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Abstract

Robust estimators for multivariate location and dispersion should be
√

n con-

sistent and highly outlier resistant, but estimators that have been shown to have

these properties are impractical to compute. This paper gives easily computed
√

n

consistent outlier resistant estimators that can be used for inference. Applications

are numerous, including outlier detection and a diagnostic for whether the data

distribution is elliptically contoured.
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1. INTRODUCTION

A long standing question in Statistics is whether high breakdown multivariate statis-

tics is a viable field of study. Are there useful high breakdown estimators of multivariate

location and dispersion that are practical to compute? Can high breakdown estimators

be incorporated into a practical algorithm in such a way that the algorithm estimator

is consistent? This paper provides practical
√

n consistent estimators that incorporate a

useful high breakdown estimator.

Let the ith case xi be a p×1 random vector, and suppose the n cases are collected in

an n×p matrix X with rows xT
1 , ...,xT

n . The fastest estimator of multivariate location and

dispersion that has been shown to be both consistent and high breakdown is the minimum

covariance determinant (MCD) estimator with O(nv) complexity where v = 1+p(p+3)/2.

See Bernholt and Fischer (2004). The minimum volume ellipsoid (MVE) complexity is

far higher, and there may be no known method for computing S, τ , projection based,

constrained M, MM, and Stahel-Donoho estimators. See Maronna, Martin and Yohai

(2006, ch. 6) for descriptions and references.

Since the above estimators take too long to compute, they have been replaced by

practical estimators. To our knowledge, no useful practical estimator of “high breakdown

multivariate location and dispersion” has been shown to be consistent or high breakdown.

When authors claim to have a method that uses a high breakdown estimator such as

MCD, either the method takes too long to compute or the method actually uses a practical

estimator that is not backed by theory. In particular, the “robust and computationally

efficient multivariate techniques” (e.g., for principal component analysis, factor analysis
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and multivariate regression) that claim to use the impractical MCD estimator actually

use the Rousseeuw and Van Driessen (1999) FAST-MCD (FMCD) estimator. These

methods, reviewed by Hubert, Rousseeuw and Van Aelst (2008), should be classified as

outlier diagnostics unless the FAST-MCD estimator can be shown to be consistent. See

Huber and Ronchetti (2009, pp. xiii, 9, 196-198).

The classical estimator (x,S) of multivariate location and dispersion is the sample

mean and sample covariance matrix where

x =
1

n

n∑

i=1

xi and S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T. (1)

Some important joint distributions for x are completely specified by a p × 1 population

location vector µ and a p × p symmetric positive definite population dispersion matrix

Σ. An important model is the elliptically contoured ECp(µ,Σ, g) distribution with prob-

ability density function (pdf) f(z) = kp|Σ|−1/2g[(z − µ)TΣ−1(z − µ)] where kp > 0 is

some constant and g is some known function. The multivariate normal (MVN) Np(µ,Σ)

distribution is a special case, and x is “spherical about µ” if x has an ECp(µ, cIp, g)

distribution where c > 0 is some constant and Ip is the p × p identity matrix.

Let the p × 1 column vector T ≡ T (X) be a multivariate location estimator, and let

the p×p symmetric positive definite matrix C ≡ C(X) be a dispersion estimator. Then

the ith squared sample Mahalanobis distance is the scalar

D2
i = D2

i (T (X),C(X)) = (xi − T (X))T C−1(X)(xi − T (X)) (2)

for each observation xi. Notice that the Euclidean distance of xi from the estimate of

center T (X) is Di(T (X), Ip). The classical Mahalanobis distance uses (T,C) = (x,S).
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Following Johnson (1987, pp. 107-108), the population squared Mahalanobis distance

U ≡ D2(µ,Σ) = (x − µ)TΣ−1(x − µ), (3)

and for elliptically contoured distributions, U has pdf

h(u) =
πp/2

Γ(p/2)
kpu

p/2−1g(u). (4)

If dn of the cases have been replaced by arbitrarily bad contaminated cases, then

the contamination fraction is γn = dn/n. Then the breakdown value of a multivariate

location estimator is the smallest value of γn needed to make ‖T‖ arbitrarily large. Let

0 ≤ λp(C) ≤ · · · ≤ λ1(C) denote the eigenvalues of C. Then the breakdown value

of C is the smallest value of γn needed to drive either λp to zero or λ1 to ∞. High

breakdown statistics have γn → 0.5 as n → ∞ if the (uncontaminated) clean data are in

general position: no more than p points of the clean data lie on any (p − 1)-dimensional

hyperplane. For the remainder of this paper, assume that the clean data are in general

position. Estimators are zero breakdown if γn → 0 and positive breakdown if γn → γ > 0

as n → ∞.

Many practical “robust estimators” generate a sequence of K trial fits called attrac-

tors: (T1,C1), ..., (TK,CK). Then the attractor (TA,CA) that minimizes some criterion

is used to obtain the final estimator. One way to obtain attractors is to generate trial

fits called starts, and then use the concentration technique. Let (T−1,j,C−1,j) be the jth

start and compute all n Mahalanobis distances Di(T−1,j,C−1,j). At the next iteration,

the classical estimator (T0,j,C0,j) is computed from the cn ≈ n/2 cases corresponding

to the smallest distances. This iteration can be continued for k steps resulting in the

sequence of estimators (T−1,j,C−1,j), (T0,j,C0,j), ..., (Tk,j,Ck,j). Then (Tk,j,Ck,j) is the
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jth attractor for j = 1, ...,K. Using k = 10 often works well, and the basic resampling

algorithm is a special case k = −1 where the attractors are the starts.

