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Abstract

Since high breakdown estimators are impractical to compute exactly in large

samples, approximate algorithms are used. The algorithm generally produces an

estimator with a lower consistency rate and breakdown value than the exact the-

oretical estimator. This discrepancy grows with the sample size, with the impli-

cation that huge computations are needed for good approximations in large high-

dimensioned samples.
∗Douglas M. Hawkins is Professor, School of Statistics, University of Minnesota, Minneapolis, MN

55455-0493, USA. David J. Olive is Assistant Professor, Department of Mathematics, Southern Illinois

University, Carbondale, IL 62901-4408, USA. The authors are grateful to the editors and referees for a

number of helpful suggestions for improvement in the article. Their work was supported by the National

Science Foundation under grants DMS 9803622 and ACI 9619020.

1



The workhorse for HBE has been the ‘elemental set’, or ‘basic resampling’

algorithm. This turns out to be completely ineffective in high dimensions with

high levels of contamination. However, enriching it with a “concentration” step

turns it into a method that is able to handle even high levels of contamination,

provided the regression outliers are located on random cases. It remains ineffective

if the regression outliers are concentrated on high leverage cases. We focus on the

multiple regression problem, but several of the broad conclusions – notably those of

the inadequacy of fixed numbers of elemental starts – are relevant to multivariate

location and dispersion estimation as well.

We introduce a new algorithm – the “X-cluster” method – for large high-

dimensional multiple regression data sets that are beyond the reach of standard

resampling methods. This algorithm departs sharply from current HBE algorithms

in that, even at a constant percentage of contamination, it is more effective the

larger the sample, making a compelling case for using it in the large-sample sit-

uations that current methods serve poorly. A multi-pronged analysis, using both

traditional OLS and L1 methods along with newer resistant techniques, will often

detect departures from the multiple regression model that can not be detected by

any single estimator.

KEY WORDS: Elemental Sets; LMS; LTA; LTS; MCD; Outliers.
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1 Introduction.

Consider the regression model

Y = Xβ + e (1.1)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix of predictors,

and e is an n× 1 vector of errors. The ith case (xT
i , yi) corresponds to the ith row xT

i of

X and the ith element of Y . If e follows a normal N(0, I) distribution, then ordinary

least squares (OLS) provides the maximum likelihood estimator of β, but OLS may be

arbitrarily bad if e includes outliers.

High breakdown (HB) estimators are used to produce “fits” that resist outliers. The

least median of squares (LMS) estimator (Hampel 1975, p. 380), the least trimmed

squares (LTS) estimator (Rousseeuw 1984), and the least trimmed absolute deviations

(LTA) estimator (Bassett 1991 and Hössjer 1991) all have exact algorithms, and branch

and bound algorithms (eg Agulló 1997) can be used to compute these estimators. For a

trial regression fit b, compute the n residuals r1(b), . . . , rn(b) where

rk = rk(b) = yk − xT
k b, (1.2)

and let |r|(1)(b) < |r|(2)(b) < . . . < |r|(n)(b) be the absolute residuals ranked from

smallest to largest. Then the LTA, LTS and LMS criteria are respectively the L1, L2

and Chebyshev (L∞) norms of the c smallest |r|(i). We will use the symbol Q to refer

to any of these three criteria. By implication, the c best-fitting cases are accommodated

by the fit, while the remaining n − c are trimmed. The coverage c (at least n/2) is

conventionally defined to be the value that gives maximum breakdown, but larger values

may be appropriate if the data set is expected to be relatively outlier-free.
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The asymptotic theory for LTS and LTA has not yet been extended beyond the

location model. See Davies (1993), Garćıa-Escudero, Gordaliza, and Matrán (1999),

Hössjer (1994), Stromberg, Hawkins, and Hössjer (2000), and Rousseeuw (1984) for fur-

ther discussion and conjectures. Davies (1990) and Kim and Pollard (1990) derived the

asymptotic theory for LMS while Yohai and Maronna (1976) and Butler (1982) derived

asymptotic theory for LTS in the location model. Tableman (1994a,b) derived asymptotic

theory for LTA in the location model.

While we focus on the multiple regression problem, many of our observations have

parallels in the multivariate problem of estimating a location vector and dispersion ma-

trix of multivariate data, where the residuals rk are replaced by Mahalanobis distances

of the cases from a trial location vector using a trial dispersion matrix. To stress the

broader applicability of our conclusions, we will use the term “case distances” to refer to

the residuals in the regression setting, and the Mahalanobis distances in the multivari-

ate setting. The minimum covariance determinant estimator (MCD) is the pair (LTS,

QLTS/n) in the location model. Rousseeuw (1984, p. 877) defines the MCD estimator

to be the classical mean and dispersion estimator (x̄,S) applied to the set of c cases for

which the determinant of S is minimal.

Computing any of these criteria exactly is impractical in all but small data sets, since

it involves the combinatorial problem of determining which c cases to cover, followed by

the relatively easy problem of performing a L1, L2 or Chebyshev fit on these cases. Since

exact computation is generally impractical, approximate algorithms are used.

The oldest of these is the “basic resampling”, or “elemental set” method (Siegel
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1982, Rousseeuw 1984, Hawkins, Bradu and Kass 1984). In this, trial vectors are found

by randomly sampling elemental sets (subsets of size p cases for regression, p + 1 for

multivariate location/dispersion). Performing an exact fit of the regression to this subset

gives a trial fit b. The method consists of sampling many such subsets and using as the

approximation that which gives the smallest value of the HB criterion. Evaluating all

elemental sets will give the exact LTA fit. It is also a route to the “maximum depth” fit

(Rousseeuw and Hubert 1999). This approach is attractive when n and p are sufficiently

small that evaluating all C(n, p) elemental fits is tolerable.

The newer HBE algorithms for LTA, LTS and LMS still use random elemental sets to

generate starting trial fits, but then refine them using such devices as “concentration,”

“line search” (Ruppert 1992), and “interchange” (Hawkins and Olive 1999). All of these

methods may be characterized as having a “start” – the initial trial fit, and an “attractor”

– the final fit to which a start converges. In the “concentration” approach, the cases with

the c smallest distances from a trial fit are found. An improved fit is then given by fitting

the model to these c cases. The “interchange” approach seeks to swap one covered and

one uncovered case to get a smaller criterion value. In both methods, the improvement

step is iterated until no further changes reducing the criterion can be found. The resulting

fit is an “attractor”, which may be reached from more than one starting trial fit.

A simplified version of the LTS(c) algorithms of Ruppert (1992), Hawkins and Olive

(1999) and Rousseeuw and Van Driessen (1999b) uses K elemental starts. The LTS(c)

criterion is

QLTS(b) =
c∑

i=1

|r|2(i)(b) (1.3)
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where |r|2(i)(b) is the ith smallest squared residual. For each elemental start find the

exact-fit b and get the c smallest squared residuals. Find the OLS fit to these c cases and

find the resulting c smallest squared residuals, and iterate until convergence. Doing this

for K elemental starts leads to K (not necessarily distinct) attractors – the OLS b vectors

at each convergence. The algorithm estimator β̂ALTS is the attractor that minimizes Q.

Substituting the L1 and Chebyshev criteria for OLS in the concentration step leads to

equivalent LTA and LTQ algorithms.

As an illustration of an LTA concentration algorithm, consider the animal data from

Rousseeuw and Leroy (1987, p. 57) available from

http://www.uni-koeln.de/themen/Statistik/data/rousseeuw/

The response y is the log brain weight and the predictor x is the log body weight for

25 mammals and 3 dinosaurs (outliers with the highest body weight). Suppose that

the first elemental start uses cases 20 and 14, corresponding to mouse and man. Then

bs,1 = (2.952, 1.025)T and the sum of the c = 14 smallest residuals

14∑

i=1

|r|(i)(bs,1) = 12.101.

Figure 1a shows the scatterplot of x and y. The start is also shown and the 14 cases

corresponding to the smallest absolute residuals are highlighted. The L1 fit to these c

highlighted cases is b2,1 = (2.076, 0.979)T and

14∑

i=1

|r|(i)(b2,1) = 6.990.

The iteration consists of finding the cases corresponding to the c smallest residuals, ob-

taining the corresponding L1 fit and repeating. The attractor ba,1 = b8,1 = (1.741, 0.821)T
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and the LTA(c) criterion evaluated at the attractor is

14∑

i=1

|r|(i)(ba,1) = 2.172.

Figure 1b shows the attractor and that the c highlighted cases corresponding to the

smallest absolute residuals are much more concentrated than those in Figure 1a. Figure

2a shows 5 randomly selected starts while Figure 2b shows the corresponding attractors.

Notice that the elemental starts have more variablity than the attractors, but if the start

passes through an outlier, so does the attractor.

Algorithms for the MCD are similar. The ith start (x̄si,Ssi) consists of the sample

mean and covariance computed from p + 1 cases selected without replacement. Then

(x̄2i,S2i) is the sample mean and covariance computed from the cases corresponding

to the c smallest Mahalanobis distances MD(1)(x̄si,Ssi), ..., MD(c)(x̄si,Ssi). A new set

of Mahalanobis distances is generated and the iteration continues. Rousseeuw and Van

Driessen (1999, p. 214) prove that the MCD criterion det(Sj+1,i) ≤ det(Sj,i) with equal-

ity iff (x̄j+1,i,Sj+1,i) = (x̄ji,Sji). Hence the start tends to rapidly converge to the

attractor (x̄ai,Sai).

A different generalization of the elemental set method uses for its starts subsets of

size greater than p (Atkinson and Weisberg 1991). Another possible refinement is a

preliminary partitioning of the cases (Woodruff and Rocke, 1994, Rocke, 1998, Rousseeuw

and Van Driessen, 1999ab).

For regression we will fit either ordinary least squares (OLS) or least absolute devia-

tions (L1) to the subset. These two choices allow an enormous range of regression criteria

to be approximated. This class includes elemental algorithms and the SURREAL algo-
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rithms (Ruppert 1992) for the LTS, LMS, and S estimators. The class also includes

the FLTS algorithm (Rousseeuw and Van Driessen 1999b), and algorithms for the least

adaptively trimmed sum of squares (LATS) and the least adaptively trimmed sum of

absolute deviations (LATA) estimators (Olive and Hawkins 1999).

Section 2 shows that resampling algorithms that use a fixed number K of starts of

bounded size (eg elemental) produce inconsistent estimators. Section 3 gives sugges-

tions for the practitioner, and section 4 provides examples and simulations. Section 5

introduces a new algorithm – the “X-cluster” algorithm.

2 Inconsistency of Resampling Algorithms

The following notation is useful. For regression, let bsi,n be the ith start, and let bai,n be

the ith attractor. Let bA,n be the algorithm estimator, that is, the attractor that mini-

mized the criterion Q. Let β̂Q,n denote the estimator that the algorithm is approximating,

eg β̂LTS,n. Let bos,n be the “best” start in that

bos,n = argmini=1,...,K‖bsi,n − β‖ (2.1)

where K is the number of random starts and the Euclidean norm is used. Similarly, let

boa,n be the best attractor. Since the algorithm estimator is an attractor, ‖bA,n − β‖ ≥

‖boa,n − β‖, and an upper bound on the rate of boa,n is an upper bound on the rate of

bA,n.

Remark 1: Failure of zero-one weighting. The consistency rate of the best attractor is

equal to the rate for the best start for the LTS concentration algorithm if all of the start
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sizes are bounded (eg if all starts are elemental). For example, suppose the concentration

algorithm for LTS uses elemental starts, and OLS is used in each concentration step. If

the best start satisfies ‖bos,n−β‖ = OP (n−δ) then the best attractor satisfies ‖boa,n−β‖ =

OP (n−δ). In particular, if the number of starts K is a fixed constant (free of the sample

size n) and all K of the start sizes are bounded by a fixed constant (eg p), then the

algorithm estimator bA,n is inconsistent.

This result holds because zero-one weighting fails to improve the consistency rate.

That is, suppose an initial fit β̂n satisfies ‖β̂n −β‖ = OP (n−δ) where 0 < δ ≤ 0.5. If β̂cn

denotes the OLS fit to the c cases with the smallest absolute residuals, then

‖β̂cn − β‖ = OP (n−δ). (2.2)

See Ruppert and Carroll (1980, p. 834 for δ = 0.5), Dollinger and Staudte (1991, p. 714),

He and Portnoy (1992) and Welsh and Ronchetti (1993). These results hold for a wide

variety of zero-one weighting techniques. Concentration uses the cases with the smallest

c absolute residuals, and the popular “reweighting for efficiency” technique applies OLS

to cases that have absolute residuals smaller than some constant. He and Portnoy (1992,

p. 2161) note that such an attempt to get an OP (n−1/2) estimator from the OP (n−1/3)

initial LMS fit does not in fact improve LMS’s convergence rate.

Similar results for the MCD concentration algorithm hold since Lopuhaä (1999) shows

that applying the classical estimator (x̄,S) to the cases with the smallest Mahalanobis

distances also results in an estimator with the same rate as the affine equivariant start.

Remark 2: While the formal proofs in the literature cover OLS fitting, it is a reason-

able conjecture that the result also holds if the L1 fit is used in the concentration steps.
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Heuristically, zero-one weighting from the initial estimator results in a data set with the

same “tilt” as the initial estimator, and applying a
√
n consistent estimator to the cases

with the c smallest case distances can not get rid of this tilt.

Remarks 1 and 2 suggest that the consistency rate of the algorithm estimator is

bounded above by the rate of the best elemental start. The following lemma shows

that the number of random starts is the determinant of the actual performance of the

estimator, as opposed to the theoretical convergence rate of β̂Q,n. Suppose K = O(n)

starts are used. Then the rate of the algorithm estimator is no better than n−1/p which

drops dramatically as the dimensionality increases. The lemma is an extension of Hawkins

(1993, p. 582) which states that if the algorithm uses O(n) elemental sets, then at least

one elemental set b is likely to have its jth component bj close to the jth component βj

of β.

Lemma 1. (See appendix for proof.) Let the number of randomly selected elemental

starts K = K(n, p) → ∞ as n → ∞. Assume that the error distribution possesses a

density f that is positive and continuous in a neighborhood of zero and that K ≤ C(n, p).

Also assume that the errors are independent of the predictors. Then ‖bos,n − β‖ ≤

OP (K−1/p).

Conjecture. Suppose that the errors possess a density that is positive and continuous

on the real line, that ‖β̂Q,n − β‖ = OP (n−1/2) and that K ≤ C(n, p) bounded starts are

used in the algorithm. Then the algorithm estimator satisfies ‖bA,n −β‖ = OP (K−1/2p).

Remark 3: This rate can be achieved if the algorithm minimizing Q over all elemental

subsets is
√
n consistent (eg maximal depth, see Bai and He 1999). Randomly select g(n)
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cases and let K = C(g(n), p). Then apply the all elemental subset algorithm to the g(n)

cases.

Note that one-step estimators can improve the rate of the initial estimator. See for

example Chang, McKean, Naranjo, and Sheather (1999) and Simpson, Ruppert, and

Carroll (1992). The theory for the estimators in these two papers requires an initial high

breakdown estimator with at least an n−1/4 rate of convergence. Implementations though

often use an initial inconsistent, low breakdown algorithm estimator. The performance

of a one-step estimator when applied to an inconsistent start appears to be an open

question.

Remark 4: The wide spread of subsample slopes. Some additional insights into the

initial estimator come from a closer analysis of an idealized case – that of normally

distributed predictors. Assume that the errors are iid N(0, 1) and that the x′
is are iid

Np(0, I). Use h observations (Xh,Y h) to obtain the OLS fit

b = (XT
h Xh)

−1XT
h Y h ∼ Np(β, (X

T
h Xh)

−1).

Then (b−β)T (b−β) (see appendix for a proof provided by Morris L. Eaton) is distributed

as (p Fp,h−p+1)/(h− p + 1).

This shows the inadequacy of elemental sets in high dimensions. For a trial fit to

provide a useful preliminary classification of cases into inliers and outliers requires that

it give a reasonably precise slope. However if p is large, this is most unlikely; the density

of (b − β)T (b − β) varies near zero like [(b− β)T (b − β)](
p
2
−1). For moderate to large p,

this implies that good trial slopes will be extremely uncommon and so enormous numbers

of random elemental sets will have to be generated to have some chance of finding one
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that gives a usefully precise slope estimate. The only way to mitigate this effect of basic

resampling is to use larger values of h, but this negates the main virtue elemental sets

have, which is that when outliers are present, the smaller h the greater the chance that

the random subset will be clean.

Our results show that fixed K elemental methods are inconsistent. Several simulation

studies have shown that the versions of the resampling algorithm that use a fixed number

of elemental starts provide fits with behavior that conforms with the asymptotic behavior

of the
√
n consistent target estimator. These paradoxical studies can be explained by the

following lemma (a recasting of a coupon collection problem).

Lemma 2. (See appendix for proof.) Suppose that K random starts of size h are

selected and let Q(1) ≤ Q(2) ≤ ... ≤ Q(M) correspond to the order statistics of the

criterion values of the M = C(n, h) possible starts of size h. Let R be the rank of the

smallest criterion value from the K starts. Then with probability ≈ 0.5,

R ≤ max(1,M [1 − (0.5)1/K ]).

Thus simulation studies that use very small generated data sets, so the probability of

finding a good approximation is high, are quite misleading about the performance of the

algorithm on more realistically-sized data sets. For example, if n = 100, h = p = 3, and

K = 3000, then M = 161700 and the median rank is about 37. Hence the probability

is about 0.5 that only 36 elemental subsets will give a smaller value of Q than the fit

chosen by the algorithm, and so using just 3000 starts may well suffice. This is not the

case with larger values of p.
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3 Practical implications

Remark 5: Breakdown. The breakdown value of concentration algorithms that use K

elemental starts is bounded above by K/n. For example if 500 starts are used and n =

50000, then the breakdown value is at most 1%. To cause a regression algorithm to

break down, simply contaminate one observation in each starting elemental set so as to

displace the fitted coefficient vector by a large amount. Since K elemental starts are

used, at most K points need to be contaminated. Similarly, for MCD algorithms, if the

start is computed from a contaminated elemental set, then the attractor can be made

arbitrarily bad.

This is a worst-case model, but sobering results on the outlier resistance of such

algorithms for a fixed data set with d gross outliers can also be derived. Assume that the

LTS algorithm is applied to a fixed data set of size n where n − d of the cases follow a

well behaved model and d < n/2 of the cases are gross outliers. If d > n− c, then every

criterion evaluation will use outliers, and every attractor will produce a bad fit even if

some of the starts are good. If d < n − c and if the outliers are far enough from the

remaining cases, then all “clean” starts (subsets of size h that contain no outliers) will

result in clean attractors that could in principle detect the outliers (though, as seen from

remark 4, this may require the outliers to be hugely discrepant). If the h cases that form

the start are chosen without replacement from the n cases, then the probability that the

start is clean is hypergeometric. Let γo be the highest percentage of massive outliers that

a resampling algorithm can detect reliably. Then

γo ≈ min(
n− c

n
, 1 − [1 − (0.2)1/K ]1/h)100% (3.1)
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if n is large. (Rousseeuw and Leroy 1987, p. 198 show that if the contamination propor-

tion γ is fixed, then the probability of obtaining at least one clean subset of size h with

high probability (say 0.8) is given by 0.8 = 1− [1− (1− γ)h]K. Fix the number of starts

K and solve this equation for γ.)

For example, with K = 500 starts, n > 100, and p ≤ 20 the resampling algorithm

should be able to detect up to 24% outliers provided every clean start is able to at least

partially separate inliers from outliers. However if p = 50, this proportion drops to 11%.

Remark 6: Hybrid Algorithms. More sophisticated algorithms use both concentration

and partitioning. Partitioning evaluates the start on a subset of the data, and poor starts

are discarded. This technique speeds up the algorithm, but the consistency and outlier

resistance still depends on the number of starts. For example, equation (3.1) agrees very

well with the Rousseeuw and Van Driessen (1999a) simulation performed on a hybrid

MCD algorithm.

Occasionally, motivated by the distribution of (b − β)T (b− β) sketched above, start

sizes h > p are suggested. The tradeoff is that elemental sets have the highest chance

of being clean, but clean starts of size h > p are more likely to produce fits close to β.

This however is a very poor trade if there is appreciable contamination. Writing m[r] for

m(m − 1)...(n − r + 1), the ratio of the probability of a clean subset of size h to that

for size p is (n− d− p)[h−p]/(n− p)[h−p], which rapidly turns finding clean subsets into a

search for needles in haystacks.

The above discussion and the results in section 2 suggest several (not necessarily

original) guidelines for the practitioner.
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1) Do not overlook classical (OLS and L1) procedures and diagnostics. They often suffice

where the errors ei and their propensity to be outlying are independent of the predictors

xi. To see this, suppose the data set satisfies the “no excessive maldistribution of leverage”

condition that the off-diagonal elements of the “hat” matrix H = X(XT X)−1XT are

oP (n−1/2). The fitted residual of case i is ri = (1 − hii)ei −
∑

j 6=i hijej. If the ei have

a common distribution with finite variance σ2, then the term
∑

j 6=i hijej has variance

∑
j 6=i h

2
ijσ

2 and so is oP (1) – even if the error distribution is outlier-prone. Thus the cases

with the largest true errors will tend to have large OLS residuals in large samples and

several passes of sequential trimming using OLS should find all large outliers. This is

even more true of L1 fits, which are less susceptible to masking and swamping than OLS.

The assumption of a statistical distribution for the true residuals excludes the “games

against nature” framework underlying breakdown calculation but covers situations where

the residuals are random, even with an outlier prone distribution. This latter framework

probably covers the majority of real-world regression outlier data sets.

2) For 3 or fewer variables, use graphical methods such as scatterplots and 3D plots

to detect outliers and other model violations.

3) Use several estimators – both classical and robust. Then make a scatterplot matrix

of the residuals or Mahalanobis distances from the different fits. The subplots will be

strongly linear if consistent estimators are used and can be used to detect a wide variety

of violations of model assumptions.

4) Use
√
n consistent starts (eg β̂OLS and β̂L1

) for the HBE’s, as well as randomly

selected subset starts.

5) Ensure that sufficient random starts are used, recognizing that the 1980’s recom-
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mendations were far too low.

6) Use subset refinement – concentration and/or interchange. It does not improve the

theoretical convergence rates, but gives dramatic practical improvement in many data

sets.

7) For regression, compute the median absolute deviation of the response variable

mad(yi) and the median absolute residual med(|r|i(β̂)) from the estimator β̂. If mad(yi)

is smaller, then the constant med(yi) fits the data better than β̂ according to the median

squared residual criterion. In fact, Rousseeuw and Leroy (1987, p. 44) suggests

1 − (
med(|r|i)
mad(yi)

)2

as a robust R2.

4 Two Examples

To illustrate these points with existing standard implementations, we examined two

moderately-sized data sets with six Splus estimators: OLS, L1, ALMS = the default

version of lmsreg, ALTS = the default version of ltsreg, KLMS = lmsreg with the op-

tion “all” which makes K = min(C(n, p), 30000), and KLTS = ltsreg with K = 100000.

Gladstone (1905-6) records the brain weight and various head measurements for 276

individuals. This data set, along with the Buxton data set introduced below, can be

downloaded from the Web site

http:\\www.stat.umn.edu\hawkins

We’ll predict brain weight using six head measurements (head height, length, breadth,
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size, cephalic index and circumference) as predictors, deleting cases 188 and 239 because

of missing values. There are five infants (cases 238, 263-266) of age less than 7 months

that are x-outliers. Nine toddlers were between 7 months and 3.5 years of age, four of

whom appear to be x-outliers (cases 241, 243, 267, and 269). (The points are not labeled

on the plot, but the five infants and these four toddlers are easy to recognize when

discrepant.) There are 6× 1011 elemental sets, so exhaustive enumeration is impossible.

The “RR plot”, a scatterplot matrix of the residuals from several regression fits, is

a powerful way of comparing different fits of the same data. We will use this data set,

primarily to illustrate the use of the plot as a way of comparing fits – specifically of

the non-robust and high breakdown fits. In line with our recommendation of including

traditional methods in the mix, we advise always including OLS and L1 in the RR plot.

Tukey (1991) notes that the plot will be linear with slope one if the model assumptions

hold. In fact, if ri,j is the ith residual from the jth fit, then by Cauchy-Schwartz

|ri,1 − ri,2| ≤ ‖xT
i ‖ (‖β̂1 − β‖ + ‖β̂2 − β‖).

Figure 3 shows the RR plot. We dispose of the OLS and L1 fits by noting that the

very close agreement in their residuals implies an operational equivalence in the two fits.

ALMS fits the nine x-outliers quite differently than OLS, L1, and ALTS. All fits are

highly correlated for the remaining 265 points, showing that all fits agree on these cases,

thus focusing attention on the infants and toddlers.

All of the Splus fits except ALMS accommodated the infants. The fundamental reason

that ALMS is the “outlier” among the fits is that the infants and toddlers, while well

separated from the rest of data, turn out to fit the overall linear model quite well. A
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strength of the LMS criterion – that it does not pay much attention to the leverage of

cases – is perhaps a weakness here since it leads to the impression that these cases are

bad, whereas they are no more than atypical.

