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Abstract

Several useful plots for generalized linear models (GLMs) can be applied to generalized

additive models (GAMs) with little modification. A plot for a GLM using the estimated

sufficient predictor ESP = α̂ + β̂
T
x can be extended to a GAM by replacing the ESP by

the estimated additive predictor EAP = α̂ +
∑p

j=1 Ŝj(xj). The residual plot, response plot

and transformation plots are examples. Since a GLM is a special case of a GAM, a plot of

EAP versus ESP is useful for checking goodness of fit of the GLM.

1. Introduction

Regression is the study of the conditional distribution Y |x of the scalar response Y given

the predictors x. In a 1D regression model, Y is conditionally independent of x given a

single linear combination of the predictors, called the linear predictor or sufficient predictor

SP = α + βTx, written Y x|SP . See Olive and Hawkins (2005).

In a generalized additive model (GAM), Y is conditionally independent of x given the

additive predictor AP = α +
∑p

j=1 Sj(xj), written Y x|AP, for some functions Sj. See

Hastie and Tibshirani (1990), Wood (2006) and Zuur, Ieno, Walker, Saveliev and Smith

(2009). This definition of the GAM is an extension of the 1D regression model rather than
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the more restrictive extension of the generalized linear model (GLM). Notice that the 1D

regression model is a GAM where Sj(xj) = βjxj.

The following examples are important, and the GLM or 1D regression analog of the

GAM can be obtained by replacing AP by SP . Often the notation “GAM” can be replaced

by “regression model” to obtain the GLM analog of the GAM. Hence the binary logistic

regression model is the GLM analog of the binary logistic GAM.

1) The additive model

Y |AP = AP + e (1)

has conditional mean function E(Y |AP ) = AP and conditional variance function V (Y |AP ) =

σ2 = V (e). Linear models, including the multiple linear regression model, are the 1D regres-

sion analogs of the additive model.

2) The response transformation model is

Z = t−1(AP + e) where Y = t(Z) = AP + e. (2)

Here, as is often the case when the error is additive, the conditioning Y |AP is suppressed.

3) The binary logistic GAM states that Y1, ..., Yn are independent with

Y |AP ∼ binomial(1, ρ(AP)) where P(success|AP) = ρ(AP) =
exp(AP)

1 + exp(AP)
. (3)

This model has E(Y |AP ) = ρ(AP ) and V (Y |AP ) = ρ(AP )(1 − ρ(AP )).

4) The binomial logistic GAM states that Y1, ..., Yn are independent with

Yi|APi ∼ binomial(mi, ρ(APi)). (4)

This model has E(Yi|APi) = miρ(APi) and V (Yi|APi) = miρ(APi)(1− ρ(APi)). The binary

model is a special case with mi ≡ 1.

5) Some notation is needed for the beta-binomial GAM. Let δ = ρ/θ and ν = (1 − ρ)/θ,

so ρ = δ/(δ + ν) and θ = 1/(δ + ν). Let B(δ, ν) =
Γ(δ)Γ(ν)

Γ(δ + ν)
. If Y has a beta–binomial

distribution, Y ∼ BB(m, ρ, θ), then the probability mass function of Y is

P (Y = y) =

(

m

y

)

B(δ + y, ν + m− y)

B(δ, ν)
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for y = 0, 1, 2, ..., m where 0 < ρ < 1 and θ > 0. Hence δ > 0 and ν > 0. Then E(Y ) =

mδ/(δ + ν) = mρ and V(Y ) = mρ(1 − ρ)[1 + (m − 1)θ/(1 + θ)].

The beta-binomial GAM states that Y1, ..., Yn are independent random variables with

Yi|APi ∼ BB(mi, ρ(APi), θ). (5)

This model has E(Yi|APi) = miρ(APi) and

V (Yi|APi) = miρ(APi)(1 − ρ(APi))[1 + (mi − 1)θ/(1 + θ)].

Following Agresti (2002, pp. 554-555), as θ → 0, it can be shown that the beta-binomial

GAM converges to the binomial GAM.

6) The Poisson GAM states that Y1, ..., Yn are independent random variables with

Y |AP ∼ Poisson(exp(AP)). (6)

This model has E(Y |AP ) = V (Y |AP ) = exp(AP ).

7) Some notation is needed for the negative binomial GAM. If Y has a (generalized)

negative binomial distribution, Y ∼ NB(µ, κ) , then the probability mass function of Y is

P (Y = y) =
Γ(y + κ)

Γ(κ)Γ(y + 1)

(

κ

µ + κ

)κ (

1 − κ

µ + κ

)y

for y = 0, 1, 2, ... where µ > 0 and κ > 0. Then E(Y ) = µ and V(Y ) = µ + µ2/κ.

The negative binomial GAM states that Y1, ..., Yn are independent random variables with

Y |AP ∼ NB(exp(AP), κ). (7)

This model has E(Y |AP ) = exp(AP ) and

V (Y |AP ) = exp(AP )

(

1 +
exp(AP )

κ

)

= exp(AP ) + τ exp(2 AP ).