Three important starts will be examined by this paper. Hawkins and Olive (1999)

and Rousseeuw and Van Driessen (1999) use elemental starts: (T−1,j,C−1,j) is the classi-

cal estimator applied to a randomly selected “elemental set” of p + 1 cases. The Devlin,

Gnanadesikan and Kettenring (1981) DGK estimator (Tk,D,Ck,D) uses the classical es-

timator (T−1,D,C−1,D) = (x,S) as the only start. The Olive (2004) median ball (MB)

estimator (Tk,M ,Ck,M ) uses (T−1,M ,C−1,M ) = (MED(X), Ip) as the only start where

MED(X) is the coordinatewise median. Hence (T0,M ,C0,M) is the classical estimator

applied to the “half set” of data closest to MED(X) in Euclidean distance. Section 3

will show that the MB estimator is a high breakdown estimator and that the DGK esti-

mator is a
√

n consistent estimator of (µ, aMCDΣ), the same quantity estimated by the

MCD estimator. For nonspherical elliptically contoured distributions, the MB estimator

is a biased estimator of (µ, aMCDΣ), but the bias seems to be small even for k = 0, and

to get smaller as k increases.

Rousseeuw (1984) suggested the following criteria for screening attractors. Suppose

the attractor is (xk,j ,Sk,j) computed from a subset of cn cases. The MCD(cn) criterion

is the determinant det(Sk,j). The volume of the hyperellipsoid

{z : (z − xk,j)
TS−1

k,j(z − xk,j) ≤ h2} is equal to
2πp/2

pΓ(p/2)
hp

√
det(Sk,j), (5)

see Johnson and Wichern (1988, pp. 103-104). Let h = D(cn)(xk,j ,Sk,j). Then the

“MVE(cn)” criterion is hp
√

det(Sk,j) (but does not actually correspond to the MVE

estimator).
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In the following sections, three promising algorithms for robust multivariate location

and dispersion are examined. The first algorithm uses concentration with a few con-

sistent and outlier resistant starts. See Hubert, Rousseeuw and Verdonck (2010), Olive

(2004) and the estimators developed in Section 3. The second algorithm uses concentra-

tion with randomly selected elemental starts. The third algorithm is the orthogonalized

Gnanadesikan-Kettenring (OGK) estimator which Maronna and Zamar (2002, p. 309)

claim, without proof, is consistent and high breakdown.

Reyen, Miller, and Wegman (2009) simulate the OGK and the Olive (2004) median

ball algorithm (MBA) estimators for p = 100 and n up to 50000, and note that the OGK

complexity is O[p3+np2 log(n)] while that of MBA (and FMCD) is O[p3+np2+np log(n)].

Section 2 shows algorithms that use many attractors may not be trustworthy. Section

3 develops
√

n consistent outlier resistant estimators that use the high breakdown MB

estimator. Section 4 considers outlier resistance with a small simulation study.

2. THEORY FOR SOME PRACTICAL ESTIMATORS

Suppose the algorithm estimator uses some criterion to choose an attractor as the

final estimator where there are K attractors and K is fixed, e.g. K = 500, so K does

not depend on n. The main point of this section is that the theory of the algorithm

estimator depends on the theory of the attractors, not on the estimator corresponding

to the criterion.

Hawkins and Olive (2002) noted that if K randomly selected elemental starts are used

with concentration to produce the attractors, then the resulting estimator is inconsistent

and zero breakdown if K and k are fixed and free of n. Note that each elemental start
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can be made to breakdown by changing one case. Hence the breakdown value of the

final estimator is bounded by K/n → 0 as n → ∞. The classical estimator applied to

a randomly drawn elemental set is an inconsistent estimator, so the K starts and the

K attractors are inconsistent. Note that if the xi are iid and P (xi = µ) < 1, then

x−1,j is the sample mean applied to p + 1 iid cases. Thus there exists ε > 0 such that

P (‖x−1,j − µ‖ > ε) ≡ δε > 0, and P (minj ‖x−1,j − µ‖ > ε) = P (all ‖x−1,j − µ‖ > ε) →

δK
ε > 0 as n → ∞ where equality would hold if the x−1,j were iid. Hence the “best start”

that minimizes ‖x−1,j −µ‖ is inconsistent, and the algorithm needs Kn → ∞ as n → ∞

to produce a consistent estimator.

This theory shows that the Maronna, Martin and Yohai (2006, pp. 198-199) esti-

mators that use K = 500 and one concentration step (k = 0) are inconsistent and zero

breakdown. The following theorem is useful because it does not depend on the criterion

used to choose the attractor. If the algorithm needs to use many attractors to achieve

outlier resistance, then the individual attractors have little outlier resistance. Such esti-

mators include elemental concentration algorithms, heuristic and genetic algorithms and

projection algorithms. Algorithms such as elemental concentration algorithms where all

K of the attractors are inconsistent are especially untrustworthy. For example, Stahel

Donoho algorithms, discussed in Maronna, Martin and Yohai (2006, pp. 193-194), use

randomly chosen projections and the attractor is a weighted mean and covariance ma-

trix computed for each projection. If randomly chosen projections result in inconsistent

attractors, then the Stahel Donoho algorithm is likely inconsistent.

