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Abstract

Practical large sample prediction regions for an m × 1 future response vector

yf , given xf and past training data (x1, y1), ..., (xn, yn), are developed for models
of the form yi = E(yi|xi) + ei = m(xi) + ei where the distribution of ei may

not be known. The classical prediction regions assume that the ei are iid from a
multivariate normal distribution, do not perform well if the normality assumption

is violated, and the performance decreases as the dimension m increases.
The new 100(1− δ)% prediction regions have a parameter c such that c of the

training data cases yi are in their prediction regions, even if the model is wrong or
misspecified.
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1. Introduction

This paper gives a practical method for obtaining a large sample prediction region
for an m× 1 random vector yf if the data are from a model of the form

yi = E(yi|xi) + ei = m(xi) + ei (1)

where the iid zero mean error vectors e1, ..., en may come from an unknown distribution,
and xi is a p × 1 vector of predictors. Examples of such models are the location model

Yi = µ+ ei, the multivariate location and dispersion model where yi = µ + ei and the ei

have nonsingular covariance matrix Cov(e) = Σe, the multiple linear regression model

Yi = xT
i β + ei, the additive error regression model Yi = m(xi) + ei (which includes

many nonlinear and nonparametric regression models), many time series models, and
the multivariate linear regression model discussed in Section 3.

Consider predicting a future test value yf , given xf and past training data (x1,y1), ...,
(xn,yn). A large sample (1 − δ)100% prediction region is a set An such that P (yf ∈
An)

P→ 1 − δ as n → ∞. A prediction region is asymptotically optimal if its volume
converges in probability to the volume of the minimum volume covering region or the
highest density region of the distribution of yf |xf . As an example, a large sample

100(1−δ)% prediction interval (PI) has the form (L̂n, Ûn) where P (L̂n < Yf < Ûn)
P→ 1−δ

as the sample size n → ∞. If the highest density region is an interval, then a PI is
asymptotically optimal if it has the shortest asymptotic length that gives the desired
asymptotic coverage.

Much as confidence regions and intervals give a measure of precision for the point
estimator θ̂ of the parameter θ, prediction regions and intervals give a measure of preci-
sion of the point estimator ŷf of the future random vector yf . The most used prediction
regions assume that the error vectors are iid from a multivariate normal distribution.
These classical regions do not perform well if the normality assumption is violated, and
the performance decreases as the dimension m increases, as will be shown below.

The highest density region can be constructed, in principle, if the probability density
function (pdf) f(z) of yf is known. See Hyndman (1996). The method of construction
will first be illustrated for a random variable Yf with pdf f(z). To find the (1 − δ)100%
highest density region corresponding to a pdf, move a horizontal line down from the top
of the pdf. The line will intersect the pdf or the boundaries of the support of the pdf at
(a1, b1), ..., (ak, bk) for some k ≥ 1. Stop moving the line when the areas under the pdf
corresponding to the intervals is equal to 1 − δ. Then the highest density region is the
union of the k intervals. Often the pdf is unimodal and decreases rapidly as z moves
away from the mode. Then k = 1 and the highest density region is an interval. If Yf has
an exponential distribution, the highest density region is (0, ξ1−δ) where P (Yf ≤ ξα) = α.
For a symmetric unimodal distribution, the highest density region is (ξδ/2, ξ1−δ/2). In
general, slice the pdf f(z) with a horizontal hyperplane.

An important multivariate distribution with a simple highest density region is the
elliptically contoured ECp(µ,Σ, g) distribution with pdf

f(z) = kp|Σ|−1/2g[(z −µ)TΣ−1(z −µ)]
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where kp > 0 is some constant and g is some known function. The multivariate normal
(MVN) Np(µ,Σ) distribution is a special case. Following Johnson (1987, pp. 107-108),
Cov(x) = Σx = cxΣ for some constant cx > 0 if second moments exist. The population
squared Mahalanobis distance

U ≡ D2(µ,Σ) ≡ D2
x(µ,Σ) = (x− µ)TΣ−1(x −µ), (2)

and for elliptically contoured distributions, U has pdf

h(u) =
πp/2

Γ(p/2)
kpu

p/2−1g(u). (3)

If g is continuous and decreasing, then the highest density region is

{z : (z − µ)T Σ−1(z − µ) ≤ u1−δ} = {z : D2
z(µ,Σ) ≤ u1−δ} (4)

where P (U ≤ u1−δ) = 1 − δ.
Typically the pdf of yf is not known. Then there is a moderate amount of literature

for prediction regions that may perform well for smallm. See Lei, Robins, and Wasserman
(2013), who estimate f(z) with a kernel density estimator, for references.

There are two practical methods for obtaining prediction regions: use the shorth
estimator if Yf is a random variable, and use sample Mahalanobis distances if yf is a
random vector. Let Z1, ..., Zn be random variables, let Z(1), ..., Z(n) be the order statistics,
and let c be a positive integer. Compute Z(c) −Z(1), Z(c+1) − Z(2), ..., Z(n) − Z(n−c+1). Let

shorth(c) = (Z(d),Z(d+c−1)) = (ξ̃δ1
, ξ̃1−δ2

) (5)

correspond to the interval with the smallest distance. Let

kn = dn(1 − δ)e (6)

where dxe is the smallest integer ≥ x, e.g., d7.7e = 8. Under mild conditions, the
shorth(kn) estimator is a consistent estimator of the highest density (interval) region
if the Zi = Yi are iid. See Grübel (1988).