Turning to optimization issues, ALMS had an objective function of 52.7 while KLMS

had a much higher objective function of 114.7 even though KLMS used ten times as many

subsamples. The large difference resulting from changing a run option illustrates that

even on a data set that is not very large by current standards, finding “the” LMS solution

is not at all reliable. In view of the questions about the adequacy of modest numbers

of elemental starts, we ran extensive calculations to have a better idea of what the true

LMS solution might be. We began with a total of 15 million starts of the elemental set

algorithm, using the Hawkins-Simonoff (1993) code. This oscillated between solutions

accommodating the infants and solutions excluding them. From run 62,000 to 966,000,

the best solution was one with the infants outlying, but from there on this was dominated

by a solution with criterion 43.763 accommodating them.

Finally we ran 16,000 random starts using Hawkins’ feasible solution algorithm. This

yielded an estimate with criterion 41.793 which accommodated the infants, but gave

rather large residuals to some toddlers. Another feasible solution with criterion 42.535

made the infants out as severe outliers. Both feasible solutions beat the best elemental

set approximation (criterion 43.763), though not by much. This confirms the ALMS

results while showing that the LMS criterion gives quite unstable residuals.

As a second example, Buxton (1920, p. 232-5) gives 20 measurements of 88 men. We

chose to predict stature using an intercept, head length, nasal height, bigonal breadth,
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and cephalic index. Observation 9 was deleted since it had missing values. Five individu-

als, numbers 62-66, were reported to be about 0.75 inches tall with head lengths well over

five feet! This appears to be a clerical error; these individuals’ stature was recorded as

head length and the integer 18 or 19 given for stature, making the cases massive outliers

with enormous leverage. These absurdly bad observations turned out to confound the

standard HBE’s. The residual plots in Figure 4 show that five of the six Splus estimators

accommodated them. This is a warning that even using the objective of high breakdown

will not necessarily protect one from extremely aberrant data. Nor should we take much

comfort in the fact that KLMS clearly identified them; the criterion of this fit was worse

than that of the ALMS fit, and so should be regarded as inferior.

5 The “X-cluster” algorithm

The results so far show that large data sets in high dimension create a problem, even if

they include only modest levels of contamination. Unlike the case with most statistical

methods, large sample sizes (assuming a constant fraction of contamination) make things

worse and not better since they increase computational loads without improving the

performance of the individual starts. See also Woodruff and Rocke (1994) for a parallel

assessment of the multivariate location/scatter problem.

The L1 criterion is an OP (n−1/2) regression estimator that is resistant to regression

outliers provided they are located on low-leverage cases; it has been found empirically

that L1 can accommodate as much as 25% contamination with regression outliers on

low-leverage cases. L1 fails though in the face of regression outliers on high leverage
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cases. Thus L1 could be used to provide at the very least good starting values, provided

a way could be found to insulate it from regression outliers on high leverage cases. This

idea underlies Rousseeuw and van Zomeren’s (1992) idea of using a fit confined to the

cases whose predictor vectors are covered by the minimum volume ellipsoid.

We now describe an algorithm – the “X-cluster” algorithm – that capitalizes on this

property of the L1 norm. It handles high levels of contamination in high dimensions,

even if the regression outliers are on high-leverage cases. Unlike most alternative HBE’s,

it generates root-n-consistent starting values, and yields a root-n-consistent estimator.

This means that it is increasingly successful with increasing sample size.

The X-cluster algorithm

• Apply clustering by reallocation using the heteroscedastic multivariate normal

clustering criterion to the X matrix (see for example Hawkins 1982, Rocke and

Woodruff 2000). Use a starting allocation that has some random element in it.

Break the cases down into a fixed number H of clusters, restricting the reallocation

so that these clusters are of approximately equal size. (In our implementation we

do this by refusing to remove cases from any cluster whose size is less than half the

average size.)

• Carry out an L1 fit to the cases within each cluster.

• Using this L1 fit as a starting point, apply the iterated concentration LTS algorithm

to all n cases.

The heteroscedastic multivariate normal clustering method repeatedly reallocates the

cases to H clusters in such as way as to minimize the doubled negative log likelihood
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H∑

k=1

nklog|Wk/nk|

where Wk is the matrix of sum of squares and cross products of deviations from the mean

vector of the nk cases allocated to cluster k.

It is an empiric truism that reallocation cluster analysis is programmed to find ellip-

soids in data, and will do so whether they are there or not. This property is precisely

what is needed for our purposes. We can gain a qualitative understanding of its opera-

tion by looking at the change in criterion value if we reallocate a case from cluster k to

cluster j. Let D2
k and D2

j be the squared Mahalanobis distances of the case from the two

clusters. Assuming both nk and nj are large and using this to make some simplifying ap-

proximations, the change in criterion is approximately the heteroscedastic discriminant

analysis criterion

[log(|Wk/nk|) −D2
k] − [log(|Wj/nj|) −D2

j ]

and the swap will improve the criterion if this change is negative. If the two clusters have

the same generalized variance |W/n|, then the case is allocated to whichever cluster is

closer in Mahalanobis distance, as would be the case with homoscedastic cluster analysis.

If two clusters are equidistant though, the allocation will be made to the cluster whose

generalized variance is larger. The boundaries between clusters are ellipsoids along which

the cases from each cluster have the same Mahalanobis distances from their cluster. Since

the Mahalanobis distances of the cases from their cluster are proportional to the cases’

leverages when used in the subsequent regression, this equality of Mahalanobis distance
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along the inter-cluster boundaries will translate into cases with near-equal leverage along

with inter-cluster boundaries, and smaller leverages inside the cluster. Only isolated

X-outlying points can have large leverage relative to their clusters.

The theoretical properties of the heteroscedastic clustering procedure are not well

established. It is well known that if the method is applied to data from a mixture of

normal distributions its results do not provide consistent estimators of the parameters

of the component distributions (McLachlan and Basford 1988). It is also notorious for

having multiple local optima (Symons 1981). Neither of these properties is damaging for

our purposes. Rather the second is a positive benefit, since it means that multiple starts

of the algorithm usually produce different clusterings of the cases, and therefore different

potentially interesting starting values for the search for regression outliers. Another

deficiency for clustering purposes is the fact that the likelihood is degenerate and can be

made infinite by setting any of the cluster sizes to p. This is avoided in our use by the

restriction that the clusters are kept of similar size.

We are not able to give a thorough theoretical analysis of the X-clustering as applied

in the regression setting, where there are no distributional requirements on the predictors,

but can give a qualitative narrative of how and why, and by implication when the method

can be expected to succeed.

Rocke and Woodruff (2000) report successful use of the heteroscedastic cluster analy-

sis for high breakdown estimation of the mean vector and covariance matrix of highly

contaminated multivariate normal data. Since high leverage cases are cases outlying in

the ellipsoidal metric of the predictors, their success provides some further empiric reason

to anticipate that clustering may be successful in breaking the sample up into groups of
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cases of comparable leverage.

