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Abstract

High breakdown estimation allows one to get reasonable estimates of the para-

meters from a sample of data even if that sample is contaminated by large numbers

of awkwardly placed outliers. Two particular application areas in which this is of

interest are multiple linear regression, and estimation of the location vector and

scatter matrix of multivariate data. Standard high breakdown criteria for the re-

gression problem are the least median of squares (LMS) and least trimmed squares

(LTS); those for the multivariate location/scatter problem are the minimum vol-

ume ellipsoid (MVE) and minimum covariance determinant (MCD). All of these

present daunting computational problems. The ‘feasible solution algorithms’ for

these criteria have been shown to have excellent performance for text-book sized

problems, but their performance on much larger data sets is less impressive. This

paper points out a computationally cheaper feasibility condition for LTS, MVE

and MCD, and shows how the combination of the criteria leads to improved per-

formance on large data sets. Algorithms incorporating these improvements are

available from the author’s Web site.
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1 INTRODUCTION

Two related problems in multi-parameter estimation are that of estimating the coeffi-

cient vector in a multiple linear regression, and of estimating the location vector and

scatter matrix of multivariate data. Conventional second-moment methods such as least

squares for regression, and calculation of the sample mean vector and covariance matrix

for the location/scatter problem can fail completely in the presence of even a quite mod-

est numbers of outliers, and this is true even if they are supplemented with conventional

diagnostics. The methodology of high breakdown estimation addresses this estimation

problem by providing estimates that will have respectable performance despite the pos-

sible presence of outliers.

We will deal with both the regression and the multivariate location/scatter problem

within the framework of a single notation. Suppose we have a sample of n p-component

vectors X1, X2, ..., Xn. For the location/scatter problem, a common baseline model might

be that these vectors follow a common multivariate normal distribution with mean vector

µ and covariance matrix Σ

Xi ∼ N(µ, Σ), i = 1, ..., n.

The high breakdown location/scatter problem comprises estimating µ and
∑

if the

data vectors include a minority of vectors in which the Xi has been replaced by some

(possibly maliciously chosen) contaminating vectors.
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For the regression problem, we also have a dependent variable Yi, which is related to

the Xi vector by the linear model

Yi = X t
iβ + εi

where εi is a disturbance. In the common baseline model, the disturbances εi are inde-

pendent N(0, σ2) random variables. The need for high breakdown estimation arises if a

minority of the Yi have been replaced by some other (possibly maliciously chosen) values.

There are close connections between these two problems. For example, in the regres-

sion case, outlying Xi correspond to high leverage cases, and so the ability to detect

outlying Xi is important for the identification of cases that are highly influential in the

regression. Also, if a case is outlying in the regression situation, while we commonly

think of it as a case whose Yi has been corrupted, it is logically equally possible that

its Yi is correct, but that its Xi was corrupted. Rousseeuw and van Zomeren (1990)

emphasize the importance of calculating both robust residuals and robust leverages in

high breakdown regression case diagnostics.

It is an essential feature of the high breakdown formulation that a majority of the

cases do conform to the baseline model. In symbols, there are at least C cases for which

Xi ∼ N(µ, Σ) in the location/scatter problem

Yi ∼ N(X t
i β, σ2) in the multiple regression problem.

The required minimum coverage C will not concern us here; however, it is discussed in

Rousseeuw and Leroy (1987) and is strictly greater than half the sample size. The basic

methodology of high breakdown estimation consists of a two-part process – of finding
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which C of the n cases are most plausibly the cases that conform to the baseline model,

and then using this identification to estimate the parameters − − β for the regression

problem, and µ and
∑

for the location/scatter problem.

For both LTS and MCD, the second step of the process is easy and immediate – for

LTS, once one has decided on the C candidate cases to ‘cover’, the LTS estimate of β is

given by the ordinary least squares (OLS) regression of Y on X using just these C cases.