Suppose there are K consistent estimators (Tj,Cj) of (µ, a Σ) for some constant

a > 0, each with the same rate nδ. If (TA,CA) is an estimator obtained by choosing one
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of the K estimators, then (TA,CA) is a consistent estimator of (µ, a Σ) with rate nδ by

Pratt (1959).

Theorem 1. Suppose the algorithm estimator chooses an attractor as the final esti-

mator where there are K attractors and K is fixed.

i) If all of the attractors are consistent, then the algorithm estimator is consistent.

ii) If all of the attractors are consistent with the same rate, e.g., nδ where 0 < δ ≤ 0.5,

then the algorithm estimator is consistent with the same rate as the attractors.

iii) If all of the attractors are high breakdown, then the algorithm estimator is high

breakdown.

iv) The elemental concentration algorithm is zero breakdown.

Since the FMCD estimator is a zero breakdown elemental concentration algorithm, the

Hubert, Rousseeuw and Van Aelst (2008) claim that “MCD can be efficiently computed

with the FAST-MCD estimator” is false. Suppose K is fixed, but each randomly drawn

start is iterated to convergence so that k is not fixed. Then it is not known whether the

attractors are inconsistent or consistent estimators, so it is not known whether FMCD

is consistent. Let γo be the highest percentage of large outliers that FMCD can detect

reliably. Following Hawkins and Olive (2002), if n is large then for many data sets

γo ≈ min(0.5, 1 − [1 − (0.2)1/K]1/(p+1))100%. (6)

3. PRACTICAL CONSISTENT ROBUST ESTIMATORS

This section shows that the MB estimator is high breakdown and that the DGK

estimator is
√

n consistent. The new FCH estimator and the Olive (2004) MBA estimator
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are defined after Theorem 4. Theorem 5 shows that MBA and FCH are
√

n consistent.

Then new RFCH and RMVN estimators are defined and shown to be
√

n consistent.

If x1, ...,xn is the original data set, let w1, ...,wn be the contaminated data collected

into an n × p matrix W after dn of the xi have been replaced by arbitrary outliers. If

a high breakdown estimator (T,C) ≡ (T (W ),C(W )) is evaluated on the contaminated

data W , then the location estimator T is contained in some ball about the origin of

radius r, and 0 < a < λn ≤ λ1 < b where the constants a, r and b depend on the clean

data but not on W if the number of outliers dn satisfies 0 ≤ dn < nγn < n/2 where the

breakdown value γn → 0.5 as n → ∞.

The following theorem is closely related to a result in Olive (2004) and will be used

to show that if the classical estimator (xB,SB) is applied to cn ≈ n/2 cases contained

in a ball about the origin of radius r where r depends on the clean data but not on W ,

then (xB,SB) is a high breakdown estimator.

Theorem 2. If the classical estimator (xB,SB) is applied to cn cases that are contained

in some bounded region where p + 1 ≤ cn ≤ n, then the maximum eigenvalue λ1 of SB

is bounded.

The proof of the following theorem implies that a high breakdown estimator (T,C)

has MED(D2
i ) ≤ V and that the hyperellipsoid {x|D2

x ≤ D2
(cn)} that contains cn of the

cases is in some ball about the origin of radius r, where V and r do not depend on

the outliers even if the number of outliers is close to n/2. Also the attractor of a high

breakdown estimator is a high breakdown estimator if the number of concentration steps

k is fixed, e.g., k = 10. The theorem implies that the MB estimator (Tk,M ,Ck,M ) is high
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breakdown. Olive (2004) proved this result for k = 0 and Arcones (1995) showed that

T0,M is a
√

n consistent high breakdown estimator of µ.

Theorem 3. Suppose (T,C) is a high breakdown estimator where C is a symmetric,

positive definite p×p matrix if the contamination proportion dn/n is less than the break-

down value. Then the concentration attractor (Tk,Ck) is a high breakdown estimator if

the coverage cn ≈ n/2 and the data are in general position.

Lopuhaä (1999) and Pratt (1959) will be used to provide simple proofs for the theory

of the new FCH, RFCH and RMVN estimators. Lopuhaä (1999) shows that if a start

(T,C) is a consistent estimator of (µ, sΣ), then the attractor is a consistent estimator

of (µ, aΣ) where a, s > 0 are some constants. Also, the attractor and the start have

the same rate. If the start is inconsistent, then so is the attractor. The constant a

depends on s, p, and on the elliptically contoured distribution, but does not otherwise

depend on the consistent start. The constant a also depends on h2 in the weight function

I(D2
i (T,C) ≤ h2) where h2 is a positive constant and the indicator is 1 if D2

i (T,C) ≤ h2

and 0 otherwise.

To see that the Lopuhaä (1999) theory extends to concentration where the weight

function uses h2 = D2
(cn)(T,C), note that (T, C̃) ≡ (T,D2

(cn)(T,C) C) is a consistent

estimator of (µ, bΣ) where b > 0 is derived in (10), and weight function I(D2
i (T, C̃) ≤ 1)

is equivalent to the concentration weight function I(D2
i (T,C) ≤ D2

(cn)(T,C)).

