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Abstract Olive (2013) developed a large sample 100(1− δ)% nonparametric
prediction region for a future m × 1 test vector yf given past training data
y1, ..., yn. Consider predicting an m× 1 future test response vector yf , given
xf and past training data (x1, y1), ..., (xn, yn). For the multivariate linear

regression model yi = BT xi + εi, let the pseudodata wi = ŷf + ε̂i for i =
1, ..., n where the ε̂i are the residual vectors. Under mild regularity conditions,
applying the Olive (2013) prediction region to the pseudodata gives a large
sample 100(1− δ)% nonparametric prediction region for yf .

Suppose there is an m×1 statistic Tn such that
√
n(Tn−µ)

D→ Nm(0,ΣT ).
Under regularity conditions, applying the Olive (2013) prediction region to the
bootstrap sample T ∗

1 , ..., T
∗
B gives a large sample 100(1−δ)% confidence region

for the parameter vector µ.

Keywords Bagging · Bootstrap · Highest density region · Prediction
interval · Multivariate linear regression

1 Introduction

This paper shows that the Olive (2013) nonparametric prediction region com-
puted from pseudodata can result in a prediction region for the multivariate
linear regression model, while the nonparametric prediction region computed
from a bootstrap sample can result in a confidence region.

A multivariate regression model has an m × 1 response vector yi and a
p× 1 vector of predictor variables xi with wi = (yi,xi). Let wi = yi for the
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multivariate location and dispersion model that has no xi. Given training data
w1, ...,wn and xf , a large sample 100(1− δ)% prediction region for an m× 1
future test random vector yf is a set An such that P (yf ∈ An) → 1− δ, while
a large sample 100(1−δ)% confidence region for an m×1 vector of parameters
µ is a set An such that P (µ ∈ An) → 1− δ as the sample size n→ ∞. When
m = 1, a large sample 100(1 − δ)% prediction interval (PI) [L̂n, Ûn] satisfies
P (L̂n ≤Wf ≤ Ûn) → 1 − δ as n→ ∞.

For the multivariate location and dispersion model, there is a some lit-
erature for prediction regions that may perform well for small m. Follow-
ing Hyndman (1996), when unique, the 100(1 − δ)% highest density region
is R(f1−δ) = {z : f(z) ≥ fδ} where fδ is the largest constant such that
P [y ∈ R(f1−δ)] ≥ 1 − δ and f(z) is the probability density function (pdf) of

y. Let f̂(1), ..., f̂(n) be the order statistics of f̂(y1), ..., f̂(yn). Hyndman (1996)
used the estimated highest density region

R̂(f1−δ) = {z : df̂(z) ≥ df̂(h)} (1)

where d > 0 can be any constant, h = max(1, bnδc), and bxc is the integer
part of x. (Often f(z) = kg(z) and d = 1/k > 0.) Also see Lei, Robins, and
Wasserman (2013), who estimate f(z) with a kernel density estimator.

For m = 1 and positive integer c, the shorth(c) estimator is a useful estima-
tor of the highest density region when the region is an interval. Let Z(1), ..., Z(n)

be the order statistics of Z1, ..., Zn. Then let the shortest closed interval con-
taining at least c of the Zi be

shorth(c) = [Z(s),Z(s+c−1)]. (2)

Let
kn = dn(1 − δ)e (3)

where dxe is the smallest integer ≥ x, e.g., d7.7e = 8. Frey (2013) showed
that for large nδ and iid data, the shorth(kn) PI has maximum undercoverage
≈ 1.12

√
δ/n when the nominal coverage is 1 − δ, and used the shorth(c)

estimator as the large sample 100(1 − δ)% PI where

c = min(n, dn[1 − δ + 1.12
√
δ/n ] e). (4)

Mohie El–Din and Shafay (2013) also derived prediction intervals based on
order statistics. Olive (2007, 2013) used the shorth of the pseudodata Zi =
Ŷf + êi to make prediction intervals for multiple linear regression and the
additive error regression model Yi = g(xi) + ei where g(xi) is known up to a
set of unknown parameters and êi is the ith residual for i = 1, .., n. Also see
Cai, Tian, Solomon, and Wei (2008) and Lei and Wasserman (2014).

Some notation is needed to describe the Olive (2013) nonparametric pre-
diction region that performs well even if m is large. Suppose y1, ..., yn are iid
m × 1 random vectors with mean µ and nonsingular covariance matrix Σy .
Let (y,S) be the sample mean and sample covariance matrix where

y =
1

n

n∑

i=1

yi and S = Sy =
1

n − 1

n∑

i=1

(yi − y)(yi − y)T. (5)
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Then the ith squared sample Mahalanobis distance is the scalar

D2
w = D2

w(y,S) = (w − y)T S−1(w − y). (6)

Let D2
i = D2

y
i

for each observation yi. Let D(c) be the cth order statistic of
D1, ..., Dn. Consider the hyperellipsoid

An = {w : D2
w(y,S) ≤ D2

(c)} = {w : Dw(y,S) ≤ D(c)}. (7)

If n is large, we can use c = kn = dn(1 − δ)e. If n is not large, using c = Un

where Un decreases to kn, can improve small sample performance. Let qn =
min(1 − δ + 0.05, 1− δ +m/n) for δ > 0.1 and

qn = min(1 − δ/2, 1− δ + 10δm/n), otherwise. (8)

If 1− δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ.
Let D(Un) be the 100qnth percentile of the Di. For example, use Un =

c = dnqne. Then the Olive (2013) large sample 100(1 − δ)% nonparametric
prediction region for a future value yf given iid data y1, ..., , yn is

{w : D2
w(y,S) ≤ D2

(Un)}, (9)

while the classical large sample 100(1− δ)% prediction region is

{w : D2
w(y,S) ≤ χ2

m,1−δ}. (10)

See Chew (1966) and Johnson and Wichern (1988, pp. 134, 151). Here the
population percentile u1−δ of a random variable U satisfies P (U ≤ u1−δ) =
1−δ where often U ∼ χ2

m, a chi–square distribution withm degrees of freedom.
Di Bucchianico, Einmahl, and Mushkudiani (2001) used the minimum volume
ellipsoid to compute small volume covering regions for m ≤ 2.