The full LTS problem then consists of:

• Explicitly or implicitly consider all possible partitions of the cases into C covered

and n − C uncovered cases, and fit the OLS regression of Y on X in each such

partition.

• The exact LTS estimator is given by that partition and that OLS fit for which the

residual sum of squares is a minimum.

The second step is also easy for LMS and least trimmed absolute deviations (LTA)

which replaces the squared residual in the LTS criterion by the absolute residual. LMS

is computed by fitting the Chebyshev (L∞) fit instead of OLS while LTA is computed by

fitting least absolute deviations (L1) instead of OLS.

In the MCD case, the location vector µ is given by the conventional sample mean

vector of the C covered cases, and that of the scatter matrix Σ is the conventional

sample covariance matrix of the covered cases. The algorithm for the MCD is then:

• Explicitly or implicitly consider all partitions of the cases into C covered and n−C

uncovered, and find the mean vector and covariance matrix of the C covered cases,

and also the determinant of the covariance matrix.
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• The exact MCD estimator is given by the subset for which this determinant is a

minimum.

The MVE criterion is fitted by:-

• Consider all partitions, exactly as in the other two methods. For each partition,

find the ellipsoid of minimum volume that covers the C trial cases.

• The exact MVE estimator is based on the subset of size C for which the volume of

the smallest covering ellipsoid is a minimum.

Finding the minimum volume ellipsoid covering the C cases is however a much more

laborious computation than is involved in either the MCD or the LTS problems — see

Cook, Hawkins and Weisberg (1993) for a discussion of the problem and its connection to

D-optimal design and Titterington (1975) for the algorithm used. Woodruff and Rocke

(1994) strongly suggest that the MCD is better than the MVE and give some empirical

evidence. Rousseeuw and Van Driessen (1997, p. 2) also state that the MVE should be

superseded by the MCD.

2 Necessary conditions and the feasible solution al-

gorithms

Since each of these high breakdown methods involves an explicit or implicit generation

of all possible subsets of C cases, all are combinatorially hard. Agulló (1996, 1997) gives

branch and bound algorithms for exact computation of LMS and the MVE, and these
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algorithms can be modified to compute the MCD, LTS, and LTA. Rousseeuw and Van

Driessen (1997) state that the branch and bound algorithm for the MVE can be applied

for n ≤ 100 and p ≤ 5, but all current resampling methods for problems of greater

than trivial size involve some method of sampling to get an approximate solution. The

family of feasible solution algorithms proposed by Hawkins (1993a, 1993b, 1993c, 1994)

all note that the subset of covered cases giving rise to the exact optimum must satisfy

the necessary condition:

The criterion cannot be improved by exchanging any of the currently uncovered cases

for any of the currently covered cases.

The feasible solution algorithms then consist of taking candidate subsets of size C

at random from the n cases, evaluating the criterion (residual sum of squares for LTS,

determinant of covariance matrix for MCD and volume of covering ellipsoid for MVE)

and seeing if the criterion can be improved by a case swap. If it can, then the swap that

leads to the greatest improvement is made and the test is repeated on the new candidate

subset. When the current subset can not be improved by a case swap, it then satisfies the

necessary condition, and becomes a ‘feasible solution’. The best feasible solution found

in a suitably large number of random starts is then taken as the estimate of the global

optimum. Rocke and Woodruff (1996, p. 1048) incorporate the FSA in their algorithm.

2.1 Computational complexity of the algorithms.

In the processing of a candidate subset, LTS and MCD both involve the computation of

a mean vector and a covariance matrix. This is an O(Cp2) operation. The subsequent
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fitting of the regression in LTS and the evaluation of the determinant in MCD are both

O(p3) operations. There are C(n − C) swaps to consider. By judicious precomputing

requiring O(np) time, the amount of work involved in evaluating a MCD swap can be

done in O(1) time for many swaps, needing a worst-case O(p) time, so the complexity of

the swap phase for MCD is O(C{n−C}p). In LTS, evaluating a case swap requires O(p)

computation. Thus in evaluating a trial subset, both LTS and MCD require computations

of order

O(Cp2) + O(p3) + O(C{n − C}p).

