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Abstract

In the literature, estimators for regression or multivariate location and disper-

sion that have been shown to be both consistent and high breakdown are imprac-

tical to compute. This paper gives easily computed high breakdown robust
√

n

consistent estimators, and the applications for these estimators are numerous.

For regression, the response plot of the fitted values versus the response is shown

to be an effective tool for detecting outliers and influential cases.

KEY WORDS: minimum covariance determinant estimator, multivari-

ate location and dispersion, outliers, robust regression.
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1. INTRODUCTION

The multiple linear regression (MLR) model is Y = Xβ + e where Y is an n × 1

vector of dependent variables, X is an n × p matrix of predictors, β is a p × 1 vector of

unknown coefficients and e is an n×1 vector of errors. The ith case (xT
i , Yi) corresponds

to the ith row xT
i of X and the ith element of Y .

A multivariate location and dispersion (MLD) model is a joint distribution for a p×1

random vector x that is completely specified by a p×1 population location vector µ and a

p×p symmetric positive definite population dispersion matrix Σ. The observations xi for

i = 1, ..., n are collected in an n×p matrix X with n rows xT
1 , ...,xT

n . An important MLD

model is the elliptically contoured ECp(µ,Σ, g) distribution with probability density

function

f(z) = kp|Σ|−1/2g[(z −µ)TΣ−1(z −µ)]

where kp > 0 is some constant and g is some known function. See Johnson (1987, pp. 107-

108). The multivariate normal (MVN) distribution is a special case, and x is “spherical

about µ” if x has an ECp(µ, cIp, g) distribution where c > 0 is some constant and Ip is

the p × p identity matrix.

Many of the most used estimators in statistics are semiparametric. The least squares

(OLS) estimator

β̂OLS = (XT X)−1XT Y (1)

is a semiparametric MLR estimator. If the ei are iid with mean 0 and variance σ2, then

there is a central limit type theorem for OLS. For multivariate analysis, the classical
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estimator (x,S) is the sample mean and sample covariance matrix where

x =
1

n

n∑

i=1

xi and S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T. (2)

Many classical procedures originally meant for the MVN distribution are semiparametric

in that the procedures also perform well on a much larger class of EC distributions.

Let the p × 1 column vector T (X) be a multivariate location estimator, and let the

p × p symmetric positive definite matrix C(X) be a dispersion estimator. Then the ith

squared sample Mahalanobis distance is the scalar

D2
i = D2

i (T (X),C(X)) = (xi − T (X))T C−1(X)(xi − T (X)) (3)

for each observation xi. Notice that the Euclidean distance of xi from the estimate of

center T (X) is Di(T (X), Ip). The classical Mahalanobis distance uses (T,C) = (x,S).

If d of the cases have been replaced by arbitrarily bad contaminated cases, then the

contamination fraction is γ = d/n. Then the breakdown value of β̂ or of a multivariate

location estimator is the smallest value of γ needed to make ‖β̂‖ or ‖T‖ arbitrarily large.

Let 0 ≤ λp(C) ≤ · · · ≤ λ1(C) denote the eigenvalues of the dispersion estimator C. The

breakdown value of C is the smallest value of γ needed to drive the smallest eigenvalue

to zero or the largest eigenvalue to ∞.

High breakdown (HB) statistics have γ → 0.5 as n → ∞, and an important goal of

high breakdown robust statistics is to produce easily computed semiparametric MLR and

MLD estimators that perform well when the classical estimators perform well, but are

also useful for detecting some important types of outliers: cases that lie far away from

the bulk of the data.
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The published literature for HB MLR or MLD estimators contains one or more major

flaws: either i) the estimator is impractical to compute or ii) the estimator is practical

to compute but has not been shown to be both high breakdown and consistent.

Computational complexity is discussed in Bernholt (2005, 2006) and Bernholt and

Fischer (2004). Of the MLD and MLR estimators that have been shown to be both

consistent and HB, perhaps the fastest is the least median of squares (LMS) estimator

that has complexity O(np).

Many of the most used practical “robust estimators” generate a sequence of K trial

fits called attractors: b1, ..., bK for MLR and (T1,C1), ..., (TK,CK) for MLD. Then some

criterion is evaluated and the attractor bA or (TA,CA) that minimizes the criterion is used

as the final estimator. One way to obtain attractors is to generate trial fits called starts,

and then use the concentration technique. For multivariate data, let (T0,j,C0,j) be the jth

start and compute all n Mahalanobis distances Di(T0,j,C0,j). At the next iteration, the

classical estimator (T1,j,C1,j) is computed from the cn ≈ n/2 cases corresponding to the

smallest distances. This iteration can be continued for k steps resulting in the sequence

of estimators (T0,j,C0,j), (T1,j,C1,j), ..., (Tk,j,Ck,j). Then (Tk,j,Ck,j) = (xk,j ,Sk,j) is the

jth attractor. For MLR, let b0,j be the jth start and compute all n residuals ri(b0,j) =

Yi − bT
0,jxi. At the next iteration, the OLS estimator b1,j is computed from the cn ≈ n/2

cases corresponding to the smallest squared residuals. This iteration can be continued

for k steps resulting in the sequence of estimators b0,j, b1,j, ..., bk,j. Then bk,j is the jth

attractor for j = 1, ...,K. Using k = 10 concentration steps often works well, and the

basic resampling algorithm is a special case with k = 0, i.e., the attractors are the starts.