Following Agresti (2002, p. 560), as τ ≡ 1/κ → 0, it can be shown that the negative

binomial GAM converges to the Poisson GAM.
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8) Suppose Y has a gamma G(ν, λ) distribution so that E(Y ) = νλ and V (Y ) = νλ2.

The gamma GAM states that Y1, ..., Yn are independent random variables with

Y |AP ∼ G(ν, λ = µ(AP )/ν). (8)

Hence E(Y |AP ) = µ(AP ) and V (Y |AP ) = [µ(AP )]2/ν. The choices µ(AP ) = AP , µ(AP ) =

exp(AP ) and µ(AP ) = 1/AP are common. Since µ(AP ) > 0, gamma GAMs that use the

identity or reciprocal link run into problems if µ(EAP ) is negative for some of the cases.

Table 1: Some Useful Plots for GAMs

Plot Use Extension of

Response Plot Visualize Y |AP Cook and Weisberg (1997)

Residual Plot Check for Lack of Fit Plot of ESP vs. Residuals

Transformation Plot Find Response Transformation Olive (2004)

EE Plot Compare EAPs of 2 GAMs Olive and Hawkins (2005)

OD Plot Check for Overdispersion Winkelmann (2000, p. 110)

For a GLM, the estimated sufficient predictor ESP = α̂ + β̂
T
x while for a GAM, the

estimated additive predictor EAP = α̂ +
∑p

j=1 Ŝj(xj). Table 1 lists five plots that can be

extended from GLMs to GAMs with little modification, often by replacing the ESP by the

EAP . A plot of w versus z will have w on the horizontal axis and z on the vertical axis.

Section 2 considers the response plot, section 3 considers plots for response transformations,

section 4 considers the OD plot for detecting overdispersion and section 5 considers the EE

plot for comparing the EAPs of two competing models.

2. Response Plots

For a GAM, a response plot, also called an estimated sufficient summary plot, is the

plot of the EAP versus the response Y with the estimated conditional mean function and

a scatterplot smoother often added to the plot as visual aids. The response plot is also a

special case of model checking plots. See Brillinger (1983), Chambers, Cleveland, Kleiner
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and Tukey (1983, p. 280), Cook and Weisberg (1997, 1999: pp. 396-442) and Olive and

Hawkins (2005).

The response plot is used to visualize Y |AP in the background of the data for generalized

additive models. Assume that the EAP takes on many values and EAP ≈ AP . Then

visualize Y |AP = h by examining plotted points in a narrow vertical slice centered at

EAP = h in the response plot. For example, consider the single index GAM with additive

error, Y = m(AP ) + e, and suppose the zero mean constant variance errors e1, ..., en are

iid from a unimodal distribution that is not highly skewed. Then the plotted points in

the response plot should scatter about the curve formed by the estimated conditional mean

function m̂(AP ) in an evenly populated band. Note that if EAP = AP and the errors e ≡ 0,

then the plotted points would lie exactly on the curve Y = m(AP ). If the errors ei are iid

N(0, σ2), then Y |AP ∼ N(m(AP ), σ2), and plotted points in a narrow vertical slice centered

at EAP = h should look roughly like a sample from a N(m(h), σ2) distribution. For model

(1) the estimated conditional mean function m̂(AP ) = m(EAP ) = EAP is the identity line

with unit slope and zero intercept. If the sample size n is large, then the plotted points

should scatter about the identity line and the residual = 0 line in an evenly populated band

for the response and residual plots, with no other pattern. Note that the residual plot of

EAP versus the residual is used to visualize e|AP .

In the GLM and 1D regression literature, AP is replaced by SP and EAP by ESP ,

but the 1D regression models are a special case of generalized additive models. To avoid

overfitting, assume n > 5d where d is the model degrees of freedom. Hence d = p for multiple

linear regression.

In the following examples, plots made with Splus used the gam function. See MathSoft

(1999, ch. 10) and Chambers and Hastie (1993, ch. 7). Plots made in R used the gam

function from the mgcv library. See Wood (2006) and R Development Core Team (2008).

Example 2.1. Chambers and Hastie (1993, pp. 251, 516) examine an environmental

study that measured the four variables Y = ozone concentration, solar radiation, tempera-

ture, and wind speed for 111 consecutive days. Figure 1 gives the response and residual plots
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for the additive model (1) that were made using Splus. These plots suggest that the additive

model is reasonable since the plotted points follow the identity line and r = 0 line in roughly

evenly populated bands.

If Zi = Yi/mi, then the conditional distribution Zi|xi of the binomial GAM can be

visualized with a response plot of the EAP versus Zi with the estimated conditional mean

function of the Zi,

Ê(Z|AP ) = ρ(EAP ) =
exp(EAP )

1 + exp(EAP )
,

and a scatterplot smoother added to the plot as visual aids. Cook and Weisberg (1999, p.

515) add a lowess curve to the plot for the binomial GLM. Alternatively, divide the EAP

into J slices with approximately the same number of cases in each slice. Then compute

ρ̂s =
∑

s Yi/
∑

s mi where the sum is over the cