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Abstract

The binomial and Poisson regression models state that the conditional distribu-

tion of a count Y given the sufficient predictor (SP) follows a binomial(m, F(SP))

or Poisson(exp(SP)) distribution where the sufficient predictor is a linear combi-

nation of predictor variables and F is a distribution function. Two new plots for

Poisson regression as well as modifications to two plots from the literature are used

to visualize the regression model, to check for lack of fit and overdispersion, and to

detect outliers.
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1 INTRODUCTION

Regression models are used to study the conditional distribution Y |x of the response

variable Y given the p×1 vector of nontrivial predictors x. The Poisson regression model

states that Y1, ..., Yn are independent random variables with

Yi ∼ Poisson(µ(xi)).

The loglinear Poisson regression (LLR) model is the special case where

µ(xi) = exp(α + βTxi). (1.1)

The LLR model, a special case of a generalized linear model, is often used to analyze

categorical data when the response variable Y is a count. Let the linear predictor =

sufficient predictor SP = α + βTx. Then (1.1) can be written compactly as Y |SP ∼

Poisson(exp(SP)). For example, Y |SP = 0 ∼ Poisson(1). Also note that the conditional

mean and variance functions are equal: E(Y |SP ) = V (Y |SP ) = exp(SP ).

The binomial regression model states that Y1, ..., Yn are independent random variables

with

Yi ∼ binomial(mi, ρ(α + βTxi)),

or

Yi|SPi ∼ binomial(mi, ρ(SPi)). (1.2)

Note that the conditional mean function E(Yi|SPi) = miρ(SPi) and the conditional

variance function V (Yi|SPi) = miρ(SPi)(1− ρ(SPi)). The binary regression model is the

special case where mi ≡ 1 for i = 1, ..., n.

2



Typically ρ(SP ) = F (SP ) where F is the distribution function (DF) of a location

scale family. The logistic regression (LR) model is the special case of binomial regression

where

P (success|xi) = ρ(xi) =
exp(α + βTxi)

1 + exp(α + βTxi)
. (1.3)

Equivalently,

ρ(SP ) =
exp(SP )

1 + exp(SP )
.

Note that ρ(x) is the DF of a logistic(0,1) distribution. The probit regression model uses

ρ(SP ) = Φ(SP ) where Φ(x) is the DF of a normal(0,1) distribution. The choice ρ(SP ) =

exp[− exp(−SP )] corresponds to the DF of the largest extreme value distribution, and

the choice ρ(SP ) = 1 − exp[− exp(SP )] corresponds to the DF of the smallest extreme

value distribution. If the successes Yi can be modelled by one extreme value distribution,

then the failures mi − Yi can be modelled by the other.

Often the LR mean function is a good approximation to the data and the LR MLE

is a consistent estimator of β, but the LR model is not appropriate. The problem

is that for many data sets where E(Yi|xi) = miρ(SPi), it turns out that V (Yi|xi) >

miρ(SPi)(1 − ρ(SPi)). Similarly, for many data sets where E(Y |x) = µ(x) = exp(SP ),

it turns out that V (Y |x) > exp(SP ), and model (1.1) is not appropriate. See Cameron

and Trivedi (1998, p. 64). This phenomenon is called overdispersion.

Section 2 reviews the estimated sufficient summary plot and adds visual aids to make a

graphical diagnostic for overdispersion easy to use. Two new plots for Poisson regression

are also discussed. Section 3 gives examples that show how to assess the adequacy of the

binomial and Poisson regression models with the plots. Section 4 gives conclusions.
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2 Four Plots

For regression models where Y is independent of x given SP = α+βT x, the conditional

distribution of Y |x can be visualized with an estimated sufficient summary plot (ESSP)

of the estimated sufficient predictor ESP = α̂ + β̂
T
xi versus Yi. Since regression is the

study of Y |x, the plot is crucial for analyzing regression models. See Cook (1998, p.