A common method for generating starts is to use randomly selected “elemental sets”
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of p cases for MLR and p+1 cases for MLD. The jth elemental fit is a classical estimator

bj or (Tj,Cj) computed from the jth elemental set.

Many criteria for screening the attractors have been suggested. See Rousseeuw (1984)

for the following four criteria. For MLR the LMS criterion is the median squared residual,

or more generally, the LMS(cn) criterion is QLMS(b) = r2
(cn)(b) where r2

(1) ≤ · · · ≤ r2
(n)

are the ordered squared residuals. The least trimmed sum of squares LTS(cn) criterion

is QLTS(b) =
∑cn

i=1 r2
(i)(b). For MLD, the attractor is the classical estimator (xk,j ,Sk,j)

computed from a subset of cn cases. The minimum covariance determinant MCD(cn)

criterion is the determinant det(Sk,j). The volume of the hyperellipsoid

{z : (z − xk,j)
TS−1

k,j(z − xk,j) ≤ h2} is equal to
2πp/2

pΓ(p/2)
hp

√
det(Sk,j), (4)

see Johnson and Wichern (1988, pp. 103-104). The minimum volume ellipsoid MVE(cn)

criterion is hp
√

det(Sk,j) where h = D(cn)(xk,j ,Sk,j).

Hawkins and Olive (2002) showed that if K randomly selected elemental starts are

used and concentration is used to produce the attractors, then the best attractor is not

consistent if K and k are fixed and free of n. Hence no matter how the attractor is

chosen, the resulting estimator is not consistent. The proof is simple given the results

of He and Portnoy (1992) and Lopuhaä (1999) who show that if a start b or (T,C) is

a consistent estimator of β or (µ, sΣ), then the attractor is a consistent estimator of β

or (µ, aΣ) where a, s > 0 are some constants. Also the constant a does not depend on s

and the attractor and the start have the same rate. If the start is inconsistent, then so

is the attractor. The classical estimator applied to a randomly drawn elemental set is an

inconsistent estimator, so the K starts and the K attractors are inconsistent. The final
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estimator is an attractor and thus inconsistent.

If concentration is iterated to convergence so that k is not fixed, then it has not been

proven that the attractor is inconsistent if elemental starts are used. It is possible to

produce consistent estimators if Kn is allowed to increase to ∞, but for MLR the rate of

the algorithm is bounded above by K
1/p
n .

This theory has been largely ignored. For example, Maronna, Martin and Yohai

(2006, pp. 198-199) use K = 500 and k = 1 to create MLD estimators and state that

no theoretical results for their inconsistent method are known. Hubert, Rousseeuw and

Van Aelst (2007) have the following quote.

It turns out that most of the currently available highly robust multivariate estimators

are difficult to compute, which makes them unsuitable for the analysis of large and/or

high-dimensional datasets. Among the few exceptions is the minimum covariance de-

terminant estimator (MCD) of Rousseeuw (1984, 1985). The MCD is a highly robust

estimator of multivariate location and scatter that can be computed efficiently with the

FAST-MCD algorithm of Rousseeuw and Van Driessen (1999).

FAST-MCD is a concentration estimator that uses 500 elemental starts. Since 5 starts

are iterated until convergence, the estimator has not been proven to be inconsistent, but

also has not been shown to be consistent. FAST-MCD and MCD are completely different

estimators. This technical error is very common in the literature: the theory is known

or derived for a robust estimator that is impractical to compute, so an algorithm is used

to compute a completely different estimator. Only the theory of the algorithm estimator

actually used is of interest, but this theory is not given.

Although Maronna and Zamar (2002, p. 309) claim that their orthogonalized
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Gnanadesikan-Kettenring (OGK) estimator is consistent and HB, they fail to provide

the proofs. The OGK estimator is faster than FAST-MCD and is not computed with an

elemental concentration algorithm.

Sections 2 and 3 modify the concentration algorithms of Hawkins and Olive (1999)

resulting in easily computed HB
√

n consistent estimators. Section 4 compares FAST-

MCD and OGK with the new multivariate estimators in a small simulation study.