Olive (2013) showed that (9) is a large sample 100(1−δ)% prediction region
under mild conditions, although regions with smaller volumes may exist. If
m = 1 and n ≥ 20, the correction factor dnqne closely tracks the Frey (2013)
correction factor (4). The volume of the hyperellipsoid

{w : (w − y)T S−1(w − y) ≤ h2} is equal to
2πm/2

mΓ(m/2)
hm
√

det(S), (11)

see Johnson and Wichern (1988, pp. 103-104).
The ratio of the volumes of prediction regions (10) and (9) is

(
χ2

m,1−δ

D2
(Un)

)m/2

,

which can become close to zero rapidly as m gets large. Hence if the data
distribution is not the multivariate normal Nm(µ,Σy) distribution, severe
undercoverage can occur if the classical prediction region is used, and the
undercoverage tends to get worse as the dimension m increases. The cover-
age need not to go to 0, since by the multivariate Chebyshev’s inequality,
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P (D2
y(µ,Σy) ≤ γ) ≥ 1 − m/γ > 0 for γ > m. See Budny (2014), Chen

(2011), and Navarro (2014a, 2016). Navarro (2014b) makes a prediction region
for yf based on the multivariate Chebyshev inequality where the cutoff tends
to be larger than D2

(Un). For example, replace D2
(Un) by γ = m/δ in (9).

Section 2 derives a nonparametric prediction region for the multivariate
linear regression model. Section 3 shows that applying the Olive (2013) non-
parametric prediction region on a bootstrap sample gives a confidence region.

2 Prediction Regions for Multivariate Regression

This section will derive a prediction region for multivariate regression models
of the form yi = E(yi|xi)+εi = g(xi)+εi where the function g(x) is known up
to a set of unknown parameters, but the distribution of εi may not be known.
The multivariate linear regression model satisfies the regularity conditions.

The following technical theorem will be needed to prove Theorem 2, which
shows how to obtain a practical prediction region using pseudodata. The ith
residual vector ε̂i = yi − ŷi.

Theorem 1 Let a > 0 and assume that (µ̂n, Σ̂n) is a consistent estimator
of (µ, aΣ). Then

D2
x(µ̂n, Σ̂n) − 1

a
D2

x(µ,Σ) = oP (1).

Proof Let Bn denote the subset of the sample space on which Σ̂n has an
inverse. Then P (Bn) → 1 as n → ∞. Now

D2
x(µ̂n, Σ̂n) = (x − µ̂n)T Σ̂

−1

n (x − µ̂n) =

(x − µ̂n)T

(
Σ−1

a
− Σ−1

a
+ Σ̂

−1

n

)
(x − µ̂n) =

(x − µ̂n)T

(−Σ−1

a
+ Σ̂

−1

n

)
(x − µ̂n)+

(x− µ̂n)T

(
Σ−1

a

)
(x− µ̂n) =

1

a
(x − µ̂n)T (−Σ−1 + a Σ̂

−1

n )(x − µ̂n) +

(x− µ + µ − µ̂n)T

(
Σ−1

a

)
(x − µ + µ − µ̂n)

=
1

a
(x− µ)T Σ−1(x − µ)

+
2

a
(x − µ)T Σ−1(µ− µ̂n) +

1

a
(µ− µ̂n)T Σ−1(µ− µ̂n)

+
1

a
(x− µ̂n)T [aΣ̂

−1

n − Σ−1](x− µ̂n)

on Bn, and the last three terms are oP (1). �



Applications of Hyperellipsoidal Prediction Regions 5

Theorem 2 Suppose yi = E(yi|xi) + εi = ŷi + ε̂i where Cov(εi) = Σε is
positive definite, and the zero mean εf and the εi are iid for i = 1, ..., n. Given

xf , suppose the fitted model produces ŷf and nonsingular Σ̂ε. Let ẑi = ŷf + ε̂i

and
D2

i = D2
i (ŷf , Σ̂ε) = (ẑi − ŷf )T Σ̂

−1

ε (ẑi − ŷf )

for i = 1, ..., n. Let 0 < δ < 1 and D(Un) be the 100qnth sample quantile of the
Mahalanobis distances Di. Let the nominal 100(1 − δ)% prediction region for
yf be given by

{z : D2
z(ŷf , Σ̂ε) ≤ D2

(Un)} = {z : Dz(ŷf , Σ̂ε) ≤ D(Un)}. (12)

a) Consider the n prediction regions for the training data where (yf,i,xf,i) =
(yi,xi) for i = 1, ..., n. If the order statistic D(Un) is unique, then Un of the n
prediction regions contain yi where Un/n → 1 − δ as n → ∞.

b) If (ŷf , Σ̂ε) is a consistent estimator of (E(yf),Σε), then (12) is a large
sample 100(1− δ)% prediction region for yf .

c) If (ŷf , Σ̂ε) is a consistent estimator of (E(yf ),Σε), and the εi come
from an elliptically contoured distribution such that the highest density region
is {z : Dz(0,Σε) ≤ D1−δ}, then the prediction region (12) is asymptotically
optimal.