If (T,C) is a consistent estimator of (µ, s Σ) with rate nδ where 0 < δ ≤ 0.5, then

D2(T,C) = (x − T )TC−1(x − T ) =

(x −µ + µ − T )T [C−1 − s−1Σ−1 + s−1Σ−1](x −µ + µ − T )
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= s−1D2(µ,Σ) + OP (n−δ). (7)

Thus the sample percentiles of D2
i (T,C) are consistent estimators of the percentiles of

s−1D2(µ,Σ). Suppose cn/n → ξ ∈ (0, 1) as n → ∞, and let D2
ξ (µ,Σ) be the ξth

percentile of the population squared distances. Then D2
(cn)(T,C)

P→ s−1D2
ξ (µ,Σ) and

bΣ = s−1D2
ξ (µ,Σ)sΣ = D2

ξ (µ,Σ)Σ. Thus

b = D2
ξ (µ,Σ) (8)

does not depend on s > 0 or δ ∈ (0, 0.5]. Theorem 4 shows that a = aMCD where

ξ = 0.5. Hence concentration with a consistent estimator of (µ, sΣ) with rate nδ as

a start results in a consistent estimator of (µ, aMCDΣ) with rate nδ. This result can

be applied iteratively for a finite number of concentration steps. Hence DGK is a
√

n

consistent estimator of the same quantity that MCD is estimating. It is not known if the

results hold if concentration is iterated to convergence. For multivariate normal data,

D2(µ,Σ) ∼ χ2
p.

The following assumption (E1) gives a class of distributions where we can prove that

the new robust estimators are
√

n consistent. Cator and Lopuhaä (2009, 2010) show that

MCD is consistent provided that the MCD functional is unique. Distributions where

the functional is unique are called “unimodal,” and rule out, for example, a spherically

symmetric uniform distribution. Theorem 4 shows that under (E1), both MCD and DGK

are estimating (µ, aMCDΣ).

Assumption (E1): The x1, ...,xn are iid from a “unimodal” ECp(µ,Σ, g) distribution

with nonsingular covariance matrix Cov(xi) where g is continuously differentiable with

finite 4th moment:
∫

(xTx)2g(xTx)dx < ∞.
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Theorem 4. Assume that (E1) holds and that (T,C) is a consistent estimator of

(µ, sΣ) with rate nδ where the constants s > 0 and 0 < δ ≤ 0.5. Then the classical

estimator (xt,j,St,j) computed from the cn ≈ n/2 of cases with the smallest distances

Di(T,C) is a consistent estimator of (µ, aMCDΣ) with the same rate nδ.

Next we define the new easily computed robust
√

n consistent FCH estimator, so

named since it is fast, consistent and uses a high breakdown attractor. The FCH and

MBA estimators use the
√

n consistent DGK estimator (Tk,D,Ck,D) and the high break-

down MB estimator (Tk,M ,Ck,M ) as attractors. The MBA estimator uses the attractor

with the smallest determinant. The difference between the FCH and MBA estimators is

that the FCH estimator also uses a location criterion to choose the attractor: if the DGK

location estimator Tk,D has a greater Euclidean distance from MED(X) than half the

data, then FCH uses the MB attractor. The FCH estimator only uses the attractor with

the smallest determinant if ‖Tk,D −MED(X)‖ ≤ MED(Di(MED(X), Ip)). Let (TA,CA)

be the attractor used. Then the estimator (TF ,CF ) takes TF = TA and

CF =
MED(D2

i (TA,CA))

χ2
p,0.5

CA (9)

where χ2
p,0.5 is the 50th percentile of a chi–square distribution with p degrees of freedom

and F is the MBA or FCH estimator. We conjecture that FCH is high breakdown.

Theorem 5. TFCH is high breakdown. Suppose (E1) holds. If (TA,CA) is the DGK or

MB attractor with the smallest determinant, then (TA,CA) is a
√

n consistent estimator

of (µ, aMCDΣ). Hence the MBA and FCH estimators are outlier resistant
√

n consistent

estimators of (µ, cΣ) where c = 1 for multivariate normal data.

Many variants of the FCH and MBA estimators can be given where the algorithm
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gives a
√

n consistent estimator of (µ, cΣ). One such variant uses K starts (T−1,j,C−1,j)

that are
√

n consistent estimators of (µ, sjΣ) where sj > 0. The MCD criteria is used to

choose the final attractor, and scaling is done as in (11). A second variant is the same as

the first, but the Kth attractor is replaced by the MB estimator, and for j < K the jth

attractor (Tk,j,Ck,j) is not used if Tk,j has a greater Euclidean distance from MED(X)

than half the data. Then the location estimator of the algorithm is high breakdown.

We also considered several estimators that use the MB and DGK estimators as at-

tractors. CMVE is a concentration algorithm like FCH, but the “MVE” criterion is used

in place of the MCD criterion. A standard method of reweighting can be used to produce

the RMBA, RFCH and RCMVE estimators. RMVN uses a slightly modified method of

reweighting so that RMVN gives good estimates of (µ,Σ) for multivariate normal data,

even when certain types of outliers are present.

The RFCH estimator uses two standard reweighting steps. Let (µ̂1, Σ̃1) be the clas-

sical estimator applied to the n1 cases with D2
i (TFCH ,CFCH ) ≤ χ2

p,0.975, and let

Σ̂1 =
MED(D2

i (µ̂1, Σ̃1))

χ2
p,0.5

Σ̃1.