2. PRACTICAL HB REGRESSION AND MLR OUTLIER DETECTION

Olive (2005) showed that an MLR estimator is high breakdown if the median abso-

lute residual stays bounded under high contamination. (Notice that if ‖β̂‖ = ∞, then

MED(|ri|) = ∞, and if ‖β̂‖ = M then MED(|ri|) is bounded if fewer than half of the

cases are outliers.) For MLR, breakdown is more of a Y -outlier property than an x-

outlier property. If the Yi’s are fixed, arbitrarily large x-outliers tend to drive the slope

estimates to 0, not ∞. If the LTS criterion is used, concentration insures that the crite-

rion function of the cn ≈ n/2 absolute residuals gets smaller. Hence LTS concentration

algorithms that use a HB start are HB.

Assume the MLR model contains a constant β1. To make a HB MLR estimator with

good properties, simply use OLS as an attractor and the following easily computed HB

inconsistent attractor. Let bk be the attractor from the start consisting of OLS applied

to the cn cases with Y ’s closest to the median of the Yi and let β̂k,B = 0.99bk. Then β̂k,B

is a HB biased estimator of β (biased if β 6= 0, see Olive 2005). The notation CLTS will

be used if the LTS criterion is used in the concentration algorithm.

Theorem 1 shows that the HB CLTS and LTS(0.5) estimators are completely differ-
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ent. CLTS is simple to compute and has 100% Gaussian efficiency while LTS(0.5) is

impractical to compute and has 7.1% Gaussian efficiency. The proof of the theorem is

simple since He and Portnoy (1992) showed that if the start is a consistent estimator of

β with rate nδ, so is the attractor.

Theorem 1. Suppose that the CLTS algorithm uses K randomly selected elemental

starts (e.g., K = 500) and the attractors β̂OLS and β̂k,B. Then the resulting estimator is

a HB
√

n consistent estimator that is asymptotically equivalent to β̂OLS .

Proof. The CLTS estimator is HB by the remarks above. The LTS estimator is

consistent by Maš̈ıček (2004) or Čı́žek (2006). As n → ∞, consistent estimators β̂

satisfy QLTS(β̂)/n − QLTS(β)/n → 0 in probability. Since β̂k,B is a biased estimator

of β, with probability tending to one, OLS will have a smaller criterion value. With

probability tending to one, OLS will also have a smaller criterion value than the criterion

value of the attractor from a randomly drawn elemental set (by He and Portnoy 1992,

also see Remark 4 in Hawkins and Olive 2002). Since K random elemental sets are used,

the CLTS estimator is asymptotically equivalent to OLS. �

The outlier resistance of CLTS is not much better than that of other LTS concentra-

tion algorithms. Since for MLR the HB property is a Y -outlier property, x-outliers may

have small residuals even if HB estimators are used. After examining many “benchmark”

data sets, we found that Cook’s distances CDi from Cook (1977) tend to be larger for

influential cases than the Peña (2005) Si statistics. These influence diagnostics are also

ineffective in the presence of x-outliers.

For detection of outliers and influential cases, it is crucial to make the residual plot of
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Ŷ vs r and the response plot of Ŷ = xT β̂ vs Y with the identity line with zero intercept

and unit slope added as a visual aid. Vertical deviations from the identity line are the

residuals ri = Yi − xT
i β̂.

Olive and Hawkins (2005) also showed that the two plots are crucial for visualizing

the MLR model and for examining lack of fit. If n > 10p and if the plotted points scatter

about the identity line and the r = 0 line in an evenly populated band, then the MLR

model with iid ei where VAR(ei) = σ2 may be reasonable. Deviations from the evenly

populated band suggest that something is wrong with the MLR model, and are often

easily detected even if OLS is used. The following two examples help illustrate the above

remarks.

Example 1. Gladstone (1905-6) records the brain weight and various head measure-

ments for 267 individuals. Consider predicting brain weight using six head measurements

(head height, length, breadth, (size)1/3, cephalic index and circumference) as predictors.

There are five infants (cases 230, and 254-257) of age less than 7 months that are x-

outliers. Nine toddlers were between 7 months and 3.5 years of age, three of whom

appear to be x-outliers (cases 232, 258, and 260). Figures 1 and 2 show the OLS re-

sponse and residual plots. For this example the x-outliers are “good leverage points”

in that a response plot using the OLS fit without the eight x-outliers has the leverage

points scatter about the identity line. Cases 118 and 234 had the largest Cook’s distances.

Cook’s distances are ineffective because the residuals and classical Mahalanobis distances

are not large for the cluster of infants. Influence diagnostics are the most effective when

there is a single cluster about the identity line.
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Suppose the iid error MLR model with constant variance is appropriate for this data.