10). A closely related plot of c + aTxi versus Yi for some constant c (often zero) and

some vector a is called a model checking plot by Cook and Weisberg (1999, p. 397) and

a marginal response plot by Cook and Weisberg (1997). Adding the parametric mean

function and a scatterplot smoother to the plot is the graphical analog of goodness of fit

tests such as those of Hosmer and Lemeshow (1980) and Pardoe (2001). Other goodness

of fit tests and diagnostics include those given in Cheng and Wu (1994), Collett (1999),

Landwehr, Pregibon and Shoemaker (1984), Pardoe and Cook (2002), Pierce and Schafer

(1986), Pregibon (1981), Simonoff (1998), Spinelli, Lockart and Stephens (2002) and Su

and Wei (1991).

To check for overdispersion in parametric models, we suggest using the OD plot of the

estimated model variance V̂ (Y |SP ) versus the squared residuals V̂ = [Y − Ê(Y |SP )]2.

This plot has been used by Winkelmann (2000, p. 110) for the LLR model where

V̂ (Y |SP ) = Ê(Y |SP ) = exp(ESP ). For binomial and Poisson regression, the OD plot

can be used to complement tests and diagnostics for overdispersion such as those given in

Breslow (1990), Cameron and Trivedi (1998), Collett (1999, ch. 6), Dean (1992), Ganio

and Schafer (1992), Lambert and Roeder (1995) and Winkelmann (2000).

Numerical summaries are also available. The deviance G2 is a statistic used to assess
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the goodness of fit of the Poisson regression model much as R2 is used for multiple linear

regression. For Poisson regression (and binomial regression if the counts are neither too

small nor too large), G2 is approximately chi-square with n − p − 1 degrees of freedom.

Since a χ2
d random variable has mean d and standard deviation

√
2d, the 98th percentile

of the χ2
d distribution is approximately d + 3

√
d ≈ d + 2.121

√
2d. If G2 > (n − p − 1) +

3
√

n − p − 1, then a more complicated count model than (1.1) or (1.3) may be needed.

A good discussion of such count models is in Simonoff (2003).

Next the ESSP is tailored to the Poisson regression model (1.1). The estimated mean

function

µ̂(ESP ) = exp(ESP )

is added to the ESSP as a visual aid. The scatterplot smoother lowess is a nonparametric

estimator of the mean function, and if the lowess curve follows the exponential curve

closely (except possibly for the largest values of the ESP), then the LLR mean function

may be a useful approximation for E(Y |x).

Let Zi = Yi/mi. Then the conditional distribution Zi|xi of the binomial regression

model (1.3) can be visualized with a plot of the ESP versus Zi with the estimated mean

function of the Zi

ρ̂(ESP ) =
exp(ESP )

1 + exp(ESP )

added as a visual aid. Cook and Weisberg (1999, p. 515) add a lowess curve to the

plot. Alternatively, divide the ESP into J slices with approximately the same number

of cases in each slice. Then compute ρ̂s =
∑

s Yi/
∑

s mi where the sum is over the cases

in slice s. Then plot the resulting step function. For binary data the step function is
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simply the sample proportion in each slice. Both the lowess curve and step function are

simple nonparametric estimators of the mean function ρ(SP ). If the lowess curve or step

function tracks the logistic curve (the estimated mean) closely, then the LR mean function

is a reasonable approximation to the data. The plot is called an ESS plot because of the

“ESS” shape of the mean function. The plot of the step function and logistic curve is a

graphical approximation of the goodness of fit tests described in Hosmer and Lemeshow

(1980).

Although the ESSP is used to visualize Y |x, examining the mean function is simpler

than examining the variance function. Cook and Weisberg (1999, pp. 401-403) suggest

adding parametric and nonparametric estimators of the standard deviation function to

the ESSP.

For model (1.1), Winkelmann (2000, p. 110) suggested that the plotted points in the

OD plot should scatter about the identity line through the origin with unit slope and

that the OLS line should be approximately equal to the identity line if the LLR model is

appropriate. But in simulations, it was found that the following two observations make

the OD plot much easier to use for binomial and Poisson regression.

