS AND INFLUENTIAL CASES

For detection of outliers and influential cases for linear models, including anova mod-

els, it is crucial to make the response and residual plots. If n > 5p and the plotted points

do not scatter about the identity line and the r = 0 line in evenly populated bands, then

the iid error model assumptions may not hold. Departures from these ideal shapes are

often easily detected when there are one or more groups of outliers even if OLS is used.

Huber and Ronchetti (2009, p. 154) note that efficient methods for identifying lever-

age groups are needed. Such groups are often difficult to detect with regression diagnos-

tics and residuals, but often have outlying fitted values and responses. The OLS fit often

passes through a cluster of outliers, causing a large gap between a cluster corresponding

to the bulk of the data and the cluster of outliers. When such a gap appears, it is possible

that the smaller cluster corresponds to good leverage points: the cases follow the same

model as the bulk of the data. Fit the model to the bulk of the data. If the fit passes

through the cluster, then the cases may be good leverage points, otherwise they may be
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outliers.

For multiple linear regression, Rousseeuw and Leroy (1987, p. 8) suggest that re-

gression diagnostics and residuals from robust regression are two methods for detecting

outliers. Information from regression diagnostics can be incorporated into the response

and residual plots by highlighting cases with large diagnostic values. To summarize the

information from two or more regression estimators, make the residual and response plots

for each estimator. An RR plot is a scatterplot matrix of the residuals from the differ-

ent estimators. An FF plot replaces the residuals by the fitted values and includes the

response on the top or bottom row of the scatterplot matrix. Note that this row will

contain the response plots from the different estimators.

Response and residual plots are rarely shown in the outlier literature for linear mod-

els, but the plots are very effective for suggesting that something is wrong with the

iid error model. The plots often show two or more groups of data, and outliers often

cause an obvious tilt in the residual plot. Influence diagnostics such as Cook’s dis-

tances CDi from Cook (1977) and the weighted Cook’s distances WCDi from Peña

(2005) are also sometimes useful. In the following example, cases in the plots with

CDi > min(0.5, 2p/n) are highlighted with open squares, and cases with |WCDi −

median(WCDi)| > 4.5MAD(WCDi) are highlighted with crosses, where the median ab-

solute deviation MAD(wi) = median(|wi −median(wi)|).

Example 3. Buxton (1920, p. 232-5) gives 20 measurements of 88 men. Consider

predicting stature using an intercept, head length, nasal height, bigonal breadth, and

cephalic index. One case was deleted since it had missing values. Five individuals,

numbers 61-65, were reported to be about 0.75 inches tall with head lengths well over
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five feet! In Figure 3, notice that the OLS fit passes through the outliers, but the response

plot is resistant to Y–outliers since Y is on the vertical axis. Also notice that only two

of the outliers had large Cook’s distance and only one case had a large WCDi.

Figure 4 shows the response plots for OLS, the R/Splus resistant estimator ltsreg,

and for hbreg and β̂k,B which are described in the appendix. Notice that only the fit

from β̂k,B (BBFIT) did not pass through the outliers.

The CDi and WCDi are the most effective when there is a single cluster about the

identity line. If there is a second cluster of outliers or good leverage points or if there is

nonconstant variance, then these numerical diagnostics tend to fail. For the Wood (1973)

data in Figure 1, none of the cases had large CDi or WCDi.

Example 4. Dunn and Clark (1974, p. 129) study the effects of four fertilizers on

wheat yield using a Latin square design. The row blocks were 4 types of wheat, and the

column blocks were 4 plots of land. Each plot was divided into 4 subplots. Case 14 had

a yield of 64.5 while the next highest yield was 35.5. For the response plot in Figure 5,

note that both Y and Ŷ are large for the high yield. Also note that Ŷ underestimates Y

by about 10 for this case.

Example 5. Snedecor and Cochran (1967, p. 300) give a data set with 5 types of

soybean seed. The response frate = number of seeds out of 100 that failed to germinate.

