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Abstract

The Rousseeuw Yohai paradigm for high breakdown multivariate statistics

is based on one of the largest and longest running scientific hoaxes in history:

that impractical brand name estimators can be efficiently computed by using

some criterion to select a fit from a fixed number of easily computed trial fits.

The bait and switch hoax is to give theory for high complexity impractical brand

name estimators, but to actually use practical Fake-brand name estimators that

are not backed by large sample or breakdown theory. Another hoax is to claim,

without proof, that the practical Fake-brand name estimator is the brand name

estimator.

KEY WORDS: robust regression, robust multivariate location and

dispersion, high breakdown statistics

There has been a breakdown in the research and refereeing of multivariate “high
breakdown robust statistics.” The Rousseeuw Yohai paradigm is to replace the im-
practical brand name estimator by a practical Fake-brand name estimator that com-
putes no more than a few thousand easily computed trial fits, but no breakdown
or large sample theory is given for the Fake-brand name estimator (the “bait and
switch hoax”). Most of the literature follows the Rousseeuw Yohai paradigm, using
estimators like Fake-MCD, Fake-LTS, Fake-MVE, Fake-S, Fake-LMS, Fake-τ , Fake-
Stahel-Donoho, Fake-Projection, Fake-MM, Fake-LTA, Fake-Constrained M, ltsreg,
lmsreg, cov.mcd, cov.mve or OGK that are not backed by theory. Maronna, Martin
and Yohai (2006, ch. 2, 6) and Hubert, Rousseeuw and Van Aelst (2008) provide ref-
erences for the above estimators. Most of the brand name estimators were invented
in papers by Rousseeuw, Yohai, Maronna or Tyler.
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Workers also often claim that the Fake-brand name estimator is affine equivariant,
but if randomly chosen elemental starts are used, then the estimator depends on the
random number seed and is not affine equivariant unless the random number seed
is fixed. Hence many implementations of Fake-brand name estimators are not even
affine equivariant. Run the program twice on the same data set and see if you get
the same answer.

Problems with these estimators have been pointed out many times. For example,
Huber and Ronchetti (2009, p. xiii, 8-9, 152-154, 196-197) suggest that high break-
down regression estimators do not provide an adequate remedy for the ill effects of
outliers, that their statistical and computational properties are not adequately un-
derstood, that they “break down for all except the smallest regression problems by
failing to provide a timely answer!” and that “there are no known high breakdown
point estimators of regression that are demonstrably stable.” Also see Stigler (2010).
Woodruff and Rocke (1994, p. 889) point out that in practice the algorithm is the
estimator (so the Fake-brand name estimator, rather than the brand name estimator,
is the estimator). Rousseeuw (1993, p. 126) states that the random sampling versions
of PROGRESS are not high breakdown algorithms.

Widely used multivariate “robust estimators” from the Rousseeuw Yohai paradigm
are discussed in the JASA discussion paper Hawkins and Olive (2002) who prove that
elemental concentration algorithms are zero breakdown and that elemental basic re-
sampling estimators are zero breakdown and inconsistent. Also see Olive and Hawkins
(2010, 2011). The proofs did not depend on the criterion used to pick the trial fit.

Hubert, Rousseeuw and Van Aelst (2002) reported that they appreciate this work.
Maronna and Yohai (2002) correctly note that the algorithm estimators are inconsis-
tent if the number of concentration steps is finite, but consistency is not known if the
concentration is iterated to convergence. So it is not known whether Fake-MCD and
Fake-LTS are consistent. These five authors ignore these results in their later work,
resulting in the hoax. Note that the Maronna, Martin and Yohai (2006, p. 198-199)
multivariate location and dispersion estimators that use K = 500 randomly chosen
elemental sets and k = 1 concentration steps are inconsistent, and that the authors
fail to cite Hawkins and Olive (2002) or Maronna and Yohai (2002).