The MVE involves fitting a covering ellipsoid to the C covered cases. This is done

iteratively, and each step of the initial fitting involves O(Cp2)+O(p3) calculations. Eval-

uation of a swap involves a similar amount of computation, so the full evaluation of a

subset involves a computational complexity that is some multiple of

O(C2{n − C}p2) + O(C{n − C}p3)

where the multiple is some increasing function of n and p. A referee pointed out that

the Titterington (1975) algorithm for finding the smallest covering ellipsoid can be re-

placed by the Welzl (1991) algorithm. This algorithm has expected O(n) time, but the

dependence on p is exponential.

As even this brief sketch suggests, the feasible solution algorithm for MVE is very

slow, compared to those for LTS and MCD.

All three of these algorithms involve a computation to be carried out on all pairs of

cases with one in and one out of the covered set. If both C and n − C are O(n) while

p = o(n), then the overall computational complexity is dominated by the evaluation of
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the swaps, and is O(n2p) for LTS and MCD, and O(n3p) for MVE. In practical terms,

there is a decision to be made in considering the swaps – should one

1. Accept the first swap that leads to an improvement in the criterion,

2. Search for the swap that leads to the greatest improvement, or

3. Search for a while, stopping at the first subset has been found that gives at least

some minimum threshold of improvement.

In complexity terms, there is no difference between these three approaches (since in

all of them to establish that a trial solution is feasible you need to evaluate all possible

swaps), but in practical terms 3 is a clear winner since it leads to many fewer inner

iterations than 1, and mostly much faster inner iterations than 2. However the overall

complexity of O(n2p) or O(n3p) remains, and means that the feasible solution algorithms

based on the case-swap necessary condition cannot be used for very large data sets.

2.2 An easier and faster necessary condition.

All three criteria also have another necessary condition for the optimum.

• In the case of LTS, each of the C covered cases has a smaller squared residual than

any of the n − C uncovered cases.

• In the case of MCD and MVE, if we calculated the Mahalanobis distance of each

case from the location vector using the scatter matrix, each covered case must have

smaller distance than any uncovered case.
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This condition has been considered by Ruppert (1992, p. 258) for LMS and LTS,

and the condition also holds for LTA. Rousseeuw and Van Driessen (1997) prove that the

condition holds for the MCD estimator using results from Grübel (1988).

To avoid lengthy repetition, we will use the term ‘case distance’ in the material

that follows to refer to a case’s squared residual in the LTS problem, and the case’s

Mahalanobis distance in the MCD or MVE problems.

These necessary conditions can also be made the basis for a feasible solution

approach:-

• Fit the criterion to the current trial subset of C cases, and evaluate the distance of

each case from the solution.

• If the distances of all covered cases are smaller than the distances of all uncov-

ered cases, then the current subset and its solution satisfy the weaker necessary

condition.

• If however there are uncovered cases that fit the current solution better than do

covered cases, replace the current trial subset with the C cases that best fit the

current solution – that is, those with the C smallest distances.

The computational complexities of the first parts of this scheme are the same as the

case-swapping feasible solution algorithm. But instead of evaluating all C(n−C) possible

swaps for the subset-refinement phase, we merely have to find the C smallest distances.

This involves finding the Cth order statistic of the distances, which is an O(n) operation,

and another O(n) calculation to find which cases have the C smallest distances and
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check whether they are the trial subset, so the computational complexity of the inner

case replacement phase is O(np). If a sort is used to find the C smallest distances, as in

the current implementation of the FSA, then the complexity is O(np log(n)).

Lemma. Suppose that both the weak and strong necessary conditions hold for the

criterion (eg LMS, LTA, LTS, MCD, or MVE). Then the stronger necessary condition is

not satisfied unless the weaker necessary condition is satisfied.