Five blocks were used. The response and residual plots in Figure 6 suggest that one case

is not fit well by the model. On further examination of the data, there seems to be a

block treatment interaction, which is not allowed by the completely randomized block

design.

Example 6. Rousseeuw and Leroy (1987, pp. 242-245) give a modified wood data
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set with 4 nontrivial predictors and 4 planted outliers. Figure 7 shows an FF plot for the

data, using OLS, least absolute deviations (L1), lmsreg (ALMS), ltsreg (ALTS) and

the Olive (2005) MBA resistant estimator. The four planted outliers have the smallest

values of the response, and can not be detected by the OLS response and residual plots.

They can be detected by the ALMS and MBA response plots.

No method can detect outliers for all data sets where the bulk of the data follows the

iid error model, but the graphical method of using the OLS response and residual plots

to detect outliers is competitive with alternative methods. The method works well for

both multiple linear regression and anova models. The RR and FF plots can be useful

for multiple linear regression when the OLS plots fail.

The literature on detecting outliers and influential cases is massive. Hawkins and

Olive (2002) used the RR and residual plots while Olive (2005) suggested using response,

residual, FF and RR plots. Olive (2004) highlighted cases with large Cook’s distances

in the response and residual plots. Other references include Barnett and Lewis (1994),

Belsley, Kuh and Welsch (1980), Cook (1977, 1986), Cook and Critchley (2000), Cook

and Weisberg (1982), Fox (1991) and Rousseeuw and van Zomeren (1990).

The appendix reviews concerns about robust regression estimators. Also see Car-

roll, Ruppert and Stefanski (1999), Hawkins and Olive (2002), Huber and Ronchetti

(2009), McKean, Sheather and Hettmansperger (1993), Velilla (1998) and Wang and

Suter (2003).

5. RESPONSE TRANSFORMATIONS

The applicability of a linear model can be expanded by allowing response transfor-
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mations. If n > 5p and the iid error model is a useful approximation for the data for the

response transformation Y = t(Z) = xT β + e, then the plotted points in the response

plot will scatter about the identity line in a roughly evenly populated band.

An important class of response transformation models adds an additional unknown

transformation parameter λo, such that

Yi = tλo(Zi) = xT
i β + ei.

Two families of transformations are frequently used. Assume that all of the values of

the “response” Zi are positive. A power transformation has the form Y = tλ(Z) = Zλ

for λ 6= 0, and Y = t0(Z) = log(Z) for λ = 0 where λ ∈ ΛL = {−1,−1/2, 0, 1/2, 1} for

anova models. For linear models with at least one continuous predictor, add ±1/3 and

possibly ±1/4 and ±2/3 to ΛL. The modified power transformation family

Yi = tλ(Zi) ≡ Z
(λ)
i =

Zλ
i − 1

λ

for λ 6= 0, and t0(Zi) = log(Zi) for λ = 0 where λ ∈ ΛL.

There are several reasons to use a coarse grid ΛL of powers. First, several of the

powers correspond to simple transformations such as the log, square root, and reciprocal.

These powers are easier to interpret than λ = .28, for example. Secondly, if the estimator

λ̂n can only take values in ΛL, then sometimes λ̂n will converge in probability to λ∗ ∈ ΛL.

Thirdly, Tukey (1957) showed that neighboring modified power transformations are often

very similar, so restricting the possible powers to a coarse grid is reasonable.

Box and Cox (1964) gave a numerical method for selecting the response transfor-

mation for the modified power transformations. Although the method gives a point
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estimator λ̂o, often an interval of “reasonable values” is generated (either graphically or

using a profile likelihood to make a confidence interval), and λ̂ ∈ ΛL is used if it is also

in the interval.

There are three recent graphical methods for response transformations. Following

Olive (2004), compute the fitted values Ŵi using Wi = tλ(Zi) as the “response”. Then

make the transformation plot of Ŵ versus W for each λ ∈ ΛL. The plotted points follow

the identity line in a (roughly) evenly populated band if the iid error model is reasonable

for (Ŵ ,W ). If more than one value of λ ∈ ΛL gives a linear plot, then examine the

residual plots, consult subject matter experts and use the simplest or most reasonable

transformation. This graphical method is not restricted to OLS.