Rousseeuw and Van Driessen (2006): “Computing LTS Regression for Large Data
Sets” and Rousseeuw, Van Aelst and Hubert (1999, p. 425) claim that the LTS
estimator can be computed with Fake-LTS. Hubert, Rousseeuw and Van Aelst (2008):
“High Breakdown Multivariate Methods” do admit that most highly robust estimators
take too long to compute, but claim that the zero breakdown Fake-MCD and Fake-
LTS elemental concentration estimators can be used to efficiently compute MCD and
LTS. The hoax is especially aggravating since variants of Fake-LTS were the running
examples in Hawkins and Olive (2002). Rousseeuw and Van Driessen (1999): “A
Fast Algorithm for the Minimum Covariance Determinant Estimator,” and Hubert,
Rousseeuw, and Verdonck (2012) also claim that Fake-MCD can be used to efficiently
compute MCD.

The hoax can perhaps be most easily seen in Hubert, Rousseeuw and Verdonck
(2012). They use K = 6 easily computed estimators (Ti, Ci) of multivariate location
and dispersion, compute the determinant det(Ci) of each dispersion estimator and

2



declare that they have efficiently computed the MCD estimator with the (Tj, Cj)
that had the smallest determinant. However, they fail to prove that their latest Fake-
MCD estimator i) is the MCD estimator, ii) is asymptotically equivalent to the MCD
estimator, iii) is consistent, or iv) is high breakdown.

Van Aelst and Willems (2011) uses the bait and switch hoax, claiming that the
infinite complexity S estimator and high complexity MM estimator can be computed
with the Fake-S and Fake-MM estimators. Similarly, Bergesio and Yohai (2011, p.
666) also use a bait and switch hoax, replacing MCD by Fake-MCD in their WML
estimator, and claim to compute

√
n consistent high breakdown projection estima-

tors for generalized linear models similar to the Fake-projection estimators for linear
regression given in Maronna and Yohai (1993). The infinite complexity S estimators
can not be computed since it can not be shown that the global minimum has been
reached. Note that for multiple linear regression and multivariate location and dis-
persion, no one knows how to compute projection estimators (defined by computing
all possible projections on the unit hypersphere) that have been shown to be high
breakdown and consistent if the number of predictors p > 2. See Zuo and Lai (2011).

Most of the researchers in the field have been taken in by this obvious hoax. Hence
the literature on high breakdown multivariate statistics is untrustworthy: the best
papers either give large sample theory for brand name estimators that take far too
long to compute, or give practical outlier resistant methods that could possibly be
used as diagnostics but have not been shown to be consistent or high breakdown. As
a rule of thumb, if p > 2 then the brand name estimators take too long to compute,
so researchers who claim to be using a practical brand name estimator are actually
using a Fake-brand name estimator.

Brand name estimators have absurdly high complexity:
Estimators with O(n4) or higher complexity take too long to compute and will

rarely be used. The literature on estimators with O(np) complexity typically claims
that the estimator can be computed for n = 100 if p = 4, while simulations tend
to use p ≤ 2. Since estimators need to be widely used before they are trustworthy,
the brand name high breakdown multivariate robust estimators are untrustworthy
for p > 2. For p > 4, estimators with O(np) or higher complexity rank among
the worst estimators ever proposed. If n = 100, if the complexity is 1000 np,
and if the computer can perform 107 operations per second, then the algorithm takes
102p−4 seconds where 104 seconds is about 2.8 hours, 1 day is slightly less than 105

seconds, 106 seconds is slightly less than 2 weeks and 109 seconds is about 30 years.
Suppose n and p are 200 and 10 respectively so that the data set is small by modern
standards, and suppose the complexity is np ≈ 1023. A computer that could analyze
one candidate solution per microsecond would take 5 billion years to evaluate the
theoretical estimator.