Proof a) Suppose (xf , yf) = (xi, yi). Then

D2
y

i

(ŷi, Σ̂ε) = (yi − ŷi)
T Σ̂

−1

ε (yi − ŷi) = ε̂T
i Σ̂

−1

ε ε̂i = D2
ε̂i

(0, Σ̂ε).

Hence yi is in the ith prediction region {z : Dz(ŷi, Σ̂ε) ≤ D(Un)(ŷi, Σ̂ε)} iff

ε̂i is in prediction region {z : Dz(0, Σ̂ε) ≤ D(Un)(0, Σ̂ε)}, but exactly Un of
the ε̂i are in the latter region by construction, if D(Un) is unique. Since D(Un)

is the 100(1 − δ)th percentile of the Di asymptotically, Un/n→ 1 − δ.
b) Let P [Dz(E(yf),Σε) ≤ D1−δ(E(yf ),Σε)] = 1 − δ. Since Σ−1

ε ex-

ists, Theorem 1 shows that if (ŷf , Σ̂ε)
P→ (E(yf),Σε), then D(ŷf , Σ̂ε)

P→
Dz(E(yf),Σε). Hence the percentiles of the distances converge in distribu-

tion, and the probability that yf is in {z : Dz(ŷf , Σ̂ε) ≤ D1−δ(ŷf , Σ̂ε)}
converges to 1 − δ = the probability that yf is in {z : Dz(E(yf),Σε) ≤
D1−δ(E(yf ),Σε)} at continuity points of the distribution of D(E(yf ),Σε).

c) The asymptotically optimal prediction region is the region with the
smallest volume (hence highest density) such that the coverage is 1 − δ, as
n→ ∞. This region is {z : Dz (E(yf),Σε) ≤ D1−δ(E(yf ),Σε)} if the asymp-
totically optimal region for the εi is {z : Dz (0,Σε) ≤ D1−δ(0,Σε)}. Hence
the result follows by b). �

Notice that if Σ̂
−1

ε exists, then approximately 100qn% of the n training
data yi are in their corresponding prediction region with xf = xi, and qn →
1 − δ even if (ŷi, Σ̂ε) is not a good estimator or if the regression model is
misspecified. Of course the volume of the prediction region could be large if a
poor estimator is used or if the εi do not come from an elliptically contoured
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distribution. Olive, Pelawa Watagoda, and Rupasinghe Arachchige Don (2015)
suggest that the residual, response, and DD plots described below can be used
to check model assumptions. They considered tests for the multivariate linear
regression model, but did not develop prediction regions.

Prediction region (12) can be used for the Su and Cook (2012) inner en-
velopes estimator and the seemingly unrelated regressions model. Theorem
3 shows that prediction region (12) is the prediction region (9) applied to
pseudodata for the multivariate linear model

yi = BT xi + εi (13)

for i = 1, ..., n that has m ≥ 2 response variables Y1, ..., Ym and p predictor
variables x1, x2, ..., xp. Multivariate linear regression and MANOVA models
are special cases. The ith case is (xT

i , y
T
i ) = (xi1, xi2, ..., xip, Yi1, ..., Yim). If a

constant xi1 = 1 is in the model, then xi1 could be omitted from the case.
The model is written in matrix form as Z = XB + E where the matrices are
defined below. The model has E(εk) = 0 and Cov(εk) = Σε = (σij) for k =
1, ..., n. Then the p×m coefficient matrix B =

[
β1 β2 . . . βm

]
and the m×m

covariance matrix Σε are to be estimated, and E(Z) = XB while E(Yij) =
xT

i βj . Multiple linear regression corresponds to m = 1, and subscripts are
needed for the m multiple linear regression models Y j = Xβj + ej for j =
1, ..., m where E(ej) = 0. For the multivariate linear model, Cov(ei, ej) =
σij In for i, j = 1, ..., m.

The n×m matrix of response variables and n ×m matrix of errors are

Z = [Y 1 Y 2 . . . Y m] =




yT

1
...

yT
n



 and E = [e1 e2 . . . em] =




εT
1
...

εT
n



 ,

while the n× p design matrix of predictor variables is X .
Least squares is the classical method for fitting the multivariate linear

model. The least squares estimators are B̂ = (XT X)−1XT Z = [β̂1 β̂2 . . . β̂m].

The matrix of predicted values or fitted values is Ẑ = XB̂ = [Ŷ 1 Ŷ 2 . . . Ŷ m].

The matrix of residuals is Ê = Z − Ẑ = Z − XB̂ = [r1 r2 . . . rm]. These
quantities can be found from the m multiple linear regressions of Yj on the pre-

dictors: β̂j = (XT X)−1XT Y j, Ŷ j = Xβ̂j , and rj = Y j−Ŷ j for j = 1, ..., m.

Hence ri,j = ε̂i,j = Yi,j − Ŷi,j where Ŷ j = (Ŷ1,j, ..., Ŷn,j)
T . Finally, Σ̂ε,d =

(Z − Ẑ)T (Z − Ẑ)

n− d
=

(Z − XB̂)T (Z − XB̂)

n− d
=

Ê
T
Ê

n− d
=

1

n− d

n∑

i=1

ε̂iε̂
T
i .