Then MSE = σ̂2 = 6381.182. To use the response plot to visualize the MLR model,

suppose the brain weight given fit = 1200 is of interest. Mentally examine the response

plot for a narrow vertical strip about fit = 1200, perhaps from 1175 to 1225. The cases in

the narrow strip have mean near 1200 since they fall close to the identity line. Similarly,

when then fit = w for w between 400 and 1500, the cases have brain weights near w on

average. If the errors are iid N(0, σ2), then Y |xT β̂ ≈ N(xT β̂, 6381.182).

Example 2. Buxton (1920, p. 232-5) gives 20 measurements of 88 men. Consider

predicting stature using an intercept, head length, nasal height, bigonal breadth, and

cephalic index. One case was deleted since it had missing values. Five individuals,

numbers 61-65, were reported to be about 0.75 inches tall with head lengths well over

five feet! Figures 3 and 4 show the OLS response plot and residual plot for the Buxton

data. Although an index plot of Cook’s distance CDi may be useful for flagging influential

cases, the index plot provides no direct way of judging the model against the data. As

a remedy, cases in the plots with CDi > min(0.5, 2p/n) were highlighted. Notice that

the OLS fit passes through the outliers, but the response plot is resistant to Y –outliers

since Y is on the vertical axis. Also notice that although the outlying cluster is far from

Y only two of the outliers had large Cook’s distance. Hence masking occurred for both

Cook’s distances and for OLS residuals, but not for OLS fitted values.

3. PRACTICAL HB MLD ESTIMATORS

There are many applications for easily computed HB consistent estimators of multi-

variate location and dispersion. In addition to outlier detection, the robust estimator can
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be plugged in for the classical estimator to produce robust estimators for multivariate

procedures. Hubert, Rousseeuw and Van Aelst (2007) consider many methods including

discriminant analysis, principal component regression and partial least squares. Also see,

for example, Croux and Haesbroeck (2003) for binary regression; Branco, Croux, Filz-

moser, and Oliviera (2005) for canonical correlations; Pison, Rousseeuw, Filzmoser, and

Croux (2003) for factor analysis; He, Fung and Zhu (2005) for generalized partial lin-

ear models; Willems, Pison, Rousseeuw, and Van Aelst (2002) for analogs of Hotelling’s

T 2 test; Rousseeuw, Van Aelst, Van Driessen and Agulló (2004) for multivariate regres-

sion; Hubert, Rousseeuw, and Vanden Branden (2005) and Maronna (2005) for principal

components.

Unfortunately, computation and theory for HB estimators has not kept up with the

applications. The above “robust methods” typically use a “robust estimator” which is

impractical to compute or which has not been shown to be both HB and consistent.

Hence the procedures are outlier diagnostics rather than HB robust methods. If n > 20p

and p ≤ 40, the easily computed HB
√

n consistent estimators described below can be

used in place of the classical estimator to produce HB robust methods.

Suppose K is a fixed positive integer and there are K consistent estimators (Tj,Cj)

of (µ, a Σ) for some constant a > 0, each with the same rate nδ. If (TA,CA) is an

estimator obtained by choosing one of the K estimators, then (TA,CA) is a consistent

estimator of (µ, a Σ) with rate nδ by Pratt (1959). Theorem 4 below and the following

lemma show Lopuhaä (1999) can be used with Pratt (1959) with a = aMCD to provide

simple proofs for MLD concentration algorithms.

Assumption (E1): Assume that x1, ...,xn are iid ECp(µ,Σ, g) with nonsingular Cov(xi)
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= cXΣ for some constant cX > 0.

Lemma 2. Assume that (E1) holds and that (T,C) is a
√

n consistent estimator of

(µ, sΣ) where the constant s > 0. Then the classical estimator (xm,j,Sm,j) computed

with the cn ≈ n/2 of cases with the smallest distances Di(T,C) is a
√

n consistent

estimator of (µ, aMCDΣ).

Proof. The result follows by Lopuhaä (1999) if a = aMCD. But the MCD estimator is

a
√

n consistent estimator of (µ, aMCDΣ) by Butler, Davies and Jhun (1993). If the MCD

estimator is the start, then it is also the attractor by Rousseeuw and Van Driessen (1999)

who show that concentration does not increase the MCD criterion. Hence aMCDΣ = aΣ.

�

If the MLD estimator (T,C) tracks the data, then T will not break down if T can not

be driven out of some ball of radius R about the origin. To see this, let W n
d denote the

data matrix with ith row wT
i where any d of the cases have been replaced by arbitrarily

bad contaminated cases. So X = W n
0 . If T satisfies ‖T (W n

d )‖ = M for some constant M ,

then the median Euclidean distance MED(‖wi − T (W n
d)‖) ≤ maxi=1,...,n ‖xi − T (W n

d)‖

≤ maxi=1,...,n ‖xi‖ + M if d < n/2. Similarly, if MED(‖wi − T (W n
d)‖) = M for some

constant M , then ‖T (W n
d)‖ is bounded if d < n/2. Since the coordinatewise median

MED(X) is a HB estimator, the origin can be replaced by MED(X).

Recall that the sample median MED(Yi) = Y ((n + 1)/2) is the middle order statistic

if n is odd. Thus if n = m+d where m is the number of clean cases and d = m−1 is the

number of outliers so γ ≈ 0.5, then the sample median can be driven to the max or min of

the clean cases. The jth element of MED(X) is the sample median of the jth predictor.
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Hence with m−1 outliers, MED(X) can be driven to the “coordinatewise covering box”

of the m clean cases. The boundaries of this box are at the min and max of the clean

cases from each predictor, and the lengths of the box edges equal the ranges Ri of the

clean cases for the ith variable. If d ≈ m/2 so that γ ≈ 1/3, then the MED(X) can be

moved to the boundary of the much smaller “coordinatewise IQR box” corresponding

the 25th and 75th percentiles of the clean date. Then the edge lengths are approximately

equal to the interquartile ranges of the clean cases.

Note that Di(MED(X), Ip) = ‖xi − MED(X)‖ is the Euclidean distance of xi from

MED(X). Let C denote the set of m clean cases. If d ≤ m − 1, then the minimum

distance of the outliers is larger than the maximum distance of the clean cases if the

distances for the outliers satisfy Di > B where

B2 = max
i∈C

‖xi − MED(X)‖2 ≤
p∑

i=1

R2
i ≤ p(max R2

i ).

Next we define three easily computed HB
√

n consistent MLD estimators and then

give the corresponding theory. The new CMVE and FCH estimators have greater outlier

resistance than the Olive (2004) median ball algorithm (MBA) estimator because loca-

tion information from T is used as well as dispersion information from C. The CMVE

estimator uses concentration to produce two attractors, but makes use of the MVE cri-

terion to choose the final attractor. The FCH estimator is so named because it is fast,

consistent and HB.

The CMVE, MBA and FCH estimators use the same two attractors. The first at-

tractor is the Devlin, Gnanadesikan and Kettenring (1981) DGK estimator that uses the

classical estimator as the start. The second attractor is the median ball (MB) estima-
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tor that uses the classical estimator computed from the cases with Di(MED(X), Ip) ≤

MED(Di(MED(X), Ip)) as a start. Thus the start (T0,M,C0,M) = (x0,M ,S0,M) is the

classical estimator applied after trimming M% of the cases furthest in Euclidean distance

from MED(X) for M ∈ {0, 50}. The Mth attractor is (Tk,M ,Ck,M) = (xk,M ,Sk,M ). Let

(x−1,50,S−1,50) = (MED(X), Ip). Then the median ball estimator (xk,50,Sk,50) is also

the attractor of (MED(X), Ip). The MBA estimator uses the attractor with the smallest

determinant as does the FCH estimator if ‖xk,0 −MED(X)‖ ≤ MED(Di(MED(X, Ip)).

If the DGK location estimator xk,0 has a greater Euclidean distance from MED(X) than

half the data, then FCH uses the median ball attractor. Let (TA,CA) be the attractor

used. Then the estimator (TF ,CF ) takes TF = TA and

CF =
MED(D2

i (TA,CA))

χ2
p,0.5

CA (5)

where χ2
p,0.5 is the 50th percentile of a chi–square distribution with p degrees of freedom

and F is the MBA or FCH estimator. CMVE is like FCH but the MVE criterion is used.

Example 3. Tremearne (1911) recorded height = x[,1] and height while kneeling =

x[,2] of 112 people. Figure 5a shows a scatterplot of the data. Case 3 has the largest

Euclidean distance of 214.767 from MED(X) = (1680, 1240)T , but if the distances cor-

respond to the contours of a covering ellipsoid, then case 44 has the largest distance.

The start (x0,50,S0,50) is the classical estimator applied to the “half set” of cases clos-

est to MED(X) in Euclidean distance. The circle (hypersphere for general p) centered

at MED(X) that covers half the data is small because the data density is high near

MED(X). The median Euclidean distance is 59.661 and case 44 has Euclidean distance

77.987. Hence the intersection of the sphere and the data is a highly correlated clean
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ellipsoidal region. The Rousseeuw and Van Driessen (1999) DD plot is a plot of classical

distances (MD) vs “robust” distances (RD). Figure 5b shows the DD plot using the me-

dian ball estimator. Notice that both the classical and MB estimators give the largest

distances to cases 3 and 44. Notice that case 44 could not be detected using marginal

methods.

Olive (2002) showed that if a consistent robust estimator is scaled as in (5), then the

plotted points in the DD plot will cluster about the identity line if the data is MVN

and about some other line through the origin if the data is not MVN but is EC with a

nonsingular covariance matrix. Since multivariate procedures tend to perform well for

EC data, the DD plot is useful even if outliers are not present. The median ball estimator

in Figure 5b was not scaled.

In MLD simulations, sometimes the attractor can be based on a clean half set even if

the half set corresponding to the start contains outliers. The MBA and FCH estimators

needed k = 5 concentration steps while DGK needed k = 10.

As the dimension p gets larger, outliers that can not be detected by marginal methods

(case 44 in Example 3) become harder to detect. When p = 3 imagine that the clean data

is a baseball bat with one end at the SW corner of the bottom of the box (corresponding

to the coordinate axes) and one end at the NE corner of the top of the box. If the outliers

are a ball, there is much more room to hide them in the box than in a covering rectangle

when p = 2.

The MB estimator has outlier resistance similar to (MED(X), Ip) for distant outliers

but, as shown in Example 3, can be much more effective for detecting certain types of

outliers that can not be found by marginal methods. For EC data, the MB estimator is
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best if the data is spherical about µ or if the data is highly correlated with the major axis

of the highest density region {xi : D2
i (µ,Σ) ≤ h2}. Olive (2004) showed that if the data

distribution is EC but not “spherical about µ,” then for m ≥ 0, Sm,50 underestimates the

major axis and overestimates the minor axis of the highest density region. Concentration

reduces but fails to eliminate this bias. Hence the estimated highest density hyperellipsoid

based on the attractor is “shorter” in the direction of the major axis and “fatter” in the

direction of the minor axis than estimated regions based on consistent estimators. The

following lemma is closely related to a result in Olive (2004).

Lemma 3. (x0,50,S0,50) is a HB estimator of MLD.

Proof. Let det(C) = |C|. Arcones (1995) showed that x0,50 is a
√

n consistent HB

estimator of µ. Or use the fact that x0,50 can not get arbitrarily far from MED(X) if

the number of outliers d < n/2. From numerical linear algebra, it is known that the

largest eigenvalue of a p × p matrix C is bounded above by pmax |ci,j| where ci,j is the

(i, j) entry of C. See Datta (1995, p. 403). Denote the cn cases by z1, ...,zcn . Then the

(i, j)th element ci,j of C ≡ S0,50 is

ci,j =
1

cn − 1

cn∑

k=1

(zi,k − zk)(zj,k − zj).

Hence the maximum eigenvalue λ1 is bounded if d < n/2. Since the MCD estimator is

HB, 0 < |CMCD(cn)| ≤ |S0,50| = λ1 · · ·λp, and λp ≥ |CMCD(cn)|/λp−1
1 > 0 even for d

almost as large as n/2. �

It is very difficult to drive the determinant of the dispersion estimator from a concen-

tration algorithm to zero if at least one of the starts is nonsingular since the attractor

CA and the MCD estimator are both classical estimators applied to cn cases. Even for d
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almost as large as n/2, 0 < det(CMCD) ≤ det(CA).

The following theorem shows that the MBA and FCH estimators have good statistical

properties.

Theorem 4. Suppose (E1) holds. If (TA,CA) is the attractor that minimizes

det(Sk,M), then (TA,CA) is a HB
√

n consistent estimator of (µ, aMCDΣ). Hence the

MBA and FCH estimators are HB
√

n consistent estimators of (µ, cΣ) where c = 1 for

multivariate normal data.

Proof. Under (E1) the FCH and MBA estimators are asymptotically equivalent

since ‖Tk,0−MED(X)‖ → 0 in probability. The estimator is HB since 0 < det(CMCD) ≤

det(CA) ≤ det(S0,50) < ∞ by Lemma 3 if up to nearly 50% of the cases are outliers.

If the distribution is spherical about µ, then the result follows from Pratt (1959) and

Lemma 2 since both starts are
√

n consistent. Otherwise, the estimator with M = 50

trims too much data in the direction of the major axis and hence the resulting attractor

is not estimating the highest density region. Hence Sk,50 is not estimating aMCDΣ.

But the DGK estimator Sk,0 is a
√

n consistent estimator of aMCDΣ by Lemma 2 and

‖CMCD − Sk,0‖ = OP (n−1/2). Thus the probability that the DGK attractor minimizes

the determinant goes to one as n → ∞, and (TA,CA) is asymptotically equivalent to the

DGK estimator (xk,0,Sk,0). The scaling (5) makes c = 1 for MVN data. �

The proof for CMVE is nearly identical: the CMVE volume is bounded by that of

MVE and MB, and the DGK estimator can be used to estimate the highest density

minimum volume region while MB volume is too large for nonspherical EC distributions.