Turning to the regression part of the problem, if a cluster includes cases that are

regression outliers, then they cannot be concentrated on high leverage cases since, to

the extent that the X-clustering was able to form roughly ellipsoidal clusters, there are

no high leverage cases. The L1 regression then will provide a slope estimator that is

resistant and of relatively high statistical efficiency. Using this good starting value in the

iterated concentration algorithm applied to the full data set can therefore be expected

to give a good approximation to the true optimum of the criterion, despite the presence

of the outliers.

Since each cluster is of size approximately n/H, the regressions fitted in the individual

clusters have OP (n−1/2) convergence. They thus provide the square-root convergent

starts that we earlier showed to be a key in achieving good performance of refinement

algorithms. If many outliers are concentrated in one cluster, then there will be fewer in

other clusters. Thus while some of the clusters may produce poor estimates because of

the impact of more outliers than L1 can handle, the collection of L1 regressions from the

different clusters can be expected to include some at least that are good estimates of the

underlying β.

5.1 Simulation of some larger data sets.

To investigate the performance of different methods in a high-dimension seriously conta-

minated setting, we simulated a number of data sets. All had n = 1000 and p = 51 (50

non-trivial predictors and an intercept), with 400 mean-shift outliers. The slope vector
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β was set to 0 and σ to 1. The other features of the data set were varied so as to

particularly challenge the different estimators being studied.

a. Design form.

Six different choices of the design matrix X were used:-

Sphere (abbreviated ‘S’). In this configuration, the x vectors were randomly sampled

from a N(0, I) distribution. This configuration should be an easy one for all the methods.

Vslash (abbreviated ‘V’). Here, each x vector was a N(0, I) divided by a uniform

U(0, 1) variate. This distribution tends to produce a sprinkling of isolated very remote

x vectors. Provided the outliers are not concentrated on these remote vectors though,

simple full-sample methods like OLS and L1 should handle this configuration quite effec-

tively.

The ‘true’ X clusters are concentric spheroidal shells so despite the marked differences

in leverage in the full-sample metric, the cases within each cluster except the innermost

will have quite similar leverages. X-clustering should therefore work particularly well.

Binary (abbreviated ‘B’). This configuration has each component of x either 1 or -1,

each with probability 0.5. It is impossible for non-coincident cases to be very close in

this configuration, and this should be favorable for elemental set methods since it reduces

the frequency of near-singular elemental design matrices, though it may have numbers of

singular elemental designs.

The last three configurations also contain 40% x-outlying cases. They are:

Disk and axle (abbreviated ‘D&A’). This configuration is based on the example of

Huber (1981) demonstrating the breakdown of M estimates of multivariate location and

scatter. The non-trivial portion of the predictor vector x comprises a first component
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x1 and a (p − 1) component vector x(2). The sample consists of 600 cases whose x(2) is

N(0, I) and whose x1 is N(0, ε2). For the remaining 400 cases, x(2) is N(0, ε2I) while

x1 has a scaled randomly-signed χp−1 distribution. The variance ε2 is chosen just large

enough to avoid numeric singularity problems. The overall vector x then has a mean

vector of zero and a correlation matrix I. Even though the 400 cases in the second

group have infinite leverage in relation to the 600-case majority, the conventional “hat

matrix” diagnostics do not show them up as remarkable. This makes the configuration

particularly intractable for full-sample methods, and subsampling methods that do not

happen to stumble upon the 600-case majority group.

Dash and dot (abbreviated ‘D&D’). The x(2) vector is N(0, I), while x1 is uniform

U(-3,3) for 600 of the cases, and U(19,20) for the remaining 400 cases. This is a milder

version of the situation in the Buxton data set.

Sphere and vslash (abbreviated ‘S&V’). This final configuration has 600 cases distrib-

uted under the “sphere” model, and 400 under the “vslash” model.

b. Outlier placement.

Random or badly-placed outliers (abbreviated ‘R’ and ‘B’ respectively). For the “ran-

dom” case, the 400 regression outliers were placed on randomly-selected x. For the

“badly-placed” case, the regression outliers were put on the x-outlying cases. The badly-

placed option is possible only for the last three X configurations which have identified

x-outlying cases.

c. Outlier size.

Plus, Plus/minus or degenerate (abbreviated ‘+’, ‘+/-’ and ‘D’ respectively). In all

cases, a null N(0,1) y vector was generated, then the mean-shift outliers made. In the
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‘+’ case this was done by adding 6 to the y of each outlying case. In the ‘+/-’ case,

either +6 or -6 was added to the y, the sign being determined at random. The ‘D’ case,

which is relevant only for the three configurations with identified x-outlying cases, has

a near-exact-fit for the 600 x-inlying cases, and an incompatible near-exact-fit for the

400 x-outlying cases. Any algorithm that can recognize the 600 inlying cases will then

identify the remaining cases as effectively infinitely outlying, but algorithms that do not

find the inlying cases tend to fail completely.

These design factors give rise to a total of 21 sample configurations. One sample was

generated according to each configuration and analyzed. The algorithms investigated

were:-

1. OLS.

2. L1.

3. Random elemental sets.

4. Random elemental sets followed by concentration.

5. X-clustering.

We also made an idealized calculation of performing an OLS fit to the 600 clean cases

and seeing how many outliers this fit based on perfect advance knowledge could yield.

In each of the methods, the final phase of outlier identification was made by finding

the residuals from the fit and getting the root mean square of the c smallest residuals.

This was then multiplied by 2.65, a factor that makes it an unbiased estimate of σ at

normal data. Cases whose residuals were more than 3σ̂ were considered to be flagged as

outliers.

To evaluate each method, we computed the average number of outliers found per
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random start, and the number found in the best start.

The runs used 10,000 simple elemental sets, 100 elemental starts with concentration,

and 100 X-clusterings with separate random starting allocations.

5.2 Results

Table 1 shows the percentage of outliers identified by the full-sample OLS fit, the full-

sample L1 fit, the OLS fit to the clean cases, and the results from three iterative al-

gorithms. For each of the three iterative algorithms, we list the average percentage of

outliers found per random start, and the number found with the best solution obtained

in the run. The 4th column, labeled “clean”, is the percentage flagged by the OLS fit

to the clean cases. Taking this column first, we see that finding six-standard-deviation

outliers in a 50-dimensional regression is not trivial. This has a simple explanation. If

there are 400 severe regression outliers, then the median of the absolute residuals is at

the 83rd percentile of a half-normal distribution, and not the 50th. Thus when we rescale

the trimmed standard deviation by the correction factor of 2.65, rather than unbiased

for σ, σ̂ has expectation 2.65σ/1.43 = 1.85σ, so the 3σ̂ cutoff for outliers is actually at

5.6σ, which indeed will flag only about half the 6σ outliers.