The choices d = 0 and d = p are common. If d = 1, then Σ̂ε,d=1 = Sr, the
sample covariance matrix of the residual vectors ε̂i, since the sample mean of
the ε̂i is 0. For Theorem 3, if D1−δ is a continuity point of the distribution
of D, then (12) will be a large sample 100(1 − δ)% prediction region for yf

if the εi are iid with fourth moments and a nonsingular covariance matrix,
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max1≤i≤n hi
P→ 0 and

1

n
XT X

P→ W−1 as n → ∞. The ith leverage hi is the

ith diagonal element of X(XT X)−1XT . Let the m × 1 column vector T be
a multivariate location estimator, and the m×m symmetric positive definite
matrix C be a dispersion estimator.

Theorem 3 For multivariate linear regression, when least squares is used
to compute ŷf , Sr, and the pseudodata ẑi, prediction region (12) is the pre-
diction region (9) applied to the ẑi.

Proof Multivariate linear regression with least squares satisfies Theorem 2
by Su and Cook (2012). Let (T,C) be the sample mean and sample covariance
matrix (5) applied to the ẑi. The sample mean and sample covariance matrix of
the residual vectors is (0,Sr) since least squares was used. Hence the ẑi = ŷf +
ε̂i have sample covariance matrix Sr, and sample mean ŷf . Hence (T,C) =
(ŷf ,Sr), and the Di(ŷf ,Sr) are used to compute D(Un). �

These prediction regions can be displayed with the Rousseeuw and Van
Driessen (1999) DD plot of MDi = Di(x,S) versus RDi = Di(T,C). For
(T,C), we will use the Olive and Hawkins (2010) RMVN estimator (TRMV N ,
CRMV N ), an easily computed

√
n consistent estimator of (µ, aΣ) for a large

class of elliptically contoured distributions, where a = 1 for the Nm(µ,Σ)
distribution. Also see Olive (2016b, ch. 4) and Zhang, Olive, and Ye (2012).
For iid data and large n, Olive (2002) showed that plotted points in the DD plot
scatter tightly about a line through the origin for a large class of elliptically
contoured distributions, and about the identity line with unit slope and zero
intercept if the data are multivariate normal. Simulations suggest that the DD
plot of the residual vectors can be used in a similar way.

Olive (2013) used three prediction regions that can be extended to multi-
variate linear regression. The regions have the form

{z : (z − T )T C−1(z − T ) ≤ h2} = {z : D2
z ≤ h2} = {z : Dz ≤ h}. (14)

Let (12) be the nonparametric region with h = D(Un). The semiparametric
region uses (T,C) = (TRMV N ,CRMV N) and h = D(Un). The parametric
MVN region uses (T,C) = (TRMV N ,CRMV N ) and h2 = χ2

m,qn
where P (W ≤

χ2
m,qn

) = qn if W ∼ χ2
m. The semiparametric and parametric regions are

only conjectured to be large sample prediction regions for the multivariate
regression model, but are useful as diagnostics. Let Σ̂ε = Σ̂ε,d=p, ẑi = ŷf +ε̂i,

and D2
i (ŷf ,Sr) = (ẑi − ŷf)T S−1

r (ẑi − ŷf ) for i = 1, ..., n. Then the large
sample nonparametric 100(1− δ)% prediction region is

{z : D2
z(ŷf ,Sr) ≤ D2

(Un)} = {z : Dz(ŷf ,Sr) ≤ D(Un)}, (15)

while the (Johnson and Wichern 1988: p. 312) classical large sample
100(1− δ)% prediction region is

{z : D2
z(ŷf , Σ̂ε) ≤ χ2

m,1−δ} = {z : Dz(ŷf , Σ̂ε) ≤
√
χ2

m,1−δ}. (16)

The nonparametric prediction region (15) has simple geometry. Let Rr be
the nonparametric prediction region applied to the residuals ε̂i. Then Rr is a
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hyperellipsoid with center 0, and the nonparametric prediction region is the
hyperellipsoid Rr translated to have center ŷf . Hence in a DD plot, all points
to the left of the lineMD = D(Un) correspond to yi that are in their prediction
region, while points to the right of the line are not in their prediction region.

Two other plots are useful for checking the model. A response plot for the
jth response variable is a plot of the fitted values Ŷi,j versus the response
Yi,j where i = 1, ..., n. The identity line is added to the plot as a visual aid.

A residual plot corresponding to the jth response variable is a plot of Ŷi,j

versus ri,j. Suppose the multivariate linear regression model is good, the error
distribution is not highly skewed, and n ≥ 10p. Then the plotted points should
cluster about the identity line or r = 0 line in each of the m response and
residual plots. If outliers are present or if the plot is not linear, then the current
model or data need to be transformed or corrected. The response and residual
plots are used exactly as in the m = 1 case corresponding to multiple linear
regression. See Olive and Hawkins (2005) and Cook and Weisberg (1999a, p.
432; 1999b).

Example 1. Cook and Weisberg (1999a, pp. 351, 433, 447) gives a data
set on 82 mussels sampled off the coast of New Zealand. Let Y1 = log(S) and
Y2 = log(M) where S is the shell mass and M is the muscle mass. The pre-
dictors are X2 = L, X3 = log(W ), and X4 = H : the shell length, log(width),
and height. Figures 1 and 2 give the response and residual plots for Y1 and Y2.
The response plots show strong linear relationships, and highlighted cases had
Cook’s distance > min(0.5, 2p/n). Figure 3 shows the DD plot of the residual
vectors. The plotted points are highly correlated but do not cover the identity
line, suggesting an elliptically contoured error distribution that is not mul-
tivariate normal. The nonparametric 90% prediction region for the residuals
consists of the points to the left of the vertical line MD = 2.60. Cases 8, 48,
and 79 have especially large distances. The horizontal lineRD ≈ 3 corresponds
to the semiparametric region. These two lines were also the 95th percentiles
of the MDi and RDi. The horizontal line RD ≈ 2.45 corresponds to the para-
metric MVN region. A vertical line MD ≈ 2.45 (not shown) corresponds to a
large sample classical region.