Then let (TRFCH, Σ̃2) be the classical estimator applied to the cases with D2
i (µ̂1, Σ̂1) ≤

χ2
p,0.975, and let

CRFCH =
MED(D2

i (TRFCH, Σ̃2))

χ2
p,0.5

Σ̃2.

RMBA and RFCH are
√

n consistent estimators of (µ, cΣ) by Lopuhaä (1999) where

the weight function uses h2 = χ2
p,0.975, but the two estimators use nearly 97.5% of the

cases if the data is multivariate normal. We conjecture CMVE and RMVE are also
√

n

consistent estimators of (µ, cΣ).
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The RMVN estimator uses (µ̂1, Σ̃1) and n1 as above. Let

q1 = min{0.5(0.975)n/n1, 0.995}, and

Σ̂1 =
MED(D2

i (µ̂1, Σ̃1))

χ2
p,q1

Σ̃1.

Then let (TRMV N , Σ̃2) be the classical estimator applied to the n2 cases with

D2
i (µ̂1, Σ̂1)) ≤ χ2

p,0.975. Let q2 = min{0.5(0.975)n/n2, 0.995}, and

CRMV N =
MED(D2

i (TRMV N , Σ̃2))

χ2
p,q2

Σ̃2.

The RMVN estimator is a
√

n consistent estimator of (µ, dΣ) by Lopuhaä (1999) where

the weight function uses h2 = χ2
p,0.975 and d = u0.5/χ

2
p,q where q2 → q in probability as

n → ∞. Here 0.5 ≤ q < 1 depends on the elliptically contoured distribution, but q = 0.5

and d = 1 for multivariate normal data.

If the bulk of the data is Np(µ,Σ), the RMVN estimator can give useful estimates of

(µ,Σ) for certain types of outliers where FCH and RFCH estimate (µ, dEΣ) for dE > 1.

To see this claim, let 0 ≤ γ < 0.5 be the outlier proportion. If γ = 0, then ni/n
P→ 0.975

and qi
P→ 0.5. If γ > 0, suppose the outlier configuration is such that the D2

i (TFCH ,CFCH)

are roughly χ2
p for the clean cases, and the outliers have larger D2

i than the clean cases.

Then MED(D2
i ) ≈ χ2

p,q where q = 0.5/(1 − γ). For example, if n = 100 and γ = 0.4,

then there are 60 clean cases, q = 5/6, and the quantile χ2
p,q is being estimated instead

of χ2
p,0.5. Now ni ≈ n(1 − γ)0.975, and qi estimates q. Thus CRMV N ≈ Σ. Of course

consistency cannot generally be claimed when outliers are present.

Simulations suggested (TRMV N ,CRMV N ) gives useful estimates of (µ,Σ) for a variety

of outlier configurations. Using 20 runs and n = 1000, the averages of the dispersion

matrices were computed when the bulk of the data are iid N2(0,Σ) where Σ = diag(1, 2).
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Table 1: Average Dispersion Matrices for Near Point Mass Outliers

RMVN FMCD OGK MB



1.002 −0.014

−0.014 2.024







0.055 0.685

0.685 122.46







0.185 0.089

0.089 36.244







2.570 −0.082

−0.082 5.241




Table 2: Average Dispersion Matrices for Mean Shift Outliers

RMVN FMCD OGK MB



0.990 0.004

0.004 2.014







2.530 0.003

0.003 5.146







19.671 12.875

12.875 39.724







2.552 0.003

0.003 5.118




For clean data, FCH, RFCH and RMVN give
√

n consistent estimators of Σ, while FMCD

and OGK seem to be approximately unbiased for Σ. The median ball estimator was

scaled using (11) and estimated diag(1.13, 1.85).

Next the data had γ = 0.4 and the outliers had x ∼ N2((0, 15)
T , 0.0001I 2), a near

point mass at the major axis. FCH, MB and RFCH estimated 2.6Σ while RMVN esti-

mated Σ. FMCD and OGK failed to estimate d Σ. Note that χ2
2,5/6/χ

2
2,0.5 = 2.585. See

Table 1.

Next the data had γ = 0.4 and the outliers had x ∼ N2((20, 20)
T ,Σ), a mean shift

with the same covariance matrix as the clean cases. Rocke and Woodruff (1996) suggest

that outliers with mean shift are hard to detect. FCH, FMCD, MB and RFCH estimated

2.6Σ while RMVN estimated Σ, and OGK failed. See Table 2.

Example 1. Tremearne (1911) recorded height = x1 and height while kneeling = x2 of

112 people. Figure 1 shows a scatterplot of the data. Case 3 has the largest Euclidean

distance of 214.767 from MED(X) = (1680, 1240)T , but if the distances correspond to the
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Figure 1: Scatterplot for Tremearne (1911) Data
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Figure 3: DD Plots for Gladstone Data

contours of a covering ellipsoid, then case 44 has the largest distance. The hypersphere

(circle) centered at MED(X) that covers half the data is small because the data density is

high near MED(X). The median Euclidean distance is 59.661 and case 44 has Euclidean

distance 77.987. Hence the intersection of the sphere and the data is a highly correlated

clean ellipsoidal region. The Rousseeuw and Van Driessen (1999) DD plot is a plot of

classical distances (MD) versus “robust” distances (RD). Figure 2 shows the DD plot

using the MB estimator. Notice that both the classical and MB estimators give the

largest distances to cases 3 and 44. As the dimension p gets larger, outliers that can not

be detected by marginal methods (case 44 in Example 1) become harder to detect.