Estimators computed by searching all “half sets,” such as LTS and MVE, have ex-
ponential complexity since the Banzhaf Index, C(n−1, 0.5(n−1)) ≈ 2n/

√

2π(n − 1),
is exponential in n. See Grofman (1981) and Ross (1989, p. 147). Woodruff and Rocke
(1994, p. 893) note that if 1 billion subsets of size 101 could be evaluated per second,
it would require 1033 millenia to search through all C(200, 101) subsets if the sample
size n = 200.
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The fastest brand name estimator of multivariate location and dispersion that has
been shown to be both consistent and high breakdown is the minimum covariance
determinant (MCD) estimator with O(nv) complexity where v = 1 + p(p + 3)/2. See
Bernholt and Fischer (2004). The MVE complexity is exponential, and for p > 2
there may be no known method for computing S, τ , projection based, constrained M,
MM, and Stahel-Donoho estimators.

The fastest brand name regression estimators that have been shown to be high
breakdown and consistent are LMS and LTA with O(np) complexity. See Bernholt
(2005, 2006). The least quantile of differences and repeated median complexities are
far higher, LTS complexity is exponential, and for p > 2 there may be no known
method for computing S, τ , projection based, constrained M and MM estimators.

Some Theory and Conjectures for Fake Estimators
Some theory for the Fake-estimators actually used will be given after some no-

tation. Let p = the number of predictors. The Fake-MCD and Fake-S estimators
are zero breakdown variants of the elemental concentration and elemental resampling
algorithms that use K elemental fits where K is a fixed number that does not de-
pend on the sample size n. To produce an elemental fit, randomly select h cases and
compute the classical estimator (Ti, Ci) (or Ti = β̂i for regression) for these cases,
where h = p for multiple linear regression and h = p+1 for multivariate location and
dispersion. The elemental resampling algorithm uses one of the K elemental fits as
the estimator, while the elemental concentration algorithm refines the K elemental
fits using all n cases. See Olive and Hawkins (2010, 2011) for more details.

Breakdown is computed by determining the smallest number of cases dn that can
be replaced by arbitrarily bad contaminated cases in order to make ‖T‖ or ‖β̂‖ arbi-
trarily large or to drive the smallest or largest eigenvalues of the dispersion estimator
C to 0 or ∞. High breakdown estimators have γn = dn/n → 0.5 and zero breakdown
estimators have γn → 0 as n → ∞.

A crucial observation is that the theory of the algorithm estimator depends on the
theory of the trial fits, not on the estimator corresponding to the criterion. Note that
if K = 1 and the classical estimator is used, computing the determinant of the sample
covariance matrix does not convert the classical estimator into the MCD estimator
and computing the median squared residual does not convert OLS into the LMS
estimator. For another example, let (MED(W ), Ip) and (MED(W ), diag(1, 3, ..., p))
be the high breakdown trial fits. If the minimum determinant criterion is used,
then the final estimator is (MED(W ), Ip). Although the MCD criterion is used, the
algorithm estimator does not have the same properties as the MCD estimator.

Note that an estimator can not be consistent for θ unless the number of randomly
selected cases goes to ∞, except in degenerate situations. The following theorem
shows Fake-MCD and Fake-S are zero breakdown estimators. (If Kn → ∞, then the
elemental estimator is zero breakdown if Kn = o(n). A necessary condition for the
elemental basic resampling estimator to be consistent is Kn → ∞.)

Theorem 1: a) The elemental basic resampling algorithm estimators are incon-
sistent. b) The elemental concentration and elemental basic resampling algorithm
estimators are zero breakdown.
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Proof: a) Note that you can not get a consistent estimator by using Kh randomly
selected cases since the number of cases Kh needs to go to ∞ for consistency except
in degenerate situations.

b) Contaminating all Kh cases in the K elemental sets shows that the breakdown
value is bounded by Kh/n → 0, so the estimator is zero breakdown. QED

Theorem 1 shows that the elemental basic resampling PROGRESS estimators
of Rousseeuw (1984), Rousseeuw and Leroy (1987) and Rousseeuw and van Zomeren
(1990) are zero breakdown and inconsistent, and thus the Rousseeuw and van Zomeren
(1990, p. 649) claim that their MVEE estimator gives a good approximation to the
MVE estimator is false. Yohai’s two stage estimators, such as MM, need initial
consistent high breakdown estimators such as LMS, MCD or MVE, but were imple-
mented with the inconsistent zero breakdown elemental estimators such as lmsreg,
Fake-LMS, Fake-MCD, MVEE or Fake-MVE. See Hawkins and Olive (2002, p. 157).
Salibian-Barrera and Yohai (2008) still use the elemental basic resampling algorithm.
You can get consistent estimators if Kn → ∞ or hn → ∞ as n → ∞. You can get
high breakdown estimators and avoid singular starts if all Kn = C(n, h) = O(nh)
elemental sets are used, but such an estimator is impractical.

Some workers claim that their elemental estimators search for sets for which the
classical estimator can be computed, hence the above trivial results do not hold.
(This claim does not excuse the fact that the workers fail to provide any large sample
or breakdown theory for their “practical estimators.”) For practical estimators, this
claim is false since the estimator will not be practical if the program goes into an
endless loop or searches all O(np) elemental sets when supplied with messy data.
Practical estimators may search more than the default number of Kd elemental sets,
but still terminate if K > Kd sets fails to produce an estimator. For example, the
Rousseeuw and Leroy (1987) PROGRESS algorithm uses Kd = 3000 and K ≤ 30000
elemental sets. Fake-MCD uses Kd = 500 and terminates very quickly.

Bali, Boente, Tyler and Wang (2011) gave possibly impressive theory for infinite
complexity impractical robust projection estimators, but should have given theory for
the practical Fake-projection estimator actually used. To estimate the first principal
direction for principal component analysis, the Fake-projection (CR) estimator uses
n projections zi = wi/‖wi‖ where wi = yi − µ̂n. Note that for p = 2 one can select
360 projections through the origin and a point on the unit circle that are one degree
apart. Then there is a projection that is highly correlated with any projection on
the unit circle. If p = 3, then 360 projections are not nearly enough to adequately
approximate all projections through the unit sphere. Since the surface area of a unit
hypersphere is proportional to np−1, approximations rapidly get worse as p increases.

Theory for the Fake-projection (CR) estimator may be simple. Suppose the data
is multivariate normal Np(0, diag(p, 1, ..., 1)). Then β = (1, 0, ..., 0)T (or −β) is the
population first direction. Heuristically, assume µ̂n = 0, although in general µ̂n

should be a good
√

n consistent estimator of µ such as the coordinatewise median.
Let bo be the “best” estimated projection zj that minimizes ‖zi −β‖ for i = 1, ..., n.
“Good” projections will have a yi that lies in one of two “hypercones” with a vertex
at the origin and centered about a line through the origin and ±β with radius r
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at ±β. So for p = 2 the two “cones” are determined by the two lines through the
origin with slopes ± r. The probability that a randomly selected yi falls in one of
the two “hypercones” is proportional to rp−1, and for bo to be consistent for β need
r → 0, P(at least one yi falls in “hypercone”) → 1 and n → ∞. If these heuristics

are correct, need r ∝ n
−1
p−1 for ‖bo −β‖ = OP (n

1
p−1 ). Note that bo is not an estimator

since β is not known, but the rate of the “best” projection bo gives an upper bound
on the rate of the Fake-projection estimator v1 since ‖v1−β‖ ≥ ‖bo−β‖. If the scale
estimator is

√
n consistent, then for a large class of elliptically contoured distributions,

a conjecture is that ‖v1 − β‖ = OP (n
1

2(p−1) ) for p > 1.
Alternatives to the Fake Estimators
A long standing question in Statistics is whether high breakdown multivariate

statistics is a viable field of study. Are there useful high breakdown estimators of
multivariate location and dispersion and multiple linear regression that are practi-
cal to compute? Can high breakdown estimators be incorporated into a practical
algorithm in such a way that the algorithm estimator is consistent?