Suppose the same model is used except Y2 = M . Then the response and
residual plots for Y1 remain the same, but the plots (not shown) for Y2 show
curvature about the identity and r = 0 lines. Hence the linearity condition is
violated. Figure 4 shows that the plotted points in the DD plot have corre-
lation well less than one, suggesting that the error vector distribution is no
longer elliptically contoured. The nonparametric 90% prediction region for the
residual vectors consists of the points to the left of the vertical lineMD = 2.52,
and the prediction regions still contain 95% of the training data yi.

A small simulation was used to study the prediction regions. First m × 1
error vectors wi were generated such that the m errors are iid with variance σ2.
Let the m×m matrix A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for

i 6= j. Then εi = Awi so that Σε = σ2AAT = (σij) where the diagonal entries
σii = σ2[1 + (m− 1)ψ2] and the off diagonal entries σij = σ2[2ψ+ (m− 2)ψ2 ]
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Fig. 1 Plots for Y1 = log(S).
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Fig. 2 Plots for Y2 = log(M ).
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Fig. 3 DD Plot of the Residual Vectors for the Mussel Data.
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Table 1 Simulated Coverages for 90% Prediction Regions.

w dist n m = p ncov scov mcov voln volm

MVN 48 2 0.901 0.905 0.888 0.941 0.964
MVN 300 5 0.889 0.887 0.890 1.006 1.015
MVN 1200 10 0.899 0.896 0.896 1.004 1.001
MIX 48 2 0.912 0.927 0.710 0.872 0.097
MIX 300 5 0.906 0.911 0.680 0.882 0.001
MIX 1200 10 0.904 0.911 0.673 0.889 0+
MVT(7) 48 2 0.903 0.910 0.825 0.914 0.646
MVT(7) 300 5 0.899 0.909 0.778 0.916 0.295
MVT(7) 1200 10 0.906 0.911 0.726 0.919 0.061
LN 48 2 0.912 0.926 0.651 0.729 0.090
LN 300 5 0.915 0.917 0.593 0.696 0.009
LN 1200 10 0.912 0.916 0.593 0.679 0+

where ψ = 0.10. Hence the correlations are (2ψ+(m−2)ψ2)/(1+(m−1)ψ2). As
ψ gets close to 1, the data clusters about the line in the direction of (1, ..., 1)T .
We used wi ∼ Nm(0, I),wi ∼ (1− τ )Nm(0, I) + τNm(0, 25I) with 0 < τ < 1
and τ = 0.25 in the simulation, wi ∼ multivariate td with d = 7 degrees of
freedom, or wi ∼ lognormal - E(lognormal): where the m components of wi

were iid with distribution ez − E(ez) where z ∼ N(0, 1). Only the lognormal
distribution is not elliptically contoured.

Then 5000 runs were used to simulate the prediction regions for yf given xf

for multivariate regression. With n=100, m=2, and p=4, the nominal coverage
of the prediction region is 90%, and 92% of the training data is covered. As in
Olive (2013), the ratio of the prediction region volumes

hm
i

√
det(Ci)

hm
2

√
det(C2)

was recorded where i = 1 was the nonparametric region, i = 2 was the semi-
parametric region, and i = 3 was the parametric MVN region. Here h1 and h2

were the cutoffs D(Un)(Ti,Ci) for i = 1, 2, and h3 =
√
χ2

m,qn
.

If, as conjectured, the RMVN estimator is a consistent estimator when
applied to the residual vectors instead of iid data, then the volume ratios
converge in probability to 1 if the iid zero mean errors ∼ Nm(0,Σε), and the
volume ratio converges to 1 for i = 1 for a large class of elliptically contoured
distributions. These volume ratios were denoted by voln and volm for the
nonparametric and parametric MVN regions. The coverage was the proportion
of times the prediction region contained yf where ncov, scov, and mcov are
for the nonparametric, semiparametric, and parametric MVN regions.

As in Olive (2013), for iid yi from an elliptically contoured distribution,
coverage was often near the nominal value for n ≥ 10p, and voln was often
near 1 for n ≥ 50p. In the simulations, we took n = 3(m + p)2 and m = p.
Table 1 shows that the coverage of the nonparametric region was close to
0.9 in all cases. The volume ratio voln was fairly close to 1 for the three



12 David J. Olive

elliptically contoured distributions. Since the volume of the prediction region
is proportional to hm, the volume can be very small if h is too small and m
is large. Parametric prediction regions usually give poor estimates of h when
the parametric distribution is misspecified. Hence the parametric MVN region
only performed well for multivariate normal data.

3 Bootstrapping Confidence Regions and Hypothesis Tests

Consider testing H0 : µ = c versus H1 : µ 6= c where c is a known m × 1
vector. For example, let µ = Aβ where β is a p × 1 vector of parameters,
and A is a known full rank m × p matrix with 1 ≤ m ≤ p. Let the statistic
Tn be an estimator of µ based on a sample of size n. This section shows that
under regularity conditions, applying the large sample 100(1− δ)% prediction
region (9) to the bootstrap sample T ∗

1 , ..., T
∗
B gives a large sample 100(1− δ)%

confidence region for the m × 1 parameter vector µ. We call this bootstrap
technique the prediction region method.