Example 2. The estimators can be useful when the data is not elliptically contoured.

The Gladstone (1905-6) data has 11 variables on 267 persons after death. Head mea-

surements were breadth, circumference, head height, length and size as well as cephalic

index and brain weight. Age, height and two categorical variables ageclass (0: under 20,
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1: 20-45, 2: over 45) and sex were also given. The OGK and FAST-MCD estimators were

singular. Figure 3 shows the DD plots for the FCH, RMVN, cov.mcd (from R version

2.4.1) and MB estimators. The DD plots from the DGK, MBA, CMVE, RCMVE and

RFCH estimators were similar, and the six outliers in Figure 3 correspond to the six

infants in the data set.

Olive (2002) showed that if a consistent robust estimator is scaled as in (11), then the

plotted points in the DD plot will cluster about the identity line with unit slope and zero

intercept if the data is multivariate normal, and about some other line through the origin

if the data is from some other elliptically contoured distribution with a nonsingular

covariance matrix. Since multivariate procedures tend to perform well for elliptically

contoured data, the DD plot is useful even if outliers are not present.

If Win ∼ N(0, τ 2/n) for i = 1, ..., r and if S2
W is the sample variance of the Win, then

E(nS2
W ) = τ 2 and V (nS2

W ) = 2τ 4/(r−1). So nS2
W ±

√
5SE(nS2

W ) ≈ τ 2±
√

10τ 2/
√

r − 1.

So for r = 1000 runs, expect nS2
W to be between τ 2 − 0.1τ 2 and τ 2 + 0.1τ 2 with high

confidence. Similar results hold for many estimators if Win is
√

n consistent and asymp-

totically normal and if n is large enough. If Win has less than
√

n rate, e.g. n1/3 rate,

then the scaled sample variance nS2
W → ∞ as n → ∞.

Table 3 considers W = Tp and W = Cp,p for eight estimators, p = 5 and 10 and

n = 10p and 5000 when x ∼ Np(0, diag(1, ..., p)). For the classical estimator, denoted by

CLAS, Tp = xp ∼ N(0, p/n), and nS2(Tp) ≈ p while Cp,p is the sample variance of n iid

N(0, p) random variables. Hence nS2(Cp,p) ≈ 2p2. RFCH, RMVN, FMCD and possibly

OGK use a “reweight for efficiency” concentration step that uses a random number of

cases with percentage close to 97.5%. These four estimators had similar behavior. DGK,
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Table 3: Scaled Variance nS2(Tp) and nS2(Cp,p)

p n V FCH RFCH RMVN DGK OGK CLAS FMCD MB

5 50 C 216.0 72.4 75.1 209.3 55.8 47.12 153.9 145.8

5 50 T 12.14 6.50 6.88 10.56 6.70 4.83 8.38 13.23

5 5000 C 307.6 64.1 68.6 325.7 59.3 48.5 60.4 309.5

5 5000 T 18.6 5.34 5.33 19.33 6.61 4.98 5.40 20.20

10 100 C 817.3 276.4 286.0 725.4 229.5 198.9 459.6 610.4

10 100 T 21.40 11.42 11.68 20.13 12.75 9.69 14.05 24.13

10 5000 C 955.5 237.9 243.8 966.2 235.8 202.4 233.6 975.0

10 5000 T 29.12 10.08 10.09 29.35 12.81 9.48 10.06 30.20

FCH and MB used about 50% of the cases and had similar behavior. By Lopuhaä

(1999), estimators with less than
√

n rate still have zero efficiency after the reweighting.

Although FMCD, MB and OGK have not been proven to be
√

n consistent, their values

did not blow up even for n = 5000.

4. OUTLIER RESISTANCE

Geometrical arguments suggest that the MB estimator has considerable outlier resis-

tance. Suppose the outliers are far from the bulk of the data. Let the “median ball”

correspond to the half set of data closest to MED(X) in Euclidean distance. If the out-

liers are outside of the median ball, then the initial half set in the iteration leading to

the MB estimator will be clean. Thus the MB estimator will tend to give the outliers

the largest MB distances unless the initial clean half set has very high correlation in a
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direction about which the outliers lie. This property holds for very general outlier config-

urations. The FCH estimator tries to use the DGK attractor if the det(CDGK) is small

and the DGK location estimator TDGK is in the median ball. Distant outliers that make

det(CDGK) small also drag TDGK outside of the median ball. Then FCH uses the MB

attractor.

Compared to OGK and FMCD, the MB estimator is vulnerable to outliers that lie

within the median ball. If the bulk of the data is highly correlated with the major axis

of an ellipsoidal region, then the distances based on the clean data can be very large

for outliers that fall within the median ball. The outlier resistance of the MB estimator

decreases as p increases since the volume of the median ball rapidly increases with p.

A simple simulation for outlier resistance is to count the number of times the minimum

distance of the outliers is larger than the maximum distance of the clean cases. The

simulation used 100 runs. If the count was 97, then in 97 data sets the outliers can be

separated from the clean cases with a horizontal line in the DD plot, but in 3 data sets

the robust distances did not achieve complete separation.