First, recall that a normal approximation is good for the Poisson distribution if

the count Y is not too small. Notice that if Y = E(Y |SP ) + 2
√

V (Y |SP ), then

[Y −E(Y |SP )]2 = 4V (Y |SP ). Hence if both the estimated mean and estimated variance

functions are good approximations, the plotted points in the OD plot for Poisson regres-

sion will scatter about a wedge formed by the V̂ = 0 line and the line through the origin

with slope 4: V̂ = 4V̂ (Y |SP ). Only about 5% of the plotted points should be above this

line. Similar remarks apply to binomial regression if the counts are neither too big nor
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too small.

Second, the evidence of overdispersion increases from slight to high as the scale of

the vertical axis increases from 5 to 10 times that of the horizontal axis. (The scale

of the vertical axis tends to depend on the few cases with the largest V̂ (Y |SP ), and

P [(Y − Ê(Y |SP ))2 > 10V̂ (Y |SP )] can be approximated with a normal approximation

or Chebyshev’s inequality.) There is considerable evidence of overdispersion if the scale

of the vertical axis is more than 10 times that of the horizontal, or if the percentage of

points above the slope 4 line through the origin is much larger than 5%.

Hence the identity line and slope 4 line are added to the OD plot as visual aids, and

one should check whether the scale of the vertical axis is more than 10 times that of the

horizontal. It is easier to use the OD plot to check the variance function than the ESSP

plot since judging the variance function with the straight lines of the OD plot is simpler

than judging two curves. Also outliers are often easier to spot with the OD plot.

Suppose the ESSP and OD plot suggest that the model is reasonable. If a scatterplot

smoother fits the horizontal line W = θ̂ (where θ̂ is the MLE of W = Y or W = Z

without any predictors) about as well as the estimated mean function in the ESSP, then

the predictors are not much more useful than using θ̂ for prediction (analogous to R2

being low). If the scatterplot smoother fits the estimated parametric mean function far

better than any horizontal line, then the model may explain a large proportion of the

variability of the response (analogous to R2 being high). This possibly new graphical

diagnostic is a competitor of those suggested by Agresti and Caffo (2002), Liao and

McGee (2003) and Menard (2000).

For LLR Poisson regression, judging the mean function from the ESSP may be rather
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difficult for large counts for two reasons. First, the mean function is curved. Secondly, for

real and simulated Poisson regression data, it was observed that scatterplot smoothers

such as lowess tend to underestimate the mean function for large ESP.

The basic idea of the following two plots for Poisson regression is to transform the data

towards a linear model, then make the response plot and residual plot for the transformed

data. The plots are based on weighted least squares (WLS) regression. For the equivalent

least squares (OLS) regression without intercept of W on u, the ESSP is the (weighted

forward) response plot of Ŵ versus W . The mean function is the identity line and the

vertical deviations from the identity line are the WLS residuals W − Ŵ .

The weighted forward response plot is a plot of
√

ZiESP =
√

Zi(α̂ + β̂
T
xi) versus

√
Zi log(Zi) where Zi = Yi if Yi > 0, and Zi = 0.5 if Yi = 0. The weighted residual plot is

a plot of
√

Zi(α̂+ β̂
T
xi) versus the “WLS” residuals rWi =

√
Zi log(Zi)−

√
Zi(α̂+ β̂

T
xi).

The WLS residuals are often highly correlated with the deviance residuals. When the

counts Yi are small, the WLS residuals can not be expected to be approximately normal.

Often the larger counts are fit better than the smaller counts and hence the residual

plots have a “left opening megaphone” shape. This fact makes residual plots for Poisson

regression rather hard to use, but cases with large WLS residuals may not be fit very

well by the model. Both the weighted forward response and residual plots perform better

for simulated LLR data with many large counts than for data where all of the counts are

less than 10.