There is an alternative to the Rousseeuw Yohai paradigm. Use the estimators
of Olive and Hawkins (2010, 2011) who avoid the “bait and switch error” by giving
theory for the practical HBREG, FCH, RFCH and RMVN estimators actually used in
the software. Good results can be obtained if intelligently selected trial fits are used.
For a concentration algorithm, let a start be the initial estimator and the attractor
the trial fit that results after applying k + 1 concentration steps to the start.

The Devlin, Gnanadesikan and Kettenring (1981) DGK estimator (Tk,D, Ck,D) =
(TDGK , CDGK) uses the classical estimator (T

−1,D, C
−1,D) = (x, S) as the only start.

The Olive (2004) median ball (MB) estimator (Tk,M , Ck,M) = (TMB, CMB) uses
(T

−1,M , C
−1,M) = (MED(W ), Ip) as the only start where MED(W ) is the coordi-

natewise median. Hence (T0,M , C0,M) is the classical estimator applied to the “half
set” of data closest to MED(W ) in Euclidean distance. For nonspherical elliptically
contoured distributions, CMB is a biased estimator of cΣ. However, the bias seems
to be small even for k = 0, and to get smaller as k increases. If the median ball

estimator is iterated to convergence, we do not know whether CMB
P→ cΣ.

The DGK and MB attractors can be used to define several robust estimators.
Let the “median ball” be the hypersphere containing the half set of data closest to
MED(W ) in Euclidean distance. The FCH estimator uses the MB attractor if the
DGK location estimator TDGK = Tk,D is outside of the median ball, and the attractor
with the smallest determinant, otherwise. Let (TA, CA) be the attractor used. Then
the estimator (TFCH , CFCH) takes TFCH = TA and

CFCH =
MED(D2

i (TA, CA))

χ2
p,0.5

CA (1)

where χ2
p,0.5 is the 50th percentile of a chi–square distribution with p degrees of free-

dom. The RFCH estimator uses two standard “reweight for efficiency steps” while
the RMVN estimator uses a modified method for reweighting.

Reyen, Miller, and Wegman (2009) simulate the OGK and MBA estimators for
p = 100 and n up to 50000. The OGK complexity is O[p3 + np2 log(n)] while that of
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MBA, RMBA, FCH, RFCH and RMVN is O[p3 + np2 + np log(n)]. These estimators
are roughly 100 times faster than Fake-MCD.

The assumption below gives the class of distributions for which FCH, RFCH
and RMVN have been shown to be

√
n consistent. Distributions where the MCD

functional is unique are called “unimodal,” and rule out, for example, a spherically
symmetric uniform distribution.

Assumption (E1): The x1, ..., xn are iid from a “unimodal” ECp(µ,Σ, g) dis-
tribution with nonsingular covariance matrix Cov(xi) where g is continuously differ-
entiable with finite 4th moment:

∫

(xTx)2g(xTx)dx < ∞.

Theorem 2, Lopuhaä (1999). Suppose (T, C) is a consistent affine equivariant
estimator of (µ, sΣ) with rate nδ where s > 0 and 0 < δ ≤ 0.5. Assume (E1)
holds. Then the classical estimator (T0, C0) applied to the cases with D2

i (T, C) ≤ h2

is a consistent affine equivariant estimator of (µ, aΣ) with the same rate nδ where
a > 0. The constant a depends on the positive constants s, h2, p and the elliptically
contoured distribution, but does not otherwise depend on the consistent start (T, C).

Let δ = 0.5. Applying the above theorem iteratively for a fixed number k of
steps produces a sequence of estimators (T0, C0), ..., (Tk, Ck) where (Tj, Cj) is a

√
n

consistent affine equivariant estimator of (µ, ajΣ) where the constants aj > 0 depend
on s, p, h and the elliptically contoured distribution, but do not otherwise depend on
the consistent start (T, C) ≡ (T

−1, C−1).
Concentration applies the classical estimator to cases with D2

i (T, C) ≤ D2
(cn)(T, C).