Form = 1, the percentile method uses an interval that contains UB ≈ kB =
dB(1−δ)e of the T ∗

i,n from a bootstrap sample T ∗
1,n, ..., T

∗
B,n where the statistic

Tn is an estimator of µ based on a sample of size n. Often the n is suppressed
in the double subscripts. Let T ∗

(1), T
∗
(2), ..., T

∗
(B) be the order statistics of the

bootstrap sample. Then one version of the percentile method discards the
largest and smallest dBδ/2e order statistics, resulting in an interval [L̂B, R̂B].
We recommend using the Frey (2013) shorth (c) interval when m = 1. Hall
(1988) discusses the shortest bootstrap interval based on all bootstrap samples.

The following theorem shows that the hyperellipsoid Rc centered at the
statistic Tn is a large sample 100(1 − δ)% confidence region for µ, but the
hyperellipsoid centered at known µ is a large sample 100(1 − δ)% prediction
region for a future value of the statistic Tf,n.

Theorem 4 Let the 100(1 − δ)th percentile D2
1−δ be a continuity point

of the distribution of D2. Assume that D2
µ(Tn,ΣT )

D→ D2, D2
µ(Tn, Σ̂T )

D→
D2, and D̂2

1−δ
P→ D2

1−δ where P (D2 ≤ D2
1−δ) = 1 − δ. i) Then Rc = {w :

D2
w(Tn, Σ̂T ) ≤ D̂2

1−δ} is a large sample 100(1− δ)% confidence region for µ,

and if µ is known, then Rp = {w : D2
w(µ, Σ̂T ) ≤ D̂2

1−δ} is a large sample
100(1−δ)% prediction region for a future value of the statistic Tf,n. ii) Region
Rc contains µ iff region Rp contains Tn.

Proof i) Note that D2
µ(Tn, Σ̂T ) = D2

Tn
(µ, Σ̂T ). Thus the probability that

Rc contains µ is P (D2
µ(Tn, Σ̂T ) ≤ D̂2

1−δ) → 1 − δ, and the probability that

Rp contains Tf,n is P (D2
µ(Tf,n, Σ̂T ) ≤ D̂2

1−δ) → 1 − δ, as n→ ∞.

ii) D2
µ(Tn, Σ̂T ) ≤ D̂2

1−δ iff D2
Tn

(µ, Σ̂T ) ≤ D̂2
1−δ. �

Motivated by Theorem 4, the prediction region method applies the non-
parametric prediction region (9) to the bootstrap sample to get a confidence
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region. The rather simple theory follows. Let T ∗ =
1

B

B∑

i=1

T ∗
i and S∗

T =

1

B − 1

B∑

i=1

(T ∗
i − T ∗)(T ∗

i − T ∗)T be the sample mean and sample covariance

matrix of T ∗
1 , ..., T

∗
B. Assume nS∗

T
P→ ΣT as n, B → ∞ where ΣT and S∗

T are
nonsingular m×m matrices, and Tn is an estimator of µ such that

√
n (Tn − µ)

D→ U (17)

as n→ ∞. Then

√
n Σ

−1/2
T (Tn − µ)

D→ Σ
−1/2
T U = Z,

n (Tn − µ)T Σ̂
−1

T (Tn − µ)
D→ ZT Z = D2

as n→ ∞ where Σ̂T is a consistent estimator of ΣT , and

(Tn − µ)T [S∗
T ]−1 (Tn − µ)

D→ D2 (18)

as n, B → ∞. Assume P (D2 ≤ D2
1−δ) = 1 − δ.

If the distribution of D2 is known, then a common bootstrap large sample
100(1− δ)% confidence region for µ is

{w : (w−Tn)T [S∗
T ]−1(w−Tn) ≤ D2

1−δ} = {w : D2
w(Tn,S

∗
T ) ≤ D2

1−δ}. (19)

Often by a central limit theorem or the multivariate delta method,
√
n(Tn −

µ)
D→ Nm(0,ΣT ), and D2 ∼ χ2

m. Note that [S∗
T ]−1 could be replaced by

nΣ̂
−1

T . Machado and Parente (2005) provide sufficient conditions and refer-
ences for when nS∗

T is a consistent estimator of ΣT .

Bickel and Ren (2001) use nΣ̂
−1

T instead of [S∗
T ]−1, and replace the D2 cut-

off in (19) byD2
(kB) where D2

(kB) is computed fromD2
i = n(T ∗

i −Tn)T Σ̂
−1

T (T ∗
i −

Tn) for i = 1, ..., B. If nS∗
T = Σ̂T , the (modified) large sample 100(1 − δ)%

confidence region for µ is

{w : (w−Tn)T [S∗
T ]−1(w−Tn) ≤ D2

(UB)} = {w : D2
w(Tn,S

∗
T ) ≤ D2

(UB)} (20)

where D2
(UB) is computed from D2

i = (T ∗
i − Tn)T [S∗

T ]−1(T ∗
i − Tn) for i =

1, ..., B.
The prediction region method large sample 100(1− δ)% confidence region

for µ is

{w : (w−T ∗
)T [S∗

T ]−1(w−T ∗
) ≤ D2

(UB)} = {w : D2
w(T

∗
,S∗

T ) ≤ D2
(UB)} (21)

where D2
(UB) is computed from D2

i = (T ∗
i − T

∗
)T [S∗

T ]−1(T ∗
i − T

∗
) for i =

1, ..., B. Note that the corresponding test for H0 : µ = µ0 rejects H0 if (T
∗ −

µ0)
T [S∗

T ]−1(T
∗ − µ0) > D2

(UB). This procedure is basically the one sample
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Hotelling’s T 2 test applied to the T ∗
i using S∗

T as the estimated covariance
matrix and replacing the χ2

m,1−δ cutoff by D2
(UB).