After selecting the transformation, the usual checks should be made. A variant of

the method would plot the residual plot or both the response and the residual plot for

each of the values of λ. Residual plots do not distinguish between nonlinear monotone

relationships and nonmonotone relationships. See Fox (1991, p. 55).

The method proposed by Cook and Olive (2001) is similar but replaces Ŵ by Ẑ.

Cook and Weisberg (1994) show that the inverse response plot of Z versus Ẑ can be used

to visualize a strictly monotone transformation t. This method needs more assumptions

on the predictor distribution, but does not need to restrict t(Z) to a parametric family

such as the power transformations.

In the following example, the plots show tλ(Z) on the vertical axis. The label

“TZHAT” of the horizontal axis is for the fitted values that result from using tλ(Z)

as the “response” in the software.

Example 7. Kuehl (1994, p. 128) gives data for counts of hermit crabs in six different
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coastline habitats, where C is the count of crabs and the “response” Z = C + 1/6. Each

habitat had several counts of 0 and often there were several counts of 1, 2 or 3. The one

way anova model Wij = tλ(Zij) = µi +eij = η+τi+eij was fit for i = 1, ..., 6 with ni = 25,

and j = 1, ..., ni. Each of the six habitats was a level with 25 replicates. Figure 8 shows

the five transformation plots. The transformation Y = log(Z) is used since the six dot

plots have roughly the same shape and spread. The transformations 1/Z and 1/
√

Z do

not handle the 0 counts well, while the transformations
√

Z and Z have variance that

increases with the mean.

Example 2 continued. None of the transformation plots for the clover data removed

the nonconstant variance. Thus the one way anova F test should be replaced by a method

that can handle nonconstant variance.

Example 8. Box and Cox (1964) analyze data from a 33 experiment on the behavior

of yarn under cycles of repeated loadings. Here Z = number of cycles until failure while

the three predictors are the length, amplitude and load. A constant and the three main

effectts were used. For this data set, there is one value of the response for each of the 27

treatment level combinations. Figure 9 shows four of the five transformation plots. The

plotted points curve away from the identity line in three of the four plots. The plotted

points for the log transformation follow the identity line with roughly constant variance.

This transformation plot is the response plot where Y = log(Z). To visualize the

conditional distribution of Y |xT β, use the fact that the fitted values Ŷ = xT β̂. For

example, suppose that log(cycles to failure) given fit = 6 is of interest. Mentally examine

the plot about a narrow vertical strip about Ŷ = 6, perhaps from 5.75 to 6.25. The
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cases in the narrow strip have a mean close to 6 since they fall close to the identity line.

Similarly, when Ŷ = ŷ for ŷ between 4.5 and 8.5, the cases have log(cycles to failure)

near ŷ, on average. Cases 19 and 20 had the largest Y values with long length, short

amplitude of loading cycle and low load. Cases 8 and 9 had the smallest Y values with

low length, high amplitude and high load.

For experimental design models, interest is often in finding the combination of predic-

tors that result in the largest or smallest values of the response. This example illustrates

that the response plot is useful for finding combinations of levels with desirable values of

the response.

6. DISCUSSION

The graphical techniques discussed in this paper are useful because they are not tied

to a specific estimator such as OLS and can be used even if all of the predictors are

categorical. Also, the response and residual plots are easily made with good statistical

software packages. Figures 1 and 7-9 were made with Splus while Figures 3-6 were made

with R. Using the response and residual plots speeds up the process of finding a linear

model that is a useful approximation of the data, and both plots should be made before

performing inference.

Use the response plot to visualize the linear model Y |xT β in the background of the

data, to check goodness of fit, to check linearity, to check the strength of the relationship

as measured by R2 or the signal to noise ratio, to detect outliers and to check if a

nonlinearity is monotone (useful for response transformations). For anova models with

replication, use the plot to check which populations have similar means.
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The response plot can be used to show that the linear model provides a simple, useful

approximation for the relationship between the response variable Y and the predictors

x, and to explain the linear model to consulting clients, students or researchers. If the

identity line fits the data better than any horizontal line, then the predictors x are needed

in the model (HA : β 6= 0). If a horizontal line fits the data about as well as the identity

line, then the HA may be statistically significant but not practically significant.

Use the residual plot to check for nonconstant variance, to visualize e|xTβ, to check

for lack of fit, to check for nonlinearity and to check whether the error distribution is

highly skewed. For anova models with replication, use the residual plot to judge whether

the p dot plots have similar shape and spread. A marginal residual plot of a predictor xj

or a potential predictor wj versus r is useful to check whether xj is independent of e, to

check if x2
j should be added to the model and to check if wj or both wj and w2

j should

be added to the model.

Extensions to other models have been made. The response plot of the ESP versus Y is

useful for visualizing 1D regression models in the background of the data while the plot of

the fitted values versus Y is useful for checking models, including nonlinear regression and

time series models, than may not be 1D regression models. For multivariate regression

with k response variables, make the residual and response plots for each of the k variables.

APPENDIX: CONCERNS ABOUT ROBUST REGRESSION

For multiple linear regression, an enormous number of alternatives to OLS have been

suggested. Huber and Ronchetti (2009, pp. xiii, 8-9, 152-154, 196-197) suggest that

high breakdown robust regression estimators are unstable, take too long to compute, do
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not provide an adequate remedy for the ill effects of outliers, and that their statistical

and computational properties are not adequately understood. This appendix further

addresses some of these concerns.

If d of the cases have been replaced by arbitrarily bad contaminated cases, then the

contamination fraction is γ = d/n. Then the breakdown value of β̂ is the smallest value

of γ needed to make ‖β̂‖ arbitrarily large. High breakdown regression estimators have

γ → 0.5 as n → ∞ if the clean (uncontaminated) data are in general position: any p

clean cases give a unique estimate of β. For the remainder of this appendix, assume that

the clean data are in general position.

The computational complexity of the “brand name” high breakdown estimators is

too high. The least trimmed sum of absolute deviations (LTA) and the least median

of squares (LMS) estimators have O(np) complexity. The least trimmed sum of squares

(LTS), least quantile of differences, repeated median and regression depth complexities

are far higher, and there may be no known method for computing S, τ , projection based,

constrained M and MM estimators. See Rousseeuw and Leroy (1987) for references.

Čı́žek (2006, 2008) showed that LTS and LTA are
√

n consistent. Kim and Pollard

(1990) showed that LMS is n1/3 consistent.

Since the above estimators take too long to compute, they are replaced by practical

estimators that have not been shown to be both consistent and high breakdown. Of-

ten practical “robust estimators” generate a sequence of K trial fits called attractors:

b1, ..., bK. Then some criterion is evaluated and the attractor bA that minimizes the

criterion is used as the final estimator. One way to obtain attractors is to generate trial

fits called starts, and then use the concentration technique. Let b0,j be the jth start and
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compute all n residuals ri(b0,j) = Yi − xT
i b0,j. At the next iteration, the OLS estimator

b1,j is computed from the cn ≈ n/2 cases corresponding to the smallest squared resid-

uals r2
i (b0,j). This iteration can be continued for k steps resulting in the sequence of

estimators b0,j, b1,j, ..., bk,j. Then bk,j is the jth attractor for j = 1, ...,K. Using k = 10

concentration steps often works well, and the basic resampling algorithm is a special case

with k = 0, i.e., the attractors are the starts. Elemental starts are the fits from randomly

selected “elemental sets” of p cases.

Many criteria for screening the attractors have been suggested. Suppose cn ≈ n/2

and cn/n → 1/2. The LMS(cn) criterion is QLMS(b) = r2
(cn)(b) where r2

(1) ≤ · · · ≤ r2
(n) are

the ordered squared residuals, and the LTS(cn) criterion is QLTS(b) =
∑cn

i=1 r2
(i)(b). The

LTA(cn) criterion is QLTA(b) =
∑cn

i=1 |r(b)|(i) where |r(b)|(i) is the ith ordered absolute

residual.