To describe the second practical prediction region, let the p× 1 column vector T be
a multivariate location estimator, and let the p × p symmetric positive definite matrix
C be a dispersion estimator. Then the ith squared sample Mahalanobis distance is the
scalar

D2
i = D2

i (T,C) = D2
xi

(T,C) = (xi − T )TC−1(xi − T ) (7)

for each observation xi. Notice that the Euclidean distance of xi from the estimate of
center T is Di(T, Ip) where Ip is the p × p identity matrix. The classical Mahalanobis
distance uses (T,C) = (x,S), the sample mean and sample covariance matrix where

x =
1

n

n∑

i=1

xi and S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T. (8)
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The volume of the hyperellipsoid

{z : (z − x)T S−1(z − x) ≤ h2} is equal to
2πp/2

pΓ(p/2)
hp
√

det(S), (9)

see Johnson and Wichern (1988, pp. 103-104).
Note that if (T,C) is a

√
n consistent estimator of (µ, d Σ), then

D2(T,C) = (x−T )TC−1(x−T ) = (x−µ+µ−T )T [C−1−d−1Σ−1+d−1Σ−1](x−µ+µ−T )

= d−1D2(µ,Σ) +OP (n−1/2).

Thus the sample percentiles of D2
i (T,C) are consistent estimators of the percentiles of

d−1D2(µ,Σ). For multivariate normal data, D2(µ,Σ) ∼ χ2
p.

The second practical 100(1 − δ)% prediction region is the hyperellipsoid

{z : D2
z(x,S) ≤ D2

(c)} = {z : Dz(x,S) ≤ D(c)}. (10)

Olive (2013) showed that this prediction region estimates the highest density region for
a large class of EC distributions if c = kn given by (6). Di Bucchianico, Einmahl,
and Mushkudiani (2001) used the minimum volume ellipsoid to compute small volume
covering regions for m ≤ 2.

A problem with the prediction regions (5) and (10) is that they have coverage lower
than the nominal coverage of 1− δ for moderate n if c = kn = dn(1− δ)e. Note that both
prediction regions cover kn ≈ 100(1 − δ)% of the training data cases yi, and empirically
statistical methods perform worse on test data. Increasing c will improve the coverage
for moderate samples. Frey (2013) showed that for large nδ and iid data, the shorth(kn)
PI has maximum undercoverage ≈ 1.12

√
δ/n, and used the shorth(c) estimator as the

large sample 100(1 − δ)% PI where c = dn[1 − δ + 1.12
√
δ/n ] e.

The practical method for producing a prediction region for yf from model (1) is to
create pseudodata ŷf + ê1, ..., ŷf + ên using the residuals êi and the predicted value ŷf .
Then apply one of the two practical prediction regions (5) or (10) to the pseudodata but
modify c = kn = dn(1 − δ)e so that the coverage is better for moderate samples.

Let df be the model degrees of freedom. Then empirically for many models, for
n ≈ 20df , the two prediction regions (5) and (10) applied to iid data or pseudodata using
kn = dn(1− δ)e tend to have undercoverage as high as 5%. The undercoverage decreases
rapidly as n increases. Let qn = min(1 − δ + 0.05, 1 − δ +m/n) for δ > 0.1 and

qn = min(1 − δ/2, 1 − δ + 10δm/n), otherwise. (11)

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Using

c = dnqne (12)

in (5) or (10) decreased the undercoverage.
There are at least two reasons to use pseudodata. If there was an iid sample z1, ..., zk

from the same distribution as yf , then the prediction region could be applied to z1, ..., zk.
If E(yf |xf ) = m(xf) was known, and there was an iid sample e1, ..., ek from the error
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distribution, then zi = m(xf) + ei. The pseudodata uses ŷf = m̂(xf) and êi in place of
m(xf ) and ei with k = n.

The second reason is the relationship between the pseudodata and the bootstrap.
One way to get a bootstrap distribution is to draw a sample of size k with replacement
from the n residuals êi to make a bootstrap sample ŷf + ê

B
1 , ..., ŷf + ê

B
k . As k → ∞

the bootstrap sample will take on n values ŷf + êi (the pseudodata) with probabilities
converging to 1/n for i = 1, ..., n.

Olive (2013) showed that one of the sufficient conditions for the shorth PI to be
large sample 100(1 − δ)% PI is that the sample quantiles of the residuals be consistent
estimators of the population quantiles of the error distribution. Then the shorth of the
residuals is a consistent estimator of the population shorth of the error distribution. For
multiple linear regression and consistent estimators of β̂, the residuals behave well if the
vectors of predictors xi are bounded in probability. See Olive and Hawkins (2003) and
Rousseeuw and Leroy (1987, pp. 127-129).

The next four examples show that the above ideas have been used to create prediction
regions for multiple linear regression, additive error regression, the location model, and
the multivariate location and dispersion model. These ideas will be used to develop new
prediction regions for time series and multivariate regression models in Sections 2 and 3.

Example 1. Consider the multiple linear regression model Yi = xT
i β + ei, written in

matrix form as Y = Xβ + e where the hat matrix H = X(XTX)−1XT . Let hi = hii

be the ith diagonal element of H for i = 1, ..., n. Then hi is called the ith leverage and
hi = xT

i (XT X)−1xi. Suppose new data is to be collected with predictor vector xf . Then
the leverage of xf is hf = xT

f (XT X)−1xf . Let

an =

(
1 +

15

n

)√
n

n− p

√
(1 + hf ). (13)

Following Olive (2007), apply the shorth estimator to the residuals: let c = kn and
shorth(c) = (r(d), r(d+c−1)) = (ξ̃δ1

, ξ̃1−δ2
). Then a large sample 100 (1 − δ)% PI for Yf is

(Ŷf + anξ̃δ1
, Ŷf + anξ̃1−δ2

). (14)

This practical PI is asymptotically optimal if the xi are bounded in probability and the
iid ei come from a large class of zero mean unimodal distributions. Also see Cai, Tian,
Solomon, and Wei (2008).