Let
b = D2

0.5(µ,Σ) (2)

be the population median of the population squared distances. Olive and Hawkins
(2010) show that if (T, C) is a

√
n consistent affine equivariant estimator of (µ, sΣ)

then (T, C̃) ≡ (T, D2
(cn)(T, C) C) is a

√
n consistent affine equivariant estimator of

(µ, bΣ) where b > 0 is given by Equation (2), and that D2
i (T, C̃) ≤ 1 is equivalent

to D2
i (T, C) ≤ D2

(cn)(T, C)). Hence Lopuhaä (1999) theory applied to (T, C̃) with
h = 1 is equivalent to theory applied to the concentration estimator using the affine
equivariant estimator (T, C) ≡ (T

−1, C−1) as the start. Since b does not depend on s,
concentration produces a sequence of estimators (T0, C0), ..., (Tk, Ck) where (Tj, Cj)
is a

√
n consistent affine equivariant estimator of (µ, aΣ) where the constant a > 0

is the same for each j. Then Olive and Hawkins (2010) show that the DGK and
MCD estimators are estimating the same quantity. Note that the DGK estimator
is practical to compute but has a much lower breakdown value than the impractical
MCD estimator.

Theorem 3, Olive and Hawkins (2010). Assume (E1) holds. a) Then the
DGK estimator and MCD estimator are

√
n consistent affine equivariant estimators

of (µ, aMCDΣ).
b) The FCH, RFCH and RMVN estimators are

√
n consistent estimators of

(µ, ciΣ) for c1, c2, c3 > 0 where ci = 1 for multivariate normal data. If the clean
data are in general position, then TFCH is a high breakdown estimator and CFCH is
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nonsingular even if nearly half of the cases are outliers.
Summary
Although it is obvious that theory for the practical estimator actually used should

be given, this theory is not given in the high breakdown multivariate literature.
Rousseeuw, Yohai, Hubert, Van Aelst and Maronna are responsible for one of the
largest scientific hoaxes in history. These five authors and associate editors He, Tyler,
Davies, Zamar, Zuo, and Croux are largely to blame for the breakdown in the refer-
eeing process for high breakdown multivariate statistics. This group of 11 seems to
continuously publish what should be unpublishable papers by the other authors and
to block publication of papers that give theory for the estimators actually used, mak-
ing Rousseeuw (1991) ironic. For PROGRESS to be made in highly outlier resistant
multivariate robust statistics, journals need to remove this group from the refereeing
process.

Tyler and Davies give theory for estimators with absurdly high complexity. He and
Zuo make the massive inexcusable bait and switch error (not a hoax since they state
that the estimator for which they gave theory takes too long to compute). Maronna
and Yohai define estimators that need an initial consistent high breakdown estimator,
but use an inconsistent zero breakdown elemental basic resampling estimator instead.
Davies, Yohai, Maronna and Zamar write papers that only give breakdown or maxi-
mum bias theory for estimators with absurdly high complexity. Breakdown and bias
properties are weaker than the property of being asymptotically unbiased. Yohai,
Croux and Van Aelst give large sample or influence function theory for estimators
(like MCD) with absurdly high complexity, but replace the impractical estimators by
practical estimators (like Fake-MCD) that have no large sample theory.

It is inexcusable that so many authors have been taken in by the Rousseeuw
Yohai hoax. Minimum standards for research require researchers to at least check
that theory has been proven for the practical estimator. No breakdown or large
sample theory is given for Fake-MCD or Fake-LTS: see Rousseeuw and Van Driessen
(1999, 2006), and the estimators can be shown to be zero breakdown in one sentence
as in Theorem 1b. Papers by Croux, Van Aelst and Yohai that give theory for a
brand name estimator and then use a practical Fake-estimator in the software are
more likely to fool nonexperts than work by Rousseeuw, but arguably the only theory
for practical highly outlier resistant multivariate estimators worth reading is in papers
by Olive, eg Olive and Hawkins (2010, 2011) and Hawkins and Olive (2002).
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