Proof. Let Jk be the index set of C cases covered in the kth step of the case swapping

iteration. Let

d(1)(Jk) ≤ d(2)(Jk) ≤ ... ≤ d(n)(Jk)

denote the ordered case distances when the parameters are computed from the subset

Jk. We need to show that a swap can be made which reduces the criterion if Jk does

not correspond to the cases with the C smallest case distances. Hence we assume that

Jk = {i1, ..., iC} where

di1 ≤ di2 ≤ ... ≤ diC

and diC > d(C). Let is denote the case not in Jk that has the smallest case distance. Thus

dis ≤ d(C) and if we apply the weak test on cases i1, ..., iC , is then cases iC and is are

swapped. (Let the new sample size ñ = C +1, and the new coverage size C̃ = ñ−1 = C.

If, for example, the C + 1 case distances satisfy

di1 < ... < dis < ... < diC−1
< diC ,

then the weak test will use every case except iC .) In other words, since the weak necessary

condition holds, a swap of case iC and case is will reduce the criterion. QED
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It is a drawback of this necessary condition that it is weaker than the case-swapping

necessary condition, so that there may be solutions that pass this screen, but fail the

case-swapping necessary condition. We can however synthesize the pair of conditions to

try to get the best of both worlds — use the weak condition as a preliminary screen

to move quickly into the general area of the optimal subset, and then use the stronger

condition to refine the subsets that pass the weaker condition.

Another hybrid possibility is to use the weaker condition to move from an arbitrary

starting subset to one in which the weak condition is satisfied, and then to do some

checking for possible improvements by case swapping. If instead of evaluating all possible

case swaps, however, this second phase evaluates only O(n) of the C(n − C) possible

swaps, the overall O(np) complexity of LTS and MCD is retained.

3 Some computational experience.

We have implemented combined algorithms for LTS and MCD in which each candidate

subset is first checked using the weak condition. Once it satisfies the weak condition, then

it is tested with the strong case-swap condition. If an improvement is made in the strong

test, then the weak test is applied again, and the process continued until the algorithm

reaches a subset satisfying both conditions. The hope for improvement using the weak

condition rests on the possibility that it might reduce the number of swaps in the strong

test by cheap refinement of initial poor estimates.

The MVE estimator is substantially harder than either MCD or LTS. This is because

the fitting operation involves an iteration with the calculation and inversion of a covari-
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ance matrix in its core. This calculation also has to be carried out at least partially to

evaluate case swaps. Thus using any case swapping is prohibitively expensive for mod-

erate to large samples. We have implemented an MVE code that uses just the first weak

condition. The quality of the estimates returned by it will, of course, be inferior to that

given by the stronger necessary condition, but the substantial savings in computer time

can be used to good effect to explore more initial subsets, so the end result may still be

an improvement.

As an illustrative example, we used the Boston housing data of Harrison and Rubinfeld

(1978), omitting the fourth predictor (a binary indicating adjacency to the Charles River)

since it leads to degeneracy. This data set was chosen, not because of its previous use

in the high breakdown literature, but because it is a real, widely-accessible, moderately

large data set.

We computed the MCD for the 12 remaining predictors. This gave us n = 506 cases,

with p = 12. We ran the data using the older FSA codes from our Web site, and the

new code. We know of no reason to think that the new procedure would produce good

solutions either more often or less often than the old solution, so the primary basis for

comparison is the number of swaps made in going from an initial random sample to the

final feasible solution, and in the total execution time.

In our runs, we selected C to be the standard default – the value providing the

maximum breakdown for the estimators; this is 260 for LTS and 259 for MCD. This

is not necessarily a good choice – see for example Cook and Hawkins (1990). A more

careful choice based on the perceived maximum number of outliers that could plausibly

be present in the data set will provide greater statistical efficiency, as well as possibly
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faster execution. Each run used 1,000 random starting subsets.