To motivate the above two plots, recall that the minimum chi–square estimator

(α̂M , β̂M) for Poisson regression is found from the WLS regression of log(Zi) on xi with

weights wi = Zi. Equivalently, use the OLS regression (without intercept) of
√

Zi log(Zi)
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on
√

Zi(1,x
T
i )T . Then the plot of the “fitted values”

√
Zi(α̂M + β̂

T

Mxi) versus the “re-

sponse”
√

Zi log(Zi) should have points that scatter about the identity line. The mini-

mum chi–square estimator tends to be consistent if n is fixed and all n counts Yi increase

to ∞ while the LLR MLE tends to be consistent if the sample size n → ∞. See Agresti

(2002, pp. 611-612). Since the two estimators are often close for many data sets, the

plotted points in the weighted forward response plot should scatter about the identity

line if Ê(Y |SP ) = exp(ESP ) is a good approximation to the mean function E(Y |SP ).

3 Examples

The first three examples are for Poisson regression where the OD plot of exp(ESP )

versus (Y − exp(ESP ))2 is a plot of fitted values versus squared residuals. Notice that

Ŷ = exp(ESP ) = Ê(Y |SP ).

Example 1. Myers, Montgomery and Vining (2002, Example 4.5) give data where

the response variable Y is the number of Ceriodaphnia organisms counted in a container.

The sample size was n = 70 and seven concentrations of jet fuel (x1) and an indicator

for two strains of organism (x2) were used as predictors. The jet fuel was believed to

impair reproduction so high concentrations should have smaller counts. Figure 1 shows

the 4 plots for this data. In the ESSP of Figure 1a, the lowess curve is represented as

a jagged curve to distinguish it from the estimated LLR mean function (the exponential

curve). The horizontal line corresponds to the sample mean Y . Scatter about this line

is analogous to R2 being low for linear regression. Since the exponential function gives

a good fit to the data while the horizontal line does not, the Poisson regression is useful
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for explaining the variation of Y (analogous to R2 being high). Notice that the lowess

curve underestimates the mean function for large ESP.

The OD plot in Figure 1b suggests that there is little evidence of overdispersion since

the vertical scale is less than ten times that of the horizontal scale and all but one of

the plotted points are close to the wedge formed by the horizontal axis and slope 4 line.

The plotted points scatter about the identity line in Figure 1c and there are no unusual

points in Figure 1d. The four plots suggest that the LLR Poisson regression model is

a useful approximation to the data. Hence Y |ESP ≈ Poisson(exp(ESP)). For example,

when ESP = 1.61, Y ≈ Poisson(5) and when ESP = 4.5, Y ≈ Poisson(90). Notice that

the Poisson mean can be roughly estimated by finding the height of the exponential curve

in Figure 1a.

Example 2. Agresti (2002, pp. 126-131) uses Poisson regression for data where the

response Y is the number of satellites (male crabs) near a female crab. The sample size

n = 173 and the predictor variables were the color (2: light medium, 3: medium, 4: dark

medium, 5: dark), spine condition (1: both good, 2: one worn or broken, 3 both worn or

broken), carapace width in cm and weight of the female crab in grams.

The model used to produce Figure 2 used the ordinal variables color and spine con-

dition as coded. An alternative model would use spine condition as a factor. Figure 2a

suggests that there is one case with an unusually large value of the ESP. Notice that

the lowess curve does not track the exponential curve very well. Figure 2b suggests that

overdispersion is present since the vertical scale is about 10 times that of the horizontal

scale and too many of the plotted points are large and higher than the slope 4 line. The
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lack of fit may be clearer in Figure 2c since the plotted points fail to cover the identity

line. Although the exponential mean function fits the lowess curve better than the line

Y = Y , alternative models suggested by Agresti (2002) may fit the data better.

Example 3. For the popcorn data of Myers, Montgomery and Vining (2002, p. 154),

the response variable Y is the number of inedible popcorn kernels. The sample size was

n = 15 and the predictor variables were temperature (coded as 5, 6 or 7), amount of oil

(coded as 2, 3 or 4) and popping time (75, 90 or 105). One batch of popcorn had more

than twice as many inedible kernels as any other batch and is an outlier that is easily

detected in all four plots in Figure 3. Ignoring the outlier in Figure 3a suggests that the

line Y = Y will fit the data and lowess curve better than the exponential curve. Hence Y

seems to be independent of the predictors. Notice that the outlier sticks out in Figure 3b

and that the vertical scale is well over 10 times that of the horizontal scale. If the outlier

was not detected, then the Poisson regression model would suggest that temperature and

time are important predictors, and overdispersion diagnostics such as the deviance would

be greatly inflated. See Figure 3b.