Hawkins and Olive (2002) showed that if K randomly selected elemental starts are

used and concentration is used to produce the attractors, then the best attractor is not

consistent if K and k are fixed and free of n. Hence no matter how the attractor is

chosen, the resulting estimator is not consistent. The proof is simple given the results of

He and Portnoy (1992) who show that if a start b is a consistent estimator of β, then

the attractor is a consistent estimator of β. Also the attractor and the start have the

same rate. If the start is inconsistent, then so is the attractor. The classical estimator

applied to a randomly drawn elemental set is an inconsistent estimator, so the K starts

and the K attractors are inconsistent. The final estimator is an attractor and thus

inconsistent. The breakdown value of the estimator is bounded above by K/n → 0.

If concentration is iterated to convergence so that k is not fixed, then it is not known
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whether the attractor is inconsistent, but the breakdown value ≤ K/n. Hence the widely

used elemental concentration algorithm estimators are not high breakdown estimators.

Olive (2005) showed that β̂ is high breakdown if the median absolute or squared

residual (or |r(β̂)|(cn) or r2
(cn)) stays bounded under high contamination. (Notice that

if ‖β̂‖ = ∞, then median(|ri|) = ∞, and if ‖β̂‖ = M then median(|ri|) is bounded if

fewer than half of the cases are outliers.) Let QL denote the LMS, LTS or LTA criterion.

Then an estimator β̂H is high breakdown if and only if QL(β̂H) is bounded for d near

n/2. Concentration insures that QLTS for the attractor is no larger than QLTS for the

start. Hence concentration applied to a high breakdown start results in a high breakdown

attractor.

High breakdown estimators are not necessarily useful for detecting outliers. Suppose

γ < 0.5. If the xi are fixed, and the outliers are moved up and down parallel to the Y

axis, then for high breakdown estimators, β̂ and MED(|ri|) will be bounded if n is large

enough. Thus if the |Yi| values of the outliers are large enough, the |ri| values of the

outliers will be large.

If the Yi’s are fixed, arbitrarily large x-outliers tend to drive the slope estimates to 0,

not ∞. If both x and Y can be varied, then a cluster of outliers can be moved arbitrarily

far from the bulk of the data but still have small residuals.

Now assume that the multiple linear regression model contains a constant β1. Let bk

be the attractor from using concentration on the high breakdown start consisting of OLS

applied to the cn cases with Y ’s closest to the median of the Yi and let β̂k,B = 0.9999bk.

Since Olive (2005) showed that the start is a high breakdown estimator, β̂k,B is a high

breakdown estimator of β.
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Let β̂C be a consistent estimator of β while β̂A is an estimator that is useful for outlier

detection such as the R/Splus lmsreg or ltsreg estimators. The hbreg estimator β̂H is

defined as follows. Let a > 1 and set β̂H = β̂C . If aQL(β̂A) < QL(β̂C), set β̂H = β̂A. If

aQL(β̂k,B) < min[QL(β̂C), aQL(β̂A)], set β̂H = β̂k,B.

It is possible to get a high breakdown estimator that is asymptotically equivalent to

β̂C using a = 1 if the probability that β̂A gets arbitrarily close to β as n → ∞ goes

to zero. (The multiplier 0.9999 guarantees that β̂k,B is biased.) For example, use an

elemental concentration algorithm with K and k fixed. However, the sample sizes need

to be large before the estimator behaves like β̂C. Salibian-Barrera, Willems and Zamar

(2008) modified this idea, using a = 1 and OLS followed by concentration as β̂C , but

replaced QL by the τ estimator criterion. It is not known whether the resulting “fast τ

estimator” is consistent or high breakdown.

The hbreg estimator β̂H uses three attractors: β̂C, β̂k,B and β̂A. The following

theorem shows that β̂H is asymptotically equivalent to β̂C . Thus if β̂C is
√

n consistent

or asymptotically efficient, so is β̂H. Notice that β̂A does not need to be consistent. This

point is crucial since lmsreg is not consistent and it is not known whether ltsreg is

consistent. Let β̂L be the LMS, LTS or LTA estimator corresponding to QL.