MCD : The criterion values of the three leading feasible solutions were

New algorithm 22.627 22.631 27.335

Old algorithm 22.627 22.631 22.759

In going from each random starting subset to the local feasible solution, the new

algorithm used an average of 32 cycles of refinement using the weak condition, and 2.6

cycles using the stronger condition. The old algorithm, using only the strong condition,

used an average of 139 cycles of pairwise swapping.

Clearly the preliminary screen using the weak condition has been highly successful in

reducing the number of cycles needed using the much more expensive case swap phase.

This greater success is reflected in the execution times. The old code required 65 minutes

on a HP 712/60 workstation, compared with 17 minutes for the new code — a roughly

four-fold speedup.

LTS : The criterion values returned by the three leading feasible solutions using each

algorithm were:-

New algorithm 236.7 249.7 251.6

Old algorithm 222.0 222.5 232.2

The average number of cycles of subset refinement for the new code was 59 for the

weak condition, and 30 for the strong condition. The average number of strong condition

cycles for the old code was 135. Here too, use of the computationally fast weak condition

has led to a very effective screening, dramatically reducing the number of cycles of the

case-swapping phase.
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The computation times reflect this saving even more clearly than they did in the

MCD case. The execution time for the new code was 42 minutes, while the old code was

10 times slower, requiring 420 minutes. The reason for the larger saving than was seen

with MCD is that evaluating a possible case swap for the LTS criterion is always an O(p)

computation, while bounding allows many of the potential MCD swaps to be rejected

without evaluation. We note that the three feasible solutions returned by the old code

had lower criterion values than those found by the two-condition algorithm, but hesitate

to find a general truth in this.

MVE : The new code for the MVE involves only the weak condition. We ran it with 50

random starts, getting feasible solution criterion values (the common log of the volume

of the covering ellipsoid) of 13.886, 13.889 and 13.961. Execution time was 247 minutes,

or about 5 minutes per random start.

The old code with the strong necessary condition required nearly 18 hours per random

start – graphic evidence of the earlier comment that the case-swap necessary condition is

computationally prohibitive for MVE problems of any but very modest size. However the

quality of the solutions was much higher – the very first random start yielded a criterion

value of 13.192 and the second a value of 11.209. This covering ellipsoid’s volume was

smaller by a factor of 102.7 than the best solution found using just the weak condition.

The hope for reasonable results with the MVE then rests on the possibility that the weak

condition, by evaluating many more initial subsets, may be able to match the results of

the case-swap condition by sheer repetition. Since 200 weak-condition samples can be

run in the same time as one strong-condition sample, this seems a reasonable prospect.

The feasible solution algorithms for MCD, MVE, LMS, LTS, and LTA are at the
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following website (go to the software icon).

http://www.stat.umn.edu

Rousseeuw and Van Driessen’s algorithm for the MCD is at the website below.

http://win-www.uia.ac.be/u/statis/

Since these algorithms may not yield consistent estimators if the number of starts is fixed,

we suggest that at least max(500, n/10) starts be used.

4 Conclusions

The feasible solution algorithms have shown themselves very effective for high breakdown

estimation in modestly-sized data sets. For very large data sets however the O(n2p)

computational complexity of the case-swap necessary condition makes them too slow

to be competitive. The weaker necessary condition that the covered cases have the

smallest distances from the putative solution has only O(np) complexity, and so runs

much faster in large data sets, though its approximations have solutions that are not as

good. Combining the two conditions gives many of the benefits of both – the faster weak

necessary condition dramatically reduces the number of swaps made in the case-swap

necessary condition, and leads to much faster execution.

Croux and Haesbroeck (1997) suggest keeping track of the best elemental subset (a

subset of size p + 1 for location/scatter and of size p for regression) containing case i

and then averaging the corresponding parameter estimates over the half set with the

smallest criterion values. Their simulations indicated that the averaged estimator may

outperform the exact MVE estimator in the univariate case and p = 2 case for small n.
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This idea may be worth investigating.
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