Example 4. The estimators can also be useful when the data is not EC. The Glad-
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stone (1905-6) data has 12 variables on 267 persons after death. Head measurements

were breadth, circumference, head height, length and size as well as cephalic index and

brain weight. Age, height and three categorical variables ageclass (0: under 20, 1: 20-45,

2: over 45), sex and cause of death (1: acute, 2: not given, 3: chronic) were given. Figure

6 shows the DD plots for the FCH, CMVE, FAST-MCD (FMCD) and MB estimators.

CMVE used MB while FCH used DGK. The plots were very similar and six outliers

correspond to the six infants in the data set. In spite of the categorical data, the classical

and robust distances were highly correlated. In S-PLUS 2000, the FMCD estimator is

singular for this data set.

4. SIMULATIONS

A simple simulation for outlier resistance is to generate outliers and count the percent-

age of times the minimum distance of the outliers is larger than the maximum distance of

the clean cases. Then the outliers can be separated from the clean cases with a horizontal

line in the DD plot. The simulation used 100 runs and n = 200. If γ = 0.2 then the first

40 cases were outliers. The clean cases were MVN: x ∼ Np(0, diag(1, 2, ..., p)). Outlier

types were 1) a point mass (0, ..., 0, pm)T at the major axis, 2) a point mass (pm, 0, ..., 0)T

at the minor axis and 3) x ∼ Np(pm1, diag(1, 2, ..., p)) where 1 = (1, ..., 1)T .

Maronna and Zamar (2002) suggest that a point mass orthogonal to the major axis

may be least favorable for OGK, but for FAST-MCD and MBA a point mass at the major

axis will cause a lot of difficulty because an ellipsoid with very small volume can cover half

of the data by putting the outliers at one end of the ellipsoid and the clean data in the

other end. This half set will produce a classical estimator with very small determinant
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by (4). Rocke and Woodruff (1996) suggest that outliers with a mean shift are hard to

detect. A point mass is used although for large γ and moderate p the point mass causes

numerical difficulties in that R software will declare that the sample covariance matrix

is singular.

Notice that the clean data can be transformed to a Np(0, Ip) distribution by multi-

plying xi by diag(1, 1/
√

2, ..., 1/
√

p). The counts for affine equivariant estimators such

as DGK and FAST-MCD will not be changed. Notice that the point mass at the minor

axis (pm, 0, ..., 0)T is not changed by the transformation, but the point mass at the major

axis becomes (0, ..., 0, pm/
√

p)T , which is much harder to detect.

The results of the simulation are shown in Table 1. The counts for the classical

estimator were always 0 and thus omitted. The simulations suggest that for fast MLD

estimators, the HB MCD and MVE dispersion criteria are not adequate for screening

attractors: a HB location criterion is also needed. This can be seen in Table 1 for

p = 20 and γ = 0.2 where for a point mass at the major axis, the MCD criterion needs

pm = 10000 for MBA and 4000 for FMCD to have a small chance of detecting the

outliers, but pm = 50 for FCH and CMVE. The point mass outliers make the DGK

determinant small (though larger than the MCD determinant by definition), but pull the

DGK location estimator away from MED(X). Note that FCH performance dominated

MBA and was usually better than OGK. CMVE was nearly always better than OGK.

For a mean shift and small p and γ the elemental FAST-MCD estimator was somewhat

better than CMVE, MB, MBA and FCH. If γ is large enough then CMVE, MBA, FCH

and MB dominate FAST-MCD. MB was never worse than OGK, but OGK did seem to

behave like a HB estimator in that it could detect distant outliers.
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The simulation suggests that marginal methods for detecting outliers should not be

abandoned. We suggest making a DD plot with the
√

n consistent HB FCH estimator as

an EC diagnostic. Make the MB DD plot to check for outliers. Other methods that do not

have proven theory can also be used as outlier diagnostics. For p ≤ 10 make a scatterplot

matrix of the variables. The plots should be ellipsoidal if the EC assumption is reasonable.

Dot plots of individual predictors with superimposed histograms are also useful. For large

n the histograms should be approximately symmetric if the EC assumption is reasonable.

5. CONCLUSIONS

Robust HB estimators of MLR and MLD should be i)
√

n consistent for a large class

of distributions, ii) easy to compute, iii) effective at detecting certain types of outliers

and iv) high breakdown. Although almost all of the literature focuses either on i) and

iv) or on ii) and iii), this paper shows that it is simple to construct estimators satisfying

i)–iv) provided that n > 20p and p ≤ 40. These results represent both a computational

and theoretical breakthrough in the field of HB MLR and MLD.

The new FCH and CMVE estimators use information from both HB location and

dispersion criteria and are more effective at screening attractors than estimators such as

MBA and FMCD that only use the MCD or MVE dispersion criterion. The RCMVE,

RMBA and RFCH estimators are reweighted versions of CMVE, MBA and FCH that

may perform better for small n, and they are HB
√

n consistent estimators by Lopuhaä

(1999).

For multiple linear regression, the OLS response and residual plots are useful for

detecting outliers and influential cases and these plots should be made for any multiple
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linear regression analysis. Information from influence diagnostics can be incorporated by

highlighting cases with large values of the diagnostic, and fits from both classical and

HB estimators could be used to make the plots.

The collection of easily computed “robust estimators” for MLR and MLD that have

not been shown to be both HB and consistent is enormous, but without theory the

methods should be classified as outlier diagnostics rather than robust statistics.

Examine the estimator on many “benchmark data sets.” FCH was examined on 30

such data sets. Outlier performance was competitive with estimators such as FAST-MCD.

For any given estimator, it is easy to find outlier configurations where the estimator fails.

For the modified wood data of Rousseeuw (1984), MB detected the planted outliers but

FCH used DGK while CMVE used MB. For another data set, 2 clean cases had larger

MB distances than 4 of 5 planted outliers that FAST-MCD can detect. For small p,

elemental methods can be used as outlier diagnostics for consistent HB methods.

Simulations were done in R. Programs are in the collection of functions rpack.txt at

(www.math.siu.edu/olive/ol-bookp.htm). The robustbase library was downloaded from

(www.r-project.org/#doc) to compute OGK, and the MASS library was used to compute

FAST-MCD. The rpack function mldsim was used to produce Table 1.

The R implementation of FCH is much faster than OGK which is much faster than

FAST-MCD. Functions covdgk, covmba and rmba compute the scaled DGK, MBA and

RMBA estimators while covfch and cmve are used to compute FCH, RFCH, CMVE and

RCMVE.
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tivariate Regression,” Technometrics, 46, 293-305.

Rousseeuw, P. J., and Van Driessen, K. (1999), “A Fast Algorithm for the Minimum

Covariance Determinant Estimator,” Technometrics, 41, 212-223.

Tremearne, A. J. N. (1911), “Notes on Some Nigerian Tribal Marks,” Journal of the

Royal Anthropological Institute of Great Britain and Ireland, 41, 162-178.

Willems, G., Pison, G., Rousseeuw, P.J., and Van Aelst, S. (2002), “A Robust Hotelling

Test,” Metrika, 55, 125-138.

25



400 600 800 1000 1200 1400

40
0

80
0

12
00

16
00

FIT

Y

Response Plot

232

234

257

258

260

Figure 1: Gladstone Data

400 600 800 1000 1200 1400

−
20

0
−

10
0

0
10

0
20

0

FIT

R
E

S

230

232

234

254
255

256

257

258

260

Residual Plot

Figure 2: Gladstone Data

26



0 500 1000 1500

0
50

0
10

00
15

00

FIT

Y

Response Plot

61
62

Figure 3: Buxton Data

0 500 1000 1500

−
15

0
−

50
0

50
10

0

FIT

R
E

S

61

62

63

64

65

Residual Plot

Figure 4: Buxton Data

27



1500 1700

11
50

12
00

12
50

13
00

13
50

x[, 1]

x[
, 2

]

3
44

a) Major Data

0 2 4 6

0
2

4
6

8
10

12

MD
R

D

3

44

b) MB DD Plot
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Table 1: Percentage of Times Outliers Were Detected

p γ type pm MBA FCH DGK OGK FMCD CMVE MB

5 .2 1 15 0 100 0 0 0 100 100

10 .2 1 20 0 4 0 0 0 16 96

20 .2 1 30 0 0 0 0 0 1 61

20 .2 1 50 0 100 0 0 0 100 100

20 .2 1 100 0 100 0 22 0 100 100

20 .2 1 4000 0 100 0 100 31 100 100

20 .2 1 10000 24 100 0 100 100 100 100

5 .2 2 15 97 100 0 71 100 100 100

10 .2 2 20 0 58 0 71 0 97 100

20 .2 2 30 0 0 0 99 0 76 100

20 .2 2 50 0 100 0 100 0 100 100

20 .2 2 100 0 100 0 100 0 100 100

20 .2 2 4000 96 100 0 100 100 100 100

5 .2 3 5 88 88 87 5 97 92 91

10 .2 3 5 92 92 84 2 100 92 94

20 .2 3 5 85 85 1 0 99 66 85

40 .4 3 20 38 38 0 0 0 40 100

40 .4 3 30 77 97 0 59 0 91 100

40 .4 3 40 91 100 0 100 0 100 100
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