Based on this reasoning, we might describe an outlier search as ‘successful’ if it man-

ages to locate at least half the outliers in the non-degenerate setups.

OLS failed totally in the situation where all outliers are +6 and also in the three

degenerate data sets. Only where the outliers were of mixed sign did OLS have any

success in detecting outliers, and this success was to say the least modest. L1 fared
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substantially better, though still not well. It too generally failed with the +6 (except,

rather surprisingly, the badly-placed disk and axle) and degenerate data sets, but was

more successful with the mixed-sign outliers.

Before looking at the detailed results of the three iterative algorithms, we should note

that one line is initially unintuitive. In the dash & dot configuration when all outliers are

at +6 displacement and placed on the x-outliers, the best fit is not the fit to the 600 clean

cases – rather it is a fit accommodating the outliers. The ‘clean’ fit with its identification

of 62% of the outliers actually yields a higher HBE criterion value than do the three HBE

estimators. The failure of the HBE’s to find regression outliers in this configuration is

because there are arguably no regression outliers. This is the same phenomenon seen in

more dramatic form with the Buxton data.

The raw elemental set approach did not fare at all well, as the results of the paper

would have led one to expect. In none of the 21 setups did the best of the 10,000 random

elemental sets reach the 50% threshold suggested for a ‘successful’ analysis. Adding

the concentration step to the elemental start improved results dramatically. In most of

the non-degenerate setups, the best of 100 elemental starts with concentration located a

majority of the outliers.

Elemental sets with concentration failed on two of the three degenerate setups. This

again is predicted by the results of the paper. With the disk & axle, and the dash & dot

X configurations, so long as an elemental set contains one or more of the contaminated

cases, the elemental set will not find other outliers, and nor will concentration improve

matters.

Turning to the final pair of columns, the X-clustering method is, overall, the most
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successful of all. In 14 out of the 21 configurations, even the average X-cluster solution

detected more than half the outliers and the best of 100 random starts routinely flagged a

higher percentage of outliers than even the idealized ‘clean’ result. (This result suggests

that σ̂ from the best X-cluster fit was typically less than σ̂ from the clean fit.) The

method was spectacularly successful with the three degenerate configurations, where it

located the outliers consistently even in individual random starts.

The only configuration where X-clustering was less effective than elemental sets with

concentration was the disk & axle X configuration with positive outliers placed randomly.

Since even in this case its 37% outlier discovery rate was close to the 43% of the “clean’

solution though, it is hard to fault it for even this modest failure.

Next, a smaller simulation of a larger and easier target was run. Here the outlier

shift was 10 σ rather than 6 σ. The “clean” solution identified them with close to 100%

accuracy, and columns 2 and 3 from Table 2 show the results given by the full-sample OLS

and L1 fits. OLS still did not perform very well. It did not find any outliers when they

were of the same sign, and even in the mixed-sign case gave good results in only 4 of the

9 settings. L1 was considerably more successful, finding most or all of the outliers in all

the mixed-sign settings. In the same-sign settings, it was much better than OLS, but still

not particularly effective. This simulation tempers the overall favorable comments made

earlier about full-sample OLS and L1 fits with the warning that they are more successful

if the outliers have different displacements than if they have the same displacement.

Columns 4 through 9 from Table 2 show the results of 2,000 random elemental sets and

20 concentration starts and 20 X-cluster starts. As with the smaller shift, X-clustering

was almost uniformly more effective per start than concentration. It was ineffective
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however when mixed sign outliers were placed badly in the “dash and dot” configuration

– the reason for this is that since each cluster tends to be confined to either the ‘dot’

portion or the ‘dash’ portion of the data, none of the starting L1 fits spanned the two

groups of points. By including points from both groups, the elemental plus concentration

method succeeded in finding the outliers. See the third to last row of Table 2.

One important feature comes from comparing Tables 1 and 2. This is that raw

elemental sets fared no better in finding 10σ outliers than they did with 6σ.

A referee wondered how the X-clustering algorithm performed on the Gladstone and

Buxton data sets. Since X-clustering is a more reliable algorithm for reaching a conven-

tional HBE – LTS – it does no better and no worse than the feasible solution algorithm

for LTS applied to these data sets. The X-clustering does of course separate the 4 hugely

anomalous cases from the rest of the data, but this does not in and of itself change the

final estimate.

Computational complexity.

There is one drawback to the X-cluster method – its computational load is appreciable.

The fastest method consists of forming the within-cluster mean vector and covariance

matrices of some random starting allocation and getting the inverses of the covariance

matrices. Thereafter we compute the impact of moving each case from its current cluster

to each other cluster, and if an improvement is possible, update the two inverse covariance

matrices. The initial setup involves O(np2 +Hp3) computations to get the starting mean

vectors, covariance matrices and their inverses. Investigating any one case for a possible

move to another cluster involves O(Hp2) computations to get Mahalanobis distances,

and the two required inverse matrix updates another O(p2). For large n and p, this
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computation can be appreciable. In our simulation, for example, each X-clustering with

follow-up required some 4 minutes on a 450 MHz Pentium III, making 100 random starts

an overnight run.

Since statistical analysis is generally just a small part of the effort and cost of any data

gathering and analysis, one should not make too much of this computational load. We

consider it clearly far better to use an analysis that takes 10 hours but finds all outliers

than one that takes 10 seconds but misses most of them.

One may wonder whether the X-clustering method is foolproof. It is not. Consider a

data set in which each x vector, to within a very small random variation, equals one of

just H distinct vectors. Then when we cluster the cases, we can expect to recover these

H near-point-masses. Fitting an L1 regression within any single cluster will likely not

produce a good starting value because of the near-singularity of the design matrix and the

X-clustering method will probably fail. While it is not hard to recognize this eventuality

and take steps to evade the resulting problems, it is perhaps better to recognize this as

another piece of evidence for the proposition that no one method of analysis solves all

problems, and that a variety of approaches will provide a clearer picture than any one of

them alone.