The clean cases had x ∼ Np(0, diag(1, 2, ..., p)). Outlier types were the mean shift

x ∼ Np(pm1, diag(1, 2, ..., p)) where 1 = (1, ..., 1)T , and x ∼ Np((0, ..., 0, pm)T , 0.0001

Ip), a near point mass at the major axis. Notice that the clean data can be trans-

formed to a Np(0, Ip) distribution by multiplying xi by diag(1, 1/
√

2, ..., 1/
√

p), and this

transformation changes the location of the near point mass to (0, ..., 0, pm/
√

p)T .

For near point mass outliers, an ellipsoid with very small volume can cover half of the

data if the outliers are at one end of the ellipsoid and some of the clean data are at the

other end. This half set will produce a classical estimator with very small determinant
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Table 4: Number of Times Mean Shift Outliers had the Largest Distances

p γ n pm MBA FCH RFCH RMVN OGK FMCD MB

10 .1 100 4 49 49 85 84 38 76 57

10 .1 100 5 91 91 99 99 93 98 91

10 .4 100 7 90 90 90 90 0 48 100

40 .1 100 5 3 3 3 3 76 3 17

40 .1 100 8 36 36 37 37 100 49 86

40 .25 100 20 62 62 62 62 100 0 100

40 .4 100 20 20 20 20 20 0 0 100

40 .4 100 35 44 98 98 98 95 0 100

60 .1 200 10 49 49 49 52 100 30 100

60 .1 200 20 97 97 97 97 100 35 100

60 .25 200 25 60 60 60 60 100 0 100

60 .4 200 30 11 21 21 21 17 0 100

60 .4 200 40 21 100 100 100 100 0 100
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by (5). In the simulations for large γ, as the near point mass is moved very far away from

the bulk of the data, only the classical, MB and OGK estimators did not have numerical

difficulties. Since the MCD estimator has smaller determinant than DGK while MVE

has smaller volume than DGK, estimators like FAST-MCD and MBA that use the MVE

or MCD criterion without using location information will be vulnerable to these outliers.

FAST-MCD is also vulnerable to outliers if γ is slightly larger than γo given by (6).

Tables 4 and 5 help illustrate the results for the simulation. Large counts and small

pm for fixed γ suggest greater ability to detect outliers. Values of p were 5, 10, 15, ...,

60. First consider the mean shift outliers and Table 4. For γ = 0.25 and 0.4, MB usually

had the highest counts. For 5 ≤ p ≤ 20 and the mean shift, the OGK estimator often

had the smallest counts, although FMCD could not handle 40% outliers for p = 20. For

25 ≤ p ≤ 60, OGK usually had the highest counts for γ = 0.05 and 0.1. For p ≥ 30,

FMCD could not handle 25% outliers even for enormous values of pm.

In Table 5, FCH greatly outperformed MBA although the only difference between the

two estimators is that FCH uses a location criterion as well as the MCD criterion. OGK

performed well for γ = 0.05 and 20 ≤ p ≤ 60 (not tabled). For large γ, OGK often has

large bias for cΣ. Then the outliers may need to be enormous before OGK can detect

them. Also see Table 2, where OGK gave the outliers the largest distances for all runs,

but COGK does not give a good estimate of cΣ = c diag(1, 2).

5. CONCLUDING REMARKS

Now that practical outlier resistant
√

n consistent estimators have been shown to

exist, they can be used for outlier detection and inference. We recommend using FCH
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Table 5: Number of Times Near Point Mass Outliers had the Largest Distances

p γ n pm MBA FCH RFCH RMVN OGK FMCD MB

10 .1 100 40 73 92 92 92 100 95 100

10 .25 100 25 0 99 99 90 0 0 99

10 .4 100 25 0 100 100 100 0 0 100

40 .1 100 80 0 0 0 0 79 0 80

40 .1 100 150 0 65 65 65 100 0 99

40 .25 100 90 0 88 87 87 0 0 88

40 .4 100 90 0 91 91 91 0 0 91

60 .1 200 100 0 0 0 0 13 0 91

60 .25 200 150 0 100 100 100 0 0 100

60 .4 200 150 0 100 100 100 0 0 100

60 .4 200 20000 0 100 100 100 64 0 100
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instead of MBA, and RFCH or RMVN instead of RMBA. RMVN is useful for inference

if the parametric Np(µ,Σ) model is reasonable, and estimates of µ and Σ are needed.

If estimates of µ and cΣ are needed, then RMVN, RFCH and FCH can be used for

inference on the large class of elliptically contoured distributions that satisfy (E1).

Note that large sample inference is often immediate. For example, since RMVN is a

consistent estimator of c Cov(x) under (E1), the correlation of the eigenvalues computed

from the classical estimator and from RMVN converges to 1 in probability. RMVN,

RFCH and FCH can also be used as the plug in estimators, replacing estimators such as

MBA, RMBA, FAST-MCD and OGK. There are many applications including standard

multivariate methods such as canonical analysis, discrimination, factor analysis, principal

components and regression. See Hubert, Rousseeuw and Van Aelst (2008), Maronna,

Martin and Yohai (2006), Reyen, Miller and Wegman (2009), and Wilcox (2008ab, 2009,

2010). Applications for dimension reduction methods such as 1D regression and sliced

inverse regression include Chang and Olive (2010), Cook and Nachtsheim (1994) and

Olive (2002).

The new estimators can also be used to improve outlier diagnostics. Making a scat-

terplot matrix of the classical, DGK, MB, OGK and FAST-MCD distances is useful.