The next two examples are for binomial regression. The mean function may be

useful if the step function tracks the logistic curve. The OD plot is a plot of V̂mod =

V̂ (Yi|SP ) = miρ(ESPi)(1−ρ(ESPi)) versus V̂ = (Yi −miρ(ESPi))
2. The wedge formed

by the horizontal line and slope 4 line tends to be useful if the Zi scatter about the

logistic curve (so that the counts are neither too large nor too small) in the ESS plot.

For binary data, the OD plot is not needed but the ESS plot is still very useful.

Example 4. Abraham and Ledolter (2006, pp. 360-364) describe death penalty

sentencing in Georgia. The predictors are aggravation level from 1 to 6 (treated as a
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continuous variable) and race of victim coded as 1 for white and 0 for black. There were

362 jury decisions and 12 level–race combinations. The response variable was the number

of death sentences in each combination. The ESS plot in Figure 4a shows that the Yi/mi

are close to the estimated LR mean function (the logistic curve), and the step function

based on 5 slices tracks the logistic curve well. The horizontal line is ρ̂ =
∑n

i=1 Yi/
∑n

i=1 mi.

Scatter of the step function about this line is analogous to R2 being low. Since the step

function based on 5 slices tracks the logistic curve well, but does not track the horizontal

line, the binomial regression is useful for explaining the variation of Y (analogous to R2

being high). Notice that this interpretation is also useful for binary data where the Zi

will not scatter about the logistic curve.

The OD plot is shown in Figure 4b with the identity, slope 4 and OLS lines added as

visual aids. The vertical scale is less than the horizontal scale and there is no evidence of

overdispersion. The logistic regression model suggests that Yi ≈ binomial(mi, ρ(ESP ))

where the logistic curve ρ(ESP ) can be estimated by its height in Figure 4a. Thus Yi ≈

binomial(mi, 0.018) when ESP = −4, and Yi ≈ binomial(mi, 0.5) when ESP = 0 while

Yi ≈ binomial(mi, 0.982) when ESP = 4.

Example 5. Collett (1999, pp. 216-219) describes a data set where the response

variable is the number of rotifers that remain in suspension in a tube. A rotifer is

a microscopic invertebrate. The two predictors were the density of a stock solution

of Ficolli and the species of rotifer coded as 1 for polyarthra major and 0 for keratella

cochlearis. The sample size n = 40, and Figure 5a shows the ESS plot. Both the observed

proportions and the step function track the logistic curve well, suggesting that the LR

mean function is a good approximation to the data. The OD plot suggests that there is
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overdispersion since the vertical scale is about 30 times the horizontal scale. Notice that

the OLS line has slope much larger than 4 and two outliers seem to be present.

Example 6. The ICU data is available from STATLIB

(http://lib.stat.cmu.edu/DASL/Datafiles/ICU.html). The survival of 200 patients fol-

lowing admission to an intensive care unit was studied with logistic regression. The

response variable was STA (0 = Lived, 1 = Died). Predictors were AGE, SEX (0 =

Male, 1 = Female), RACE (1 = White, 2 = Black, 3 = Other), SER= Service at ICU

admission (0 = Medical, 1 = Surgical), CAN= Is cancer part of the present problem?