6 Conclusion

High breakdown estimation and outlier identification can be defined in terms of op-

timization problems, but these formulations obscure the fact that the optimization is

combinatorially hard. Methods that work well on text-book-size problems may, on closer
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examination, turn out to be useless for large problems. The “basic resampling”, or “el-

emental set” method has nice theoretical properties but, as we show in this paper, is

unable to handle large, dirty data sets in a tolerable amount of computation. The newer

methods that combine elemental starts with refinement have the same theoretical con-

vergence rates as does the start. Their practical performance is frequently much better,

but this is not guaranteed. This argues for a multi-prong analysis of large data sets,

combining high breakdown methods with traditional approaches such as OLS and L1

which may fail but often (perhaps even usually) succeed.

We introduce a new approach, based on clustering the data by their x vectors on the

heteroscedastic normal reallocation approach and using L1 fits within clusters. Since this

yields clusters of cases of comparable leverage, it is able to accommodate general outlier

data sets – even those in which the regression outliers are concentrated on high leverage

cases. This resulting method appears to hold considerable promise in data sets where no

current algorithm is able to locate the outliers.

Appendix

Mathematical proofs:

Proof of Lemma 1. Let J = {c1, ..., cp} be a randomly selected elemental set. Then

YJ = XJβ + eJ where the p errors are independent, and the data (YJ ,XJ) produce an

estimator

bJ = X−1
J YJ

of β. Let 0 < δ ≤ 1. If each observation in J has an absolute error bounded by M/nδ,
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then

‖bJ − β‖ = ‖X−1
J eJ‖ ≤ ‖X−1

J ‖
M

√
p

nδ
.

Note that the norm ‖X−1
J ‖ is bounded away from 0 provided that the predictors are

bounded. Thus if the predictors are bounded in probability, then ‖bJ − β‖ is small only

if all p errors in eJ are small. Now

Pn ≡ P (|ei| <
M

nδ
) ≈ 2 M f(0)

nδ
(6.1)

for large n. Note that if W counts the number of errors satisfying (6.1) then W ∼

binomial(n, Pn), and the probability that all p errors in eJ satisfy equation (6.1) is pro-

portional to 1/nδp. If K = o(nδp) elemental sets are used, then the probability that the

best elemental fit bos,n satisfies

‖bos,n − β‖ ≤ Mε

nδ

tends to zero regardless of the value of the constant Mε > 0. Replace nδ by K1/p for the

more general result. QED

Proof of remark 4. Let V = XT
h Xh. Then V has the Wishart distribution W (Ip, p, h)

while V −1 has the inverse Wishart distribution W−1(Ip, p, h + p − 1). Without loss of

generality, assume β = 0. Let W ∼ W (Ip, p, h) and β̂|W ∼ N(0,W−1). Then the

characteristic function of β̂ is

φ(t) = E(E[exp(itT β̂)|W ]) = EW [exp(−1

2
tTW−1t)].

Let X ∼ Np(0, Ip) and S ∼ W (Ip, p, h) be independent. Let Y = S−1/2X. Then the

characteristic function of Y is

ψ(t) = E(E[exp(i(S−1/2t)T X)|S]) = ES[exp(−1

2
tTS−1t)].
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Since β̂ and Y have the same characteristic functions, they have the same distribution.

Thus ‖β̂‖2 has the same distribution as XTS−1X ∼ (p/(h− p+ 1)) Fp,h−p+1. QED

Proof of Lemma 2. If Wi is the rank of the ith start, then W1, ...,WK are iid discrete

uniform on {1, ...,M} and R = min(W1, ...,WK). Thus

P (R ≤ r) = 1 − (
M − r

M
)K,

and the median of R is MED(R) ≈M [1 − (0.5)1/K ]. QED
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Table 1: Percentage of 6σ Outliers Detected

Size, Design OLS L1 Clean Elemental Concentration X-cluster

and Placement Mean Best Mean Best Mean Best

+, S, R 0 0 60 1 3 18 67 29 68

+, V, R 0 0 63 13 18 38 58 56 66

+, B, R 0 0 64 0 2 12 71 28 71

+, D&A, R 0 0 43 34 42 22 51 13 37

+, D&A, B 0 33 61 0 0 0 0 53 63

+, D&D, R 0 0 56 1 3 17 63 51 63

+, D&D, B 0 0 62 1 2 1 2 1 3

+, S&V, R 0 0 58 9 14 37 58 47 58

+, S&V, B 0 4 65 19 26 43 60 65 72

+/-, S, R 7 42 51 1 3 62 63 62 64

+/-, V, R 28 53 57 12 16 41 53 56 63

+/-, B, R 3 36 53 0 2 59 61 59 61

+/-, D&A, R 2 37 54 33 42 32 63 59 62

+/-, D&A, B 56 48 53 0 0 53 70 50 64

+/-, D&D, R 0 47 62 1 3 68 70 68 71

+/-, D&D, B 8 49 62 1 4 54 70 49 52

+/-, S&V, R 25 52 64 7 11 56 66 62 67

+/-, S&V, B 43 56 62 21 26 54 66 67 72

D, D&A 0 0 100 0 0 0 0 100 100

D, D&D 0 0 100 1 4 0 0 99 100

D, S&V 0 0 99 21 29 36 99 99 99
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Table 2: Percentage of 10σ Outliers Detected

Size, Design OLS L1 Elemental Concentration X-cluster

and Placement Mean Best Mean Best Mean Best

+, S, R 0 0 1 2 37 100 66 100

+, V, R 0 51 11 15 98 100 99 100

+, B, R 0 0 0 2 16 100 95 100

+, D&A, R 0 8 32 39 92 100 46 100

+, D&A, B 0 47 0 0 0 0 95 100

+, D&D, R 0 0 1 2 27 100 86 100

+, D&D, B 0 0 1 3 1 2 1 1

+, S&V, R 0 40 8 12 89 99 98 99

+, S&V, B 0 40 21 27 85 90 96 98

+/-, S, R 51 100 1 2 100 100 100 100

+/-, V, R 92 97 12 15 98 99 99 100

+/-, B, R 16 100 0 2 100 100 100 100

+/-, D&A, R 48 100 33 40 75 100 97 100

+/-, D&A, B 100 100 0 0 100 100 56 100

+/-, D&D, R 12 100 1 3 100 100 100 100

+/-, D&D, B 47 75 1 5 70 100 51 52

+/-, S&V, R 94 98 8 12 98 100 99 100

+/-, S&V, B 80 81 21 27 90 93 96 98
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Figure 2: Starts and Attractors for the Animal Data
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Figure 3: RR Plot for Gladstone Data
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Figure 4: Residuals vs Predicted Values, Buxton Data
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