Given (17) and (18), a sufficient condition for (20) to be confidence region
is √

n(T ∗
i − Tn)

D→ U , (22)

while sufficient conditions for (21) to be confidence region are

√
n(T ∗

i − T
∗
)

D→ U , (23)

and √
n(T

∗ − µ)
D→ U . (24)

Note (23) and (24) follow from (22) and (17) if
√
n(Tn−T

∗
)

P→ 0, so Tn−T
∗

=
oP (n−1/2).

As in Bickel and Ren (2001), let µ = T (F ), Tn = T (Fn), and T ∗ = T (F ∗
n)

where F is the cumulative distribution function (cdf) of iid x1, ...,xn, Fn is
the empirical cdf, and F ∗

n is the empirical cdf of x∗
1, ...,x

∗
n, a sample from

Fn using the nonparametric bootstrap. If
√
n(Fn − F )

D→ zF , a Gaussian
random process, and if T is sufficiently smooth (Hadamard differentiable with
a well behaved Hadamard derivative Ṫ (F )), then (17) and (22) hold with
U = Ṫ (F )zF . Note that Fn is a perfectly good cdf “F ” and F ∗

n is a perfectly
good empirical cdf from Fn = “F .” Thus if n is fixed, and a sample of size k
is drawn with replacement from the empirical distribution, then

√
k(T (F ∗

k ) −
Tn)

D→ Ṫ (Fn)zFn
. Now let n → ∞ with k = n. Then bootstrap theory gives

√
n(T ∗

i − Tn)
D→ limn→∞ Ṫ (Fn)zFn

= Ṫ (F )zF ∼ U .

To justify the prediction region method, assume that (17) and (22) hold
where U ∼ Nm(0,ΣT ), an m× 1 multivariate normal distribution with mean
0 and covariance matrix ΣT . Use Zn ∼ ANm (µn,Σn) to indicate that a
normal approximation is used: Zn ≈ Nm(µn,Σn). Let T ∗

i = T ∗
i,n. Then

T ∗
i ∼ ANm

(
Tn,

ΣT

n

)
. Fix n temporarily and let W i =

√
n(T ∗

i − Tn).

Then with respect to the bootstrap distribution (so conditional on the data),

W 1, ...,WB are iid, and
√
n(T

∗−Tn) =
1

B

B∑

i=1

W i ∼ ANm

(
0,

ΣT

B

)
is a nor-

mal approximation. Hence
√
nB(T

∗−Tn) ∼ ANm(0,ΣT ). Now unfix n. Since
the same normal approximation holds for n and B large (and ANm(0,ΣT )

does not depend on n or B), it follows that T
∗ − Tn = oP (n−1/2).

The prediction region method should often work if E(T
∗
)−Tn = oP (n−1/2)

and the asymptotic covariance matrix of T
∗

is
ΣT

nB
as n, B → ∞. As in Efron

(2014), T ∗ is the bagging or smoothed bootstrap estimator of µ, which often
outperforms Tn for inference. See Büchlmann and Yu (2002) and Friedman
and Hall (2007) for theory and references for the bagging estimator.



Applications of Hyperellipsoidal Prediction Regions 15

These results suggest that under reasonable conditions, (17), (22), (23),

and (24) hold:
√
n(Tn − µ)

D→ U ,
√
n(T ∗

i − Tn)
D→ U ,

√
n(T ∗

i − T
∗
)

D→ U ,

and
√
n(T

∗ − µ)
D→ U . Stronger conditions are needed for nS∗

T
P→ ΣT . The

regularity conditions for the prediction region method are weaker when m = 1,
since S∗

T does not need to be computed: the prediction region method is the

closed interval centered at T
∗

just long enough to contain UB of the T ∗
i . Hence

the prediction region method is a special case of the percentile method when
m = 1. Efron (2014) also used a confidence interval centered at the bagging

estimator T
∗
.

The prediction region method is simple. Let µ̂ be a consistent estimator
of µ and make a bootstrap sample wi = µ̂∗

i − c for i = 1, ..., B. Using (21)
applied to the wi as a large sample 100(1−δ)% confidence region, fail to reject
H0 if 0 is in the confidence region (if D0 ≤ D(UB)), and reject H0 otherwise.

As an example, consider variable selection for the linear model, written
in matrix form as Y = Xβ + e. Let β̂Imin

correspond to the submodel that

minimized the Cp criterion, and form β̂ = β̂Imin,0 by adding 0s corresponding
to the omitted variables. Then the residual bootstrap method can be applied:
instead of computing the least squares estimator from regressing Y ∗

i on X ,

perform variable selection on Y ∗
i and X , resulting in estimators β̂

∗

1, ..., β̂
∗

B .
Then test µ = Aβ = c using the prediction region method for m > 1 and
using the Frey (2013) shorth(c) interval if m = 1.