The 100 (1 − δ)% classical PI for Yf is

Ŷf ± tn−p,1−δ/2se(pred) (15)

where se(pred) =
√
MSE (1 + hf) and P (T ≤ tn−p,δ) = δ if T has a t distribution with

n − p degrees of freedom. This PI may not perform well if the ei are not iid N(0, σ2)
since the normal quantiles are not the correct quantiles for other error distributions.

Example 2. Olive (2013) derived an asymptotically optimal PI (for a large class of
zero mean unimodal error distributions) for the additive error regression model, provided
that Ŷf = m̂(xf ) is a consistent estimator of m(xf ) and the shorth of the residuals is a
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consistent estimator of the population shorth of the error distribution. Let

bn =

(
1 +

15

n

)√
n+ 2p

n− p
. (16)

Let c = dnqne where qn is given by (11) with m replaced by p. Let shorth(c) =
(r(d), r(d+c−1)) = (ξ̃δ1

, ξ̃1−δ2
) be the shorth of the residuals. Then the 100 (1 − δ)% large

sample PI for Yf is
(m̂(xf ) + bnξ̃δ1

, m̂(xf) + bnξ̃1−δ2
), (17)

and is similar to (14).
Geometrically, plot Ŷi versus Yi on the vertical axis. Then the PIs are given by two

parallel lines with unit slope that contain c of the training data cases Yi where Ŷf is
on the identity line with unit slope and zero intercept. Hence c of the training data are
within their PIs even if the additive error regression model is wrong. If the plotted points
do not scatter about the identity line in an evenly populated band, the method of Lei
and Wasserman (2014) may be useful.

Example 3. The location model is a special case of both the regression model

and of the multivariate location and dispersion model. Let an =

(
1 +

15

n

)√
n + 1

n− 1
.

Let c = kn = dn(1 − δ)e. Let shorth(c) = (Y(d), Y(d+c−1)) be the shorth of the Yi.
Let MED(n) be the sample median. Following Olive (2013), if Y1, ..., Yn are iid, then
the recommended large sample 100(1 − δ)% PI for Yf is the closed interval [Ln, Un] =
[(1−an)MED(n)+anY(d), (1−an)MED(n)+anY(d+c−1)]. This PI is (14) using the least
absolute deviations estimator, but with a closed interval. Compare Frey (2013). This
PI also works for discrete data where a good PI should be short with coverage ≥ 1 − δ,
asymptotically.

Example 4. Olive (2013) derived a prediction region for the multivariate location
and dispersion model where the xi are iid random vectors. Suppose (T,C) = (xM , b SM)
is the sample mean and scaled sample covariance matrix applied to some subset of the
data. For h > 0, the hyperellipsoid

{z : (z − T )TC−1(z − T ) ≤ h2} = {z : D2
z ≤ h2} = {z : Dz ≤ h} (18)

has volume equal to

2πp/2

pΓ(p/2)
hp
√
det(C) =

2πp/2

pΓ(p/2)
hpbp/2

√
det(SM). (19)

A future observation (random vector) xf is in region (18) if Dxf
≤ h. If (T,C) is a

consistent estimator of (µ, dΣ), then (18) is a large sample (1−δ)100% prediction region
if h = D(up) where D(up) is the qnth sample quantile of the Di where qn is given by (11)
with m = p. If x1, ...,xn and xf are iid, then region (18) is asymptotically optimal
on a large class of elliptically contoured distributions in that its volume converges in
probability to the volume of the highest density region (4).

The recommended prediction region uses (T,C) = (x,S). Then the large sample
100(1 − δ)% prediction region for a future value xf given iid data x1, ..., ,xn is

{x : D2
x(x,S) ≤ D2

(up)}, (20)
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while the classical large sample 100(1 − δ)% prediction region is

{x : D2
x(x,S) ≤ χ2

p,1−δ}. (21)

See Chew (1966) and Johnson and Wichern (1988, pp. 134, 151).
The prediction region (20) contains qn of the training data cases xi provided that S is

nonsingular, even if the model is wrong. Also, (20) is a large sample 100(1−δ)% prediction
region if (x,S) is a consistent estimator of (E(x),Cov(x)) provided the covariance matrix
is nonsingular, although prediction regions with smaller volume may exist.

The ratio of the volumes of regions (21) and (20) is

(
χ2

p,1−δ

D2
(up)

)p/2

,

which can become close to zero rapidly as p gets large if the xi are not from the light
tailed multivariate normal distribution. For example, suppose χ2

4,0.5 ≈ 3.33 and D2
(up) ≈

D2
x,0.5 = 6. Then the ratio is (3.33/6)2 ≈ 0.308. Hence if the data is not multivariate

normal, severe undercoverage can occur if the classical prediction region is used, and the
undercoverage tends to get worse as the dimension p increases. The coverage need not to
go to 0, since by the multivariate Chebyshev inequality, P (D2

x(µ,Σx) ≤ γ) ≥ 1−p/γ > 0
for γ > p. See Budny (2014) and Navarro (2014, 2015).

The following two sections will illustrate how to develop new prediction regions for
more models of the form (1), and the above examples will be useful. Obtaining prediction
regions when the errors are not additive is a difficult problem. See Cai, Tian, Solomon,
and Wei (2008) for some useful results.

2. Time Series Prediction Intervals

Many time series models have the form

Yt = τ +
∑

i

ψiYt−iki
+
∑

j

νjet−jkj
+ et

where the et are iid with 0 mean and variance σ2
e . For example, the Box, Jenkins, and

Reinsel (1994) multiplicative seasonal ARIMA(p, d, q) × (P,D,Q)s time series models
have this form. Then the l step ahead forecast for a future value Yt+l is Ŷt(l) and the l
step ahead forecast residual is êt(l) = Yt+l − Ŷt(l). For example, a common choice is

Ŷt(l) = τ̂ +
∑

i

ψ̂iY
∗

t+l−iki
+
∑

j

ν̂j ê
∗

t+l−jkj

where êt is the tth residual, Y ∗

t+l−iki
= Yt+l−iki

if l − iki ≤ 0, Y ∗

t+l−iki
= Ŷt(l − iki) if

l − iki > 0, ê∗t+l−jkj
= êt+l−jkj

if l − jkj ≤ 0, and ê∗t+l−jkj
= 0 if l − jkj > 0, and the

forecasts Ŷt(1), Ŷt(2), ..., Ŷt(L) are found recursively if there is data Y1, ..., Yt. Typically
the residuals êt = êt−1(1) are the 1 step ahead forecast residuals and the fitted or predicted
values Ŷt = Ŷt−1(1) are the 1 step ahead forecasts.
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In the simulations, a moving average MA(2) = ARIMA(0,0,2)×(0, 0, 0)1 model, Yt =
τ + θ1et−1 + θ2et−2 + et, was used. Suppose data Y1, ..., Yn from this model is available.
The R software produces êt and Ŷt = Yt − êt for t = 1, ..., n where Ŷt = Ŷt−1(1) =
τ̂ + θ̂1êt−1 + θ̂2êt−2 for t = 3, ..., n+ 1, and êt(1) = Yt+1 − Ŷt(1) for t = 3, ..., n− 1. Hence
there are n 1 step ahead forecast residuals êt = êt−1(1) available. Then Ŷt(2) = τ̂ + θ̂2êt

for t = 1, ..., n.
Often time series PIs assume normality and are similar to equation (22) below. There

is a large literature on alternative PIs, especially for AR(p) models. See Clements and
Kim (2007), Kabaila and He (2007), Pan and Politis (2015ab), Panichkitkosolkul and
Niwitpong (2012), Thombs and Schucany (1990), and Vidoni (2009) for references. For
many time series models, a large sample 100(1 − δ)% PI for Yt+l is

(Ln, Un) = Ŷt(l) ± t1−δ/2,n−p−qSE(Ŷt(l)). (22)

Applying a PI similar to the one in Example 3 to et = Yt − Y ignores the time series
structure of the data. Let shorth(kn) = (L̃n, Ũn) be computed from the et. Then the
large sample shorth(kn) 100(1 − δ)% PI for Yt+l is

(Ln, Un) = (Y + anL̃n, Y + anŨn) (23)

where an is given in Example 3. For stationary invertible ARMA(p, q) models, this PI is
too long for l near 1, but should have short length for large l and if l > q for an MA(q)
model.

The following PI is new and takes into account the time series structure of the data. A
similar idea in Masters (1995, p. 305) is to find the l step ahead forecast residuals and use
percentiles to make PIs for Yt+l for l = 1, ..., L. For ARIMA(p, d, q) models, let c = dnqne
where qn is given by (11) with m replaced by p + q. Compute shorth(c) = (L̃n, Ũn) of
the l-step ahead forecast residuals êt(l). Then a large sample 100(1 − δ)% PI for Yt+l is

(Ln, Un) = (Ŷn(l) + L̃n, Ŷn(l) + Ũn). (24)

This PI is similar to that of Example 2.
Figure 1 shows a simulated MA(2) time series with n = 100, L = 7 and U(−1, 1)

errors. The horizontal lines correspond to the 95% PI (23). Two of the one hundred
time series points Y1, ..., Y100 lie outside of the two lines. All seven of the future cases
Y101, ..., Y107 lie within their large sample 95% PI.

The simulations used the MA(2) model where the distribution of the white noise et

is N(0,1), t5, U(−1, 1), or (EXP(1) - 1). All these distributions have mean 0, but the
fourth distribution is not symmetric. The simulation generated 5000 time series of length
n + L and PIs are found for Yn+1, ..., Yn+L. The simulations used L = 7 and 95% and
50% nominal PIs. The two types of PI used were the normal PI (22), and the possibly
asymptotically optimal PI used (23) for Yt+j where j > 2 and (24) for j = 1, 2. These
two types of PIs are denoted by N and A respectively in the tables. The simulated
coverages and average lengths of the PI are shown using two rows in the tables. With
5000 runs, coverages between 0.94 and 0.96 suggest that there is no reason to believe
that the nominal coverage is not 0.95.
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Figure 1: PIs for an MA(2) Time Series with Uniform(−1, 1) Errors

Table 1: Normal Errors

δ n PI j=1 j=2 j=3 j=4 j=5 j=6 j=7
0.05 100 N 0.9396 0.9432 0.9444 0.9436 0.9486 0.9498 0.9462
0.05 100 3.889 4.072 4.198 4.198 4.198 4.198 4.198
0.05 100 A 0.9482 0.9582 0.9550 0.9496 0.9556 0.9590 0.9532
0.05 100 4.143 4.509 4.461 4.461 4.461 4.461 4.461
0.05 1000 N 0.9520 0.9464 0.9476 0.9474 0.9496 0.9524 0.9474
0.05 1000 3.919 4.080 4.179 4.179 4.179 4.179 4.179
0.05 1000 A 0.9520 0.9488 0.9482 0.9446 0.9478 0.9500 0.9482
0.05 1000 3.913 4.086 4.170 4.170 4.170 4.170 4.170

Table 2: Uniform Errors

α n PI j=1 j=2 j=3 j=4 j=5 j=6 j=7
0.05 100 N 0.9904 0.9796 0.9820 0.9794 0.9780 0.9818 0.9800
0.05 100 2.254 2.359 2.433 2.433 2.433 2.433 2.433
0.05 100 A 0.9816 0.9756 0.9756 0.9702 0.9730 0.9776 0.9754
0.05 100 2.132 2.342 2.388 2.388 2.388 2.388 2.388
0.05 1000 N 1.0000 0.9898 0.9826 0.9830 0.9834 0.9822 0.9844
0.05 1000 2.263 2.357 2.416 2.416 2.416 2.416 2.416
0.05 1000 A 0.9548 0.9486 0.9494 0.9512 0.9514 0.9506 0.9478
0.05 1000 1.913 2.094 2.182 2.182 2.182 2.182 2.182

9



Some results are shown in Tables 1 and 2 for 95% PIs. From Table 1 for normal
errors, note that for n = 1000, the coverages and lengths of PIs (23) and (24) were very
similar to the those of PI (22). PIs (23) and (24) were longer than the normal PI (22)
for n = 100 and normal errors. From Table 2 for uniform errors, the normal PIs (22)
were too long and the coverage was too high for 95% PIs. The alternative PIs (23) and
(24) had coverage closer to the nominal level with good coverage for n = 1000.

For t5 errors, the 95% normal PI (22) worked well, but the nominal 50% normal
PI (22) had coverage that was too high and the average lengths were too large. The
alternative PIs had coverage near 50% with shorter average lengths. For EXP(1) - 1
errors, for 95% PIs the normal PIs (22) were longer than the alternative PIs (23) and
(24). For the 50% PIs, the normal PIs (22) were too long with coverage that was too
high. The alternative PIs (23) and (24) were shorter with good coverage.

3. Prediction Regions for Multivariate Regression

This section will derive a prediction region for model (1), and then consider the
multivariate linear regression model as a special case. The following technical theorem
will be needed to prove Theorem 2, which shows how to obtain a practical prediction
region using pseudodata.

Theorem 1. Let aj > 0 and assume that (µ̂j,n, Σ̂j,n) are consistent estimators of
(µ, ajΣ) for j = 1, 2.

a) D2
x(µ̂j , Σ̂j) − 1

aj
D2

x(µ,Σ) = oP (1).

b) Let 0 < δ ≤ 0.5. If (µ̂j, Σ̂j) − (µ, ajΣ) = Op(n
−δ) and ajΣ̂

−1

j − Σ−1 = OP (n−δ),
then

D2
x(µ̂j, Σ̂j) −

1

aj
D2

x(µ,Σ) = OP (n−δ).

Proof: Let Bn denote the subset of the sample space on which both Σ̂1,n and Σ̂2,n

have inverses. Then P (Bn) → 1 as n→ ∞. Now

D2
x(µ̂j, Σ̂j) = (x − µ̂j)

T Σ̂
−1

j (x − µ̂j) =

(x − µ̂j)
T

(
Σ−1

aj
− Σ−1

aj
+ Σ̂

−1

j

)
(x − µ̂j) = (x − µ̂j)

T

(−Σ−1

aj
+ Σ̂

−1

j

)
(x − µ̂j)+

(x − µ̂j)
T

(
Σ−1

aj

)
(x − µ̂j) =

1

aj
(x − µ̂j)

T (−Σ−1 + aj Σ̂
−1

j )(x− µ̂j) +

(x − µ + µ − µ̂j)
T

(
Σ−1

aj

)
(x − µ + µ − µ̂j)

=
1

aj

(x −µ)TΣ−1(x − µ)

+
2

aj
(x−µ)TΣ−1(µ−µ̂j)+

1

aj
(µ−µ̂j)

T Σ−1(µ−µ̂j)+
1

aj
(x−µ̂j)

T [ajΣ̂
−1

j −Σ−1](x−µ̂j)

on Bn, and the last three terms are oP (1) under a) and OP (n−δ) under b). �
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Theorem 2. Suppose yi = E(yi) + εi = ŷi + ε̂i where Cov(εi) = Σε is positive
definite, and the zero mean εf and the εi are iid for i = 1, ..., n. Given xf , suppose the

fitted model produces ŷf and nonsingular Σ̂ε. Let ẑi = ŷf + ε̂i and

D2
i (ŷf , Σ̂ε) = (ẑi − ŷf )

T Σ̂
−1

ε (ẑi − ŷf)

for i = 1, ..., n. Let 0 < δ < 1 and D(Un) be the qnth sample quantile of the Di. Let the
nominal 100(1 − δ)% prediction region for yf be given by

{z : D2
z(ŷf , Σ̂ε) ≤ D2

(Un)} = {z : Dz(ŷf , Σ̂ε) ≤ D(Un)}. (25)

a) Consider the n prediction regions for the training data where (yf,i,xf,i) = (yi,xi)
for i = 1, ..., n. If the order statistic D(Un) is unique, then Un of the n prediction regions
contain yi where Un/n → 1 − δ as n→ ∞.

b) If (ŷf , Σ̂ε) is a consistent estimator of (E(yf ),Σε), then (25) is a large sample
100(1 − δ)% prediction region for yf .

c) If (ŷf , Σ̂ε) is a consistent estimator of (E(yf ),Σε), and the εi come from an ellip-
tically contoured distribution such that the highest density region is {z : Dz(0,Σε) ≤
D1−δ}, then the prediction region (25) is asymptotically optimal.

Proof. a) Suppose (xf ,yf) = (xi,yi). Then

D2
y

i
(ŷi, Σ̂ε) = (yi − ŷi)

T Σ̂
−1

ε (yi − ŷi) = ε̂T
i Σ̂

−1

ε ε̂i = D2
ε̂i

(0, Σ̂ε).

Hence yi is in the ith prediction region {z : Dz(ŷi, Σ̂ε) ≤ D(Un)(ŷi, Σ̂ε)} iff ε̂i is in

prediction region {z : Dz(0, Σ̂ε) ≤ D(Un)(0, Σ̂ε)}, but exactly Un of the ε̂i are in the
latter region by construction, ifD(Un) is unique. Since D(Un) is the 100(1−δ)th percentile
of the Di asymptotically, Un/n→ 1 − δ.

b) Let P [Dz(E(yf ),Σε) ≤ D1−δ(E(yf ),Σε)] = 1 − δ. Since Σ−1
ε exists, Theorem 1

shows that if (ŷf , Σ̂ε)
P→ (E(yf ),Σε), then D(ŷf , Σ̂ε)

P→ Dz(E(yf ),Σε). Hence the
percentiles of the distances also converge in probability, and the probability that yf is

in {z : Dz(ŷf , Σ̂ε) ≤ D1−δ(ŷf , Σ̂ε)} converges to 1 − δ = the probability that yf is in
{z : Dz(E(yf ),Σε) ≤ D1−δ(E(yf),Σε)}.

c) The asymptotically optimal prediction region is the region with the smallest volume
(hence highest density) such that the coverage is 1 − δ, as n → ∞. This region is
{z : Dz(E(yf),Σε) ≤ D1−δ(E(yf ),Σε)} if the asymptotically optimal region for the εi

is {z : Dz(0,Σε) ≤ D1−δ(0,Σε)}. Hence the result follows by b). �

Notice that if Σ̂
−1

ε exists, then 100qn% of the n training data yi are in their corre-
sponding prediction region, and qn → 1− δ even if (ŷi, Σ̂ε) is not a good estimator or if
the regression model is misspecified. Of course the volume of the prediction region could
be large if a poor estimator is used or if the εi do not come from an elliptically contoured
distribution. Olive, Pelawa Watagoda, and Rupasinghe Arachchige Don (2015) suggest
that the residual, response, and DD plots described below can be used to check model
assumptions.

11



Prediction region (25) can be used for the Su and Cook (2012) inner envelopes esti-
mator and the seemingly unrelated regressions model. Theorem 3 shows that prediction
region (25) is the Example 4 prediction region applied to pseudodata for the multivariate

linear model

yi = BT xi + εi (26)

for i = 1, ..., n that has m ≥ 2 response variables Y1, ..., Ym and p predictor variables
x1, x2, ..., xp. Multivariate linear regression and MANOVA models are special cases.
The ith case is (xT

i ,y
T
i ) = (xi1, xi2, ..., xip, Yi1, ..., Yim). If a constant xi1 = 1 is in

the model, then xi1 could be omitted from the case. The model is written in ma-
trix form as Z = XB + E where the matrices are defined below. The model has
E(εk) = 0 and Cov(εk) = Σε = (σij) for k = 1, ..., n. Then the p×m coefficient matrix
B =

[
β1 β2 . . . βm

]
and the m × m covariance matrix Σε are to be estimated,

and E(Z) = XB while E(Yij) = xT
i βj. Subscripts are needed for the m multiple linear

regression models Y j = Xβj +ej for j = 1, ..., m where E(ej) = 0. For the multivariate
linear model, Cov(ei, ej) = σij In for i, j = 1, ..., m.

The n ×m matrix of response variables and n ×m matrix of errors are

Z = [Y 1 Y 2 . . . Y m] =




yT

1
...

yT
n



 and E = [e1 e2 . . . em] =




εT

1
...

εT
n



 ,

while the n × p design matrix of predictor variables is X.
Least squares is the classical method for fitting the multivariate linear model. The

least squares estimators are B̂ = (XT X)−1XT Z = [β̂1 β̂2 . . . β̂m]. The matrix of
predicted values or fitted values Ẑ = XB̂ = [Ŷ 1 Ŷ 2 . . . Ŷ m]. The matrix of residuals

Ê = Z − Ẑ = Z − XB̂ = [r1 r2 . . . rm]. These quantities can be found from the m

multiple linear regressions of Yj on the predictors: β̂j = (XT X)−1XTY j, Ŷ j = Xβ̂j

and rj = Y j − Ŷ j for j = 1, ..., m. Hence ε̂i,j = Yi,j − Ŷi,j where Ŷ j = (Ŷ1,j, ..., Ŷn,j)
T .

Finally,

Σ̂ε,d =
(Z − Ẑ)T (Z − Ẑ)

n− d
=

(Z − XB̂)T (Z − XB̂)

n − d
=

Ê
T
Ê

n− d
=

1

n− d

n∑

i=1

ε̂iε̂
T
i .

The choices d = 0 and d = p are common. If d = 1, then Σ̂ε,d=1 = Sr, the sample
covariance matrix of the residual vectors ε̂i, since the sample mean of the ε̂i is 0.

Theorem 3. For multivariate linear regression, when least squares is used to compute
ŷf , Sr, and the pseudodata ẑi, prediction region (25) is the Example 4 prediction region
applied to the ẑi.

Proof. Multivariate linear regression with least squares satisfies Theorem 2 by Su and
Cook (2012). Let (T,C) be the sample mean and sample covariance matrix (8) applied to
the ẑi. The sample mean and sample covariance matrix of the residual vectors is (0,Sr)
since least squares was used. Hence the ẑi = ŷf + ε̂i have sample covariance matrix Sr,
and sample mean ŷf . Hence (T,C) = (ŷf ,Sr), and the Di(ŷf ,Sr) are used to compute
D(Un). �
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These prediction regions can be displayed with the Rousseeuw and Van Driessen
(1999) DD plot of MDi = Di(x,S) versus RDi = Di(T,C). For (T,C), we will use the
Olive and Hawkins (2010) RMVN estimator (TRMV N ,CRMV N ), an easily computed

√
n

consistent estimator of (µ, cΣ) for a large class of elliptically contoured distributions,
where c = 1 for the Np(µ,Σ) distribution. Also see Zhang, Olive, and Ye (2012). For iid
data and large n, Olive (2002) showed that plotted points in the DD plot scatter tightly
about a line through the origin for a large class of elliptically contoured distributions,
and about the identity line with unit slope and zero intercept if the data are multivariate
normal. Simulations suggest that the DD plot of the residuals can be used in a similar
way.

Three regions (18) used by Olive (2013) for the multivariate location and dispersion
model can be extended to multivariate linear regression. Let (25) be the nonparametric
region with h = D(Un). The semiparametric region uses (T,C) = (TRMV N ,CRMV N )
and h = D(Un). The parametric MVN region uses (T,C) = (TRMV N ,CRMV N ) and
h2 = χ2

m,qn
where P (W ≤ χ2

m,qn
) = qn if W ∼ χ2

m. The semiparametric and parametric
regions are only conjectured to be large sample prediction regions for the multivariate
regression model, but are useful as diagnostics. Let Σ̂ε = Σ̂ε,d=p, ẑi = ŷf + ε̂i, and

D2
i (ŷf ,Sr) = (ẑi−ŷf)

T S−1
r (ẑi−ŷf ) for i = 1, ..., n. Then the large sample nonparametric

100(1 − δ)% prediction region is

{z : D2
z(ŷf ,Sr) ≤ D2

(Un)} = {z : Dz(ŷf ,Sr) ≤ D(Un)}, (27)

while the (Johnson and Wichern 1988: p. 312) classical large sample 100(1 − δ)% pre-
diction region is

{z : D2
z(ŷf , Σ̂ε) ≤ χ2

m,1−δ} = {z : Dz(ŷf , Σ̂ε) ≤
√
χ2

m,1−δ}. (28)

The nonparametric prediction region (27) has simple geometry. Let Rr be the non-
parametric prediction region applied to the residuals ε̂i. Then Rr is a hyperellipsoid with
center 0, and the nonparametric prediction region is the hyperellipsoid Rr translated
to have center ŷf . Hence in a DD plot, all points to the left of the line MD = D(up)

correspond to yi that are in their prediction region, while points to the right of the line
are not in their prediction region.

Two other plots are useful for checking the model. A response plot for the jth response
variable is a plot of the fitted values Ŷij versus the response Yij where i = 1, ..., n. The
identity line is added to the plot as a visual aid. A residual plot corresponding to the jth
response variable is a plot of Ŷij versus rij. Suppose the multivariate linear regression
model is good, the error distribution is not highly skewed, and n ≥ 10p. Then the plotted
points should cluster about the identity line or r = 0 line in each of the m response and
residual plots. If outliers are present or if the plot is not linear, then the current model
or data need to be transformed or corrected. The response and residual plots are used
exactly as in the m = 1 case corresponding to multiple linear regression. See Olive and
Hawkins (2005) and Cook and Weisberg (1999a, p. 432; 1999b).

Example 5. Cook and Weisberg (1999a, pp. 351, 433, 447) gives a data set on 82
mussels sampled off the coast of New Zealand. Let Y1 = log(S) and Y2 = log(M) where
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S is the shell mass and M is the muscle mass. The predictors are X2 = L, X3 = log(W )
and X4 = H: the shell length, log(width) and height. Figures 2 and 3 give the response
and residual plots for Y1 and Y2. The response plots show strong linear relationships.
For Y1, case 79 sticks out while for Y2, cases 8, 25 and 48 are not fit well. Highlighted
cases had Cook’s distance > min(0.5, 2p/n). Figure 4 shows the DD plot of the residual
vectors. The plotted points are highly correlated but do not cover the identity line,
suggesting an elliptically contoured error distribution that is not multivariate normal.
The nonparametric 90% prediction region for the residuals consists of the points to the
left of the vertical line MD = 2.60. Cases 8, 48 and 79 have especially large distances.
The horizontal line RD ≈ 3 corresponds to the semiparametric region. These two lines
were also the 95th percentiles of the MDi and RDi. The horizontal line RD ≈ 2.45
corresponds to the parametric MVN region. A vertical line MD ≈ 2.45 (not shown)
corresponds to a large sample classical region.
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Figure 2: Plots for Y1 = log(S).

Suppose the same model is used except Y2 = M . Then the response and residual
plots for Y1 remain the same, but the plots (not shown) for Y2 show curvature about the
identity and r = 0 lines. Hence the linearity condition is violated. Figure 5 shows that
the plotted points in the DD plot have correlation well less than one, suggesting that
the error vector distribution is no longer elliptically contoured. The nonparametric 90%
prediction region for the residual vectors consists of the points to the left of the vertical
line MD = 2.52, and still contains 95% of the data.

A small simulation was used to study the prediction regions. First m×1 error vectors
wi were generated such that the m errors are iid with variance σ2. Let the m×m matrix
A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j. Then εi = Awi so that
Σε = σ2AAT = (σij) where the diagonal entries σii = σ2[1 + (m − 1)ψ2] and the off
diagonal entries σij = σ2[2ψ + (m − 2)ψ2] where ψ = 0.10. Hence the correlations are
(2ψ+ (m− 2)ψ2)/(1 + (m− 1)ψ2). As ψ gets close to 1, the data clusters about the line
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Figure 3: Plots for Y2 = log(M).
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Figure 4: DD Plot of the Residual Vectors for the Mussel Data.
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Figure 5: DD Plot if Y2 = M .

in the direction of (1, ..., 1)T . Used wi ∼ Nm(0, I),wi ∼ (1 − τ )Nm(0, I) + τNm(0, 25I)
with 0 < τ < 1 and τ = 0.25 in the simulation, wi ∼ multivariate td with d = 7 degrees
of freedom, or wi ∼ lognormal - E(lognormal): where the m components of wi were iid
with distribution ez − E(ez) where z ∼ N(0, 1). Only the lognormal distribution is not
elliptically contoured.

Then 5000 runs were used to simulate the prediction regions for yf given xf for mul-
tivariate regression. With n=100, m=2, and p=4, the nominal coverage of the prediction
region is 90%, and 92% of the training data is covered. Following Olive (2013), consider
the prediction region {z : (z − T )TC−1(z − T ) ≤ h2} = {z : D2

z ≤ h2} = {z : Dz ≤ h}.
Then the ratio of the prediction region volumes

hm
i

√
det(Ci)

hm
2

√
det(C2)

was recorded where i = 1 was the nonparametric region, i = 2 was the semiparametric
region, and i = 3 was the parametric MVN region. Here h1 and h2 were the cutoffs
D(Un)(Ti,Ci) for i = 1, 2, and h3 =

√
χ2

m,qn
.

If, as conjectured, the RMVN estimator is a consistent estimator when applied to the
residual vectors instead of iid data, then the volume ratios converge in probability to 1 if
the iid zero mean errors ∼ Nm(0,Σε), and the volume ratio converges to 1 for i = 1 for
a large class of elliptically contoured distributions. These volume ratios were denoted by
voln and volm for the nonparametric and parametric MVN regions. The coverage was
the proportion of times the prediction region contained yf where ncov, scov and mcov
are for the nonparametric, semiparametric and parametric MVN regions.

In the simulations, took n = 3(m+ p)2 and m = p. Table 3 shows that the coverage
of the nonparametric region was close to 0.9 in all cases. The volume ratio voln was
fairly close to 1 for the three elliptically contoured distributions. Since the volume of
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Table 3: Coverages for 90% Prediction Regions.

w dist n m = p ncov scov mcov voln volm
MVN 48 2 0.901 0.905 0.888 0.941 0.964
MVN 300 5 0.889 0.887 0.890 1.006 1.015
MVN 1200 10 0.899 0.896 0.896 1.004 1.001
MIX 48 2 0.912 0.927 0.710 0.872 0.097
MIX 300 5 0.906 0.911 0.680 0.882 0.001
MIX 1200 10 0.904 0.911 0.673 0.889 0+

MVT(7) 48 2 0.903 0.910 0.825 0.914 0.646
MVT(7) 300 5 0.899 0.909 0.778 0.916 0.295
MVT(7) 1200 10 0.906 0.911 0.726 0.919 0.061

LN 48 2 0.912 0.926 0.651 0.729 0.090
LN 300 5 0.915 0.917 0.593 0.696 0.009
LN 1200 10 0.912 0.916 0.593 0.679 0+

the prediction region is proportional to hm, the volume can be very small if h is too
small and m is large. Parametric prediction regions usually give poor estimates of h
when the parametric distribution is misspecified. Hence the parametric MVN region
only performed well for multivariate normal data.

4. Three Applications

One application is bootstrap tests. See Olive (2015). A similar technique can be used
to estimate the 100(1−δ)% Bayesian credible region for θ. Generate B = max(100000, n)
values of θ from the posterior distribution, and compute the prediction region (20).
Olive (2014, pp. 283, 364) used the shorth(kn) estimator to compute shorter bootstrap
confidence intervals, and to estimate the highest density region corresponding to a known
posterior pdf for Bayesian inference.

A third application is for cross validation. In addition to large sample theory, want the
prediction regions to work well on a single data set as future observations are gathered,
but only have the training data (x1,y1), ..., (xn,yn). Following James, Witten, Hastie,
and Tibshirani (2013, pp. 181-186), to perform k-fold cross validation randomly divide
the data set into k groups of approximately equal size. For i = 1, ..., k, compute the
model from k − 1 groups other than the ith group, and use the ith group as a validation
set. Much like k-fold cross validation for classification, compute the prediction region
Ri for yf = yj for each j in the ith group. Compute the proportion of times yi was
not in its prediction region Ri for i = 1, ..., n and compute the average volume of the
n prediction regions. Want the proportion near the nominal proportion δ and small
average volume if two or more models or prediction regions are being considered. Hence

CV(n)(PR) =
1

n

n∑

i=1

I(yi 6∈ Ri). For additive error regression, the average volume is

just the average length of the n PIs. These two statistics can be used to augment
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the traditional cross validation estimates such as CV(k)(MSE) =
1

k

k∑

i=1

MSEi where

MSEi =
1

ni

ni∑

j=1

(Yj − Ŷj)
2 when an additive error regression model is used and ni is the

number of cases in the ith group.
Statistical Learning methods for the additive error regression model often have a

parameter controlling the “flexibility” of the estimator. As the flexibility increases, the
estimator overfits the training data, eventually using interpolation. The overfit data will
have residuals that under estimate the errors. Hence the average length of the PIs will be
small, but the CV(n)(PR) become 1 when there is interpolation. If the flexibility is too
low, the average length of the PIs should be large since underfit data will have residuals
that over estimate the errors.

5. Discussion

This paper suggests a practical method for making prediction regions when the error
distribution may be unknown. Plots and simulations were done in R. See R Development
Core Team (2011). Programs are in the collections of functions tspack and mpack. See
(http://lagrange.math.siu.edu/Olive/tspack.txt) and (http://lagrange.math.siu.edu/Olive/
mpack.txt). The function pimasim was used to simulate the time series prediction inter-
vals. The functions mpredsimwas used to simulate the prediction regions (25), mregddsim
simulated the residual vector DD plots for various distributions, and the function ddplot4

makes the DD plots.
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