(0 = No, 1 = Yes), CRN= History of chronic renal failure (0 = No, 1 = Yes), INF=

Infection probable at ICU admission (0 = No, 1 = Yes), CPR= CPR prior to ICU ad-

mission (0 = No, 1 = Yes), SYS= Systolic blood pressure at ICU admission (in mm

Hg), HRA= Heart rate at ICU admission (beats/min), PRE= Previous admission to an

ICU within 6 months (0 = No, 1 = Yes), TYP= Type of admission (0 = Elective, 1 =

Emergency), FRA= Long bone, multiple, neck, single area, or hip fracture (0 = No, 1 =

Yes), PO2= PO2 from initial blood gases (0 = >60, 1 = 60), PH= PH from initial blood

gases (0 = 7.25, 1 <7.25), PCO= PCO2 from initial blood gases (0 = 45, 1 = >45),

Bic= Bicarbonate from initial blood gases (0 = 18, 1 = <18), CRE= Creatinine from

initial blood gases (0 = 2.0, 1 = >2.0), and LOC= Level of consciousness at admission

(0 = no coma or stupor, 1= deep stupor, 2 = coma).

Factors LOC and RACE had two indicator variables. The response plot in Figure 6

shows that the logistic regression model using the 19 predictors is useful for predicting

survival. After variable selection, the submodel using AGE, CAN, SYS, TYP and LOC

was chosen. The EE plot of ESP(sub) versus ESP(full) is shown in Figure 7. Olive and
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Hawkins (2005) show that the plotted points in the EE plot should cluster tightly about

the identity line if the full model and the submodel are good. This clustering did not

occur in Figure 7. The lowest cluster of points and the case furthest to the right near

the identity line correspond to black patients. The main cluster and upper right cluster

correspond to patients who are not black. Figure 8 shows the EE plot when RACE is

added to the submodel. Then all of the points cluster about the identity line. Although

variable selection did not suggest that RACE is important, the two EE plots suggest

that RACE is important. Also the RACE variable could be replaced by an indicator for

black. This example illustrates how the plots can be used to quickly improve the model

obtained by following logistic regression with variable selection.

4 Conclusions

The ESSP can be used to visualize Y |x for models such as generalized linear models where

Y is independent of x given the sufficient predictor α+βTx. Adding the estimated mean

function and a scatterplot smoother as visual aids is again useful. This plot is one of the

simplest ways to improve the analysis of important regression models such as multiple

linear regression, logistic regression and Poisson regression. The plot is also useful for

teaching regression to students and for explaining the model to consulting clients. An

assumption is that the ESP takes on many values. More research is needed to determine

when these plots are useful for contingency tables.

Similarly, the OD plot can be made for regression models where E(Y |SP ) and

V (Y |SP ) can be estimated, but the simple visual aids may need to be changed. No-
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tice that the OD plot is a check both for overdispersion and for the variance function.

The estimated sufficient summary plot, where the parametric estimated mean function

and a scatterplot smoother are added as visual aids, is not new. The OD plot has been

used for the LLR Poisson regression model although the visual aids added to the plot are

new. The combination of the ESSP with the OD plot is a powerful method for assessing

the adequacy of Poisson and binomial regression models, and these plots should be made

before performing inference. Influential cases and outliers will often appear in the plots,

and information from case diagnostics such as analogs for Cook’s distances and leverage

can be incorporated into the plots by highlighting cases corresponding to diagnostics

larger than some cutoff value. The Poisson and binomial regression models are simpler

than most alternative count models, so plots for goodness of fit of these models are useful.

A useful alternative to the LLR model is the negative binomial regression (NBR)

model. If Y has a (generalized) negative binomial distribution, Y ∼ NB(µ, κ), , then

the probability mass function of Y is

P (Y = y) =
Γ(y + κ)

Γ(κ)Γ(y + 1)

(
κ

µ + κ

)κ (
1 − κ

µ + κ

)y

for y = 0, 1, 2, ... where µ > 0 and κ > 0. Then E(Y ) = µ and V(Y ) = µ + µ2/κ.

(This distribution is a generalization of the negative binomial (κ, ρ) distribution with

ρ = κ/(µ + κ) and κ > 0 is an unknown real parameter rather than a known integer.)

The NBR model states that Y1, ..., Yn are independent random variables where Yi ∼

NB(µ(xi), κ) with µ(xi) = exp(α + βTxi). Hence Y |SP ∼ NB(exp(SP), κ), E(Y |SP ) =

exp(SP ) and

V (Y |SP ) = exp(SP )

(
1 +

exp(SP )

κ

)
.
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This model has the same mean function as the LLR model but allows for overdispersion.