Simulations were done in R. Programs are in the collection of functions rpack.txt

at (www.math.siu.edu/olive/ol-bookp.htm). The robustbase library was downloaded

from (www.r-project.org/#doc) to compute OGK and FAST-MCD. The rpack function

mldsim was used for Tables 1 to 5. The function cmve computes CMVE and RCMVE,

function covfch computes FCH and RFCH while covrmvn computes the RMVN and MB

estimators. The function covrmb computes MB and RMB where RMB is like RMVN
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except the MB estimator is reweighted instead of FCH.

APPENDIX

Proof of Theorem 1. i) Choosing from K consistent estimators results in an consistent

estimator, and ii) follows from Pratt (1959). iii) Let γn,i be the breakdown value of

the ith attractor if the clean data x1, ...,xn are in general position. The breakdown

value γn of the algorithm estimator can be no lower than that of the worst attractor:

γn ≥ min(γn,1, ..., γn,K) → 0.5 as n → ∞. iv) The classical estimator with breakdown

1/n is applied to each elemental start. Hence γn ≤ K/n → 0 as n → ∞.

Proof of Theorem 2. The largest eigenvalue of a p× p matrix A is bounded above by

pmax |ai,j| where ai,j is the (i, j) entry of A. See Datta (1995, p. 403). Denote the cn

cases by z1, ...,zcn. Then the (i, j)th element ai,j of A = SB is

ai,j =
1

cn − 1

cn∑

m=1

(zi,m − zi)(zj,m − zj).

Hence the maximum eigenvalue λ1 is bounded.

Proof of Theorem 3. Following Leon (1986, p. 280), if A is a symmetric positive

definite matrix with eigenvalues τ1 ≥ · · · ≥ τn, then for any nonzero vector x,

0 < ‖x‖2 τn ≤ xT Ax ≤ ‖x‖2 τ1. (10)

Let λ1 ≥ · · · ≥ λn be the eigenvalues of C. By (7),

1

λ1
‖x − T‖2 ≤ (x − T )TC−1(x − T ) ≤ 1

λn
‖x− T‖2. (11)

By (8), if the D2
(i) are the order statistics of the D2

i (T,C), then D2
(i) < V for some

constant V that depends on the clean data but not on the outliers even if i and dn are
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near n/2. (Note that 1/λn and MED(‖xi − T‖2) are both bounded for high breakdown

estimators even for dn near n/2.)

Following Johnson and Wichern (1988, pp. 50, 103), the boundary of the set

{x|(x − T )TC−1(x − T ) ≤ h2} = {x|D2
x ≤ h2} is a hyperellipsoid centered at T with

axes of length 2h
√

λi. Hence {x|D2
x ≤ D2

(cn)} is contained in some ball about the origin

of radius r where r does not depend on the number of outliers even for dn near n/2.

This is the set containing the cases used to compute (T0,C0). Since the set is bounded,

T0 is bounded and the largest eigenvalue λ1,0 of C0 is bounded by Theorem 2. Since

0 < det(CMCD) ≤ det(C0), the smallest eigenvalue λn,0 is bounded away from 0. Since

these bounds do not depend on the outliers even for dn near n/2, (T0,C0) is a high

breakdown estimator. Now repeat the argument with (T0,C0) in place of (T,C) and

(T1,C1) in place of (T0,C0). Then (T1,C1) is high breakdown. Repeating the argument

iteratively shows (Tk,Ck) is high breakdown.

Proof of Theorem 4. By Lopuhaä (1999) the estimator is a consistent estimator of

(µ, aΣ) with rate nδ. By the remarks above, a will be the same for any consistent

estimator of (µ, sΣ) and a does not depend on s > 0 or δ ∈ (0, 0.5]. Hence the result

follows if a = aMCD. The MCD estimator is a
√

n consistent estimator of (µ, aMCDΣ)

by Butler, Davies and Jhun (1993) and Cator and Lopuhaä (2009, 2010). If the MCD

estimator is the start, then it is also the attractor by Rousseeuw and Van Driessen (1999)

who show that concentration does not increase the MCD criterion. Hence a = aMCD.

Proof of Theorem 5. TFCH is high breakdown since it is a bounded distance from

MED(X) even if the number of outliers is close to n/2. Under (E1) the FCH and MBA
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estimators are asymptotically equivalent since ‖Tk,D − MED(X)‖ → 0 in probability.

The estimator satisfies 0 < det(CMCD) ≤ det(CA) ≤ det(S0,M) < ∞ by Theorem

3 if up to nearly 50% of the cases are outliers. If the distribution is spherical about

µ, then the result follows from Pratt (1959) and Theorem 4 since both starts are
√

n

consistent. Otherwise, the MB estimator Sk,M is a biased estimator of aMCDΣ. But

the DGK estimator Sk,D is a
√

n consistent estimator of aMCDΣ by Theorem 4 and

‖CMCD − Sk,D‖ = OP (n−1/2). Thus the probability that the DGK attractor minimizes

the determinant goes to one as n → ∞, and (TA,CA) is asymptotically equivalent to the

DGK estimator (xk,D,Sk,D).

Let P (U ≤ uα) = α where U is given by (3). Then the scaling in (11) makes CF a

consistent estimator of cΣ where c = u0.5/χ
2
p,0.5, and c = 1 for multivariate normal data.
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