Table 2 Bootstrapping the All Subsets Variable Selection Model

variable β̂Imin,0 OLS SE shorth intervals

constant -0.9573 0.1519 [−2.769, 0.460]
L 0 [−0.004, 0.004]

logW 0 [−0.595, 0.869]
H 0.0072 0.0047 [0.000, 0.016]

logS 0.6530 0.1160 [ 0.324, 0.913]

Example 2. Consider the data from Example 1, but let Y = log(M), and
let the other variables be the predictors with β1 and x1 ≡ 1 corresponding
to the constant. The minimum all subsets Cp model Imin used a constant,
H , and log(S). Table 2 shows results for this model including the shorth(c)
nominal 95% confidence intervals for βi using the residual bootstrap. The OLS
SE would only be correct if Imin was selected before looking at the data. Note
that the interval for H is right skewed and contains 0 when closed intervals are
used instead of open intervals. Consider testing H0 : Aβ = (β2, β3, β4)

T = 0.
Using the prediction region method with the Imin variable selection model had
[0, D(UB)] = [0, 3.293] while D0 = 1.134. So fail to reject H0. Hence log(S)
appears to be the important predictor.

A small simulation study was done in R using B = max(1000, n, 20p) and
5000 runs. The regression model used β = (1, 1, 0, 0)T with n = 100, p = 4,
and various zero mean iid error distributions. The design matrix X consisted
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of iid N(0,1) random variables. Hence the full model least squares confidence
intervals for βi should have length near 2t96,0.975σ/

√
n ≈ 2(1.96)σ/10 = 0.392σ

when the iid zero mean errors have variance σ2. The simulation computed the
shorth(c) interval for each βi and used the prediction region method to test
H0 : β3 = β4 = 0. Observed coverage between 0.94 and 0.96 suggests the
actual coverage is close to the nominal coverage 0.95.

Table 3 Bootstrapping Regression and Variable Selection

model cov/len β1 β2 β3 β4 test
reg cov 0.9496 0.9430 0.9440 0.9454 0.9414

len 0.3967 0.3996 0.3997 0.3997 2.4493
vs cov 0.9482 0.9486 0.9974 0.9974 0.9896

len 0.3965 0.3990 0.3241 0.3257 2.6901

The regression models used the residual bootstrap on the full model least
squares estimator and on the all subsets variable selection estimator for the
model Imin. The residuals were from least squares applied to the full model
in both cases. Results are shown for when the iid errors ei ∼ N(0, 1). Table 3
shows two rows for each model giving the observed confidence interval cover-
ages and average lengths of the confidence intervals. The term “reg” is for the
full model regression, and the term “vs” is for the all subsets variable selection.
The column for the “test” gives the length and coverage = P(fail to reject H0)
for the interval [0, D(UB)] where D(UB) is the cutoff for the confidence region.
The volume of the confidence region will decrease to 0 as n → ∞. The cutoff

will often be near
√
χ2

m,0.95 if the statistic T is asymptotically normal. Note

that
√
χ2

2,0.95 = 2.448 is very close to 2.4493 for the full model regression

bootstrap test. The coverages were near 0.95 for the regression bootstrap on
the full model. For Imin the coverages were near 0.95 for β1 and β2, but higher
for the other 3 tests since zeroes often occurred for β̂∗

j for j = 3, 4. The average
lengths and coverages were similar for the full model and all subsets variable
selection Imin for β1 and β2, but the lengths were shorter for Imin for β3 and
β4. Volumes of the hyperellipsoids were not computed, but the average cut-
off of 2.69 for the variable selection test suggests that the test statistic was
not asymptotically normal, which is not surprising since many zeroes were
produced for β̂∗

j for j = 3, 4.

See Olive (2016a) for more information about the prediction region method.

Schomaker (2012) suggests bootstrap estimates of the standard error of β̂i

for shrinkage estimators. Firinguetti and Bobadilla (2011) suggest confidence
intervals for βi for ridge regression.
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4 Conclusion

Under regularity conditions, the Olive (2013) nonparametric prediction region
computed from pseudodata gives a prediction region, while the nonparametric
prediction region computed from a bootstrap sample gives a confidence region
that can be used for hypothesis testing for complicated models such as variable
selection models. The Olive (2013) prediction intervals can also be used for
some variable selection models, and may be useful for cross validation.

Applications of the prediction region method are numerous, but we may
need n ≥ 50m and B ≥ max(100, n, 50m) if the test statistic has an ap-
proximate multivariate normal distribution. Sample sizes may need to be
much larger for other limiting distributions. A similar technique can be used
to estimate the 100(1 − δ)% Bayesian credible region for θ. Generate B =

max(100000, n) values of θ̂ from the posterior distribution, and compute the

prediction region (9). Use prediction region (1) with f̂ = f if the posterior
pdf f is known. Olive (2014, pp. 283, 364) used the shorth(kB) estimator to
compute shorter bootstrap confidence intervals, and to estimate the highest
density region corresponding to a known posterior pdf for Bayesian inference.
Mohie El–Din and Shafay (2013) consider Bayesian prediction intervals.

The practical method for making prediction regions does not need the error
distribution to be known. Other methods, such as (1), may not be competitive
for m much larger than two. Obtaining prediction regions when the errors are
not additive is a difficult problem. See Cai, Tian, Solomon, and Wei (2008)
for some useful results. Plots and simulations were done in R. See R Core
Team (2015). Programs are in the collection of functions mpack available at
(http://lagrange.math.siu.edu/Olive/mpack.txt). The function mpredsim was
used to simulate the prediction regions (15), mregddsim simulated the residual
vector DD plots for various distributions, and the function ddplot4 makes
the DD plots. Functions hdr2 and predrgn can be used to simulate (1) and
(9). The functions regbootsim and vsbootsim can be used to simulate the
bootstrap tests for multiple linear regression and for the all subsets variable
selection model that minimizes Cp.
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