Theorem 1. Suppose that both β̂L and β̂C are consistent estimators of β where the

MLR model contains a constant. Then the hbreg estimator β̂H is high breakdown and

asymptotically equivalent to β̂C .

Proof. Since the clean data are in general position and QL(β̂H) ≤ aQL(β̂k,B) is

bounded for γ near 0.5, the hbreg estimator is high breakdown. Let Q∗
L = QL for
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LMS and Q∗
L = QL/n for LTS and LTA. As n → ∞, consistent estimators β̂ satisfy

Q∗
L(β̂) − Q∗

L(β) → 0 in probability. Since LMS, LTS and LTA are consistent and the

minimum value is Q∗
L(β̂L), it follows that Q∗

L(β̂C) − Q∗
L(β̂L) → 0 in probability, while

aQ∗
L(β̂L) ≤ aQ∗

L(β̂D) for any estimator β̂D. Thus with probability tending to one as

n → ∞, QL(β̂C) < amin(QL(β̂A), QL(β̂k,B)). Hence β̂H is asymptotically equivalent to

β̂C. �

Want a near 1 so that hbreg has outlier resistance similar to β̂A, but want a large

enough so that hbreg performs like β̂C for moderate n. The hbreg estimator was imple-

mented with a = 1.4 using QLTA, β̂C = OLS and β̂A = ltsreg. Simulations were run

with the xij (for i > 1) and ei iid N(0, σ2) and β = 1, the p × 1 vector of ones. Then

β̂ was recorded for 100 runs. The mean and standard deviation of the β̂j were recorded

for j = 1, ..., p. For n ≥ 10p and OLS, the vector of means should be close to 1 and the

vector of standard deviations should be close to 1/
√

n. The hbreg estimator performed

like OLS if n ≈ 35p and 2 ≤ p ≤ 6, if n ≈ 20p and 7 ≤ p ≤ 14, or if n ≈ 15p and

15 ≤ p ≤ 40. See Table 1 for p = 5 and 100 runs. ALTS denotes ltsreg, HB denotes

hbreg and BB denotes β̂k,B.

As implemented, the hbreg estimator is a practical
√

n consistent high breakdown

estimator that appears to perform like OLS for moderate n and to have outlier resistance

comparable to competing practical resistant estimators. Although hbreg can be used

to make response and residual plots, a more effective method for detecting outliers is to

make an FF plot including OLS, ALTS, β̂k,B and some competing resistant estimators

such as ALMS and MBA. See example 3 where the OLS, ALTS and hbreg fits passed

through the outliers.
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Table 1: MEAN β̂i and SD(β̂i)

n method mn or sd β̂1 β̂2 β̂3 β̂4 β̂5

25 HB mn 1.0743 1.0832 0.9733 1.0385 1.0302

sd 0.4392 0.4869 0.5075 0.5207 0.5169

OLS mn 1.0390 1.0170 1.0045 1.0044 1.0031

sd 0.2120 0.2318 0.2457 0.2144 0.2651

ALTS mn 1.0590 1.1511 1.0074 1.0694 1.0554

sd 0.4538 0.4787 0.5071 0.5291 0.5223

BB mn 1.0648 0.5685 0.5757 0.5989 0.5702

sd 0.4725 0.4418 0.4526 0.4475 0.4341

400 HB mn 0.9937 0.9981 0.9993 1.0106 0.9972

sd 0.0440 0.0553 0.0504 0.0469 0.0496

OLS mn 0.9937 0.9981 0.9993 1.0106 0.9972

sd 0.0440 0.0553 0.0504 0.0469 0.0497

ALTS mn 0.9901 0.9972 1.0112 1.0410 1.0043

sd 0.1519 0.1397 0.1544 0.1635 0.1595

BB mn 0.9914 0.8762 0.8879 0.8845 0.8606

sd 0.1251 0.1265 0.1307 0.1280 0.1183
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