As κ → ∞, the NBR model converges to the LLR model.

The same 4 plots for LLR Poisson regression can be used for NBR, but the OD

plot should use V̂ (Y |SP ) = exp(ESP )(1 + exp(ESP )/κ̂) on the horizontal axis. As

overdispersion increases, larger sample sizes are needed for the OD plot. The weighted

forward response plot will be linear but the weights wi = Zi will be suboptimal. For

Example 2, the WFRP will again look like Figure 2c, suggesting that the NBR model is

not appropriate.

A useful alternative to the binomial regression model is a beta–binomial regression

(BBR) model. Following Simonoff (2003, pp. 93-94) and Agresti (2002, pp. 554-555), let

δ = ρ/θ and ν = (1 − ρ)/θ, so ρ = δ/(δ + ν) and θ = 1/(δ + ν). Let

B(δ, ν) =
Γ(δ)Γ(ν)

Γ(δ + ν)
.

If Y has a beta–binomial distribution, Y ∼ BB(m, ρ, θ), then the probability mass func-

tion of Y is

P (Y = y) =

(
m

y

)
B(δ + y, ν + m − y)

B(δ, ν)

for y = 0, 1, 2, ...,m where 0 < ρ < 1 and θ > 0. Hence δ > 0 and ν > 0. Then

E(Y ) = mδ/(δ + ν) = mρ and V(Y ) = mρ(1 − ρ)[1 + (m − 1)θ/(1 + θ)]. If Y |π ∼

binomial(m,π) and π ∼ beta(δ, ν), then Y ∼ BB(m, ρ, θ).

The BBR model states that Y1, ..., Yn are independent random variables where Yi|SPi ∼

BB(mi, ρ(SPi), θ). Hence E(Yi|SPi) = miρ(SPi) and

V (Yi|SPi) = miρ(SPi)(1 − ρ(SPi))[1 + (mi − 1)θ/(1 + θ)].
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The BBR model has the same mean function as the LR model, but allows for overdis-

persion. As θ → 0, it can be shown that V (π) → 0 and the BBR model converges to the

binomial LR model.

The ESS plot can again be used to visualize the BBR model, but the OD plot should

use V̂ (Y |SP ) = miρ(ESP )(1 − ρ(ESP ))[1 + (mi − 1)θ̂/(1 + θ̂)] on the horizontal axis.

As overdispersion increases, larger sample sizes are needed for the OD plot.

If the binomial LR OD plot is used but the data follows a beta–binomial regres-

sion model, then V̂mod = V̂ (Yi|ESP ) ≈ miρ(ESP )(1 − ρ(ESP )) while V̂ = [Yi −

miρ(ESP )]2 ≈ (Yi − E(Yi))
2. Hence E(V̂ ) ≈ V (Yi) ≈ miρ(ESP )(1 − ρ(ESP ))[1 +

(mi − 1)θ/(1 + θ)], so the plotted points with mi = m should scatter about a line with

slope ≈

1 + (m − 1)
θ

1 + θ
=

1 + mθ

1 + θ
.

The website (www.math.siu.edu/olive/ol-bookp.htm) has links to robdata.txt that

contains the five data sets and rpack.txt that contains R software. The function

llrplot makes the four plots for Poisson regression, and the function llrsim simu-

lates these four plots for LLR and NBR data. The function lrplot makes the ESS and

OD plots for binomial data while lrplot2 makes the ESS plot for binary data.
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Figure 1: Plots for Ceriodaphnia Data
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Figure 2: Plots for Crab Data
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Figure 3: Plots for Popcorn Data
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Figure 4: Visualizing the Death Penalty Data
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Figure 5: Plots for Rotifer Data
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Figure 6: Visualizing the ICU Data
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Figure 7: EE Plot Suggests Race is an Important Predictor
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Figure 8: EE Plot Suggests Race is an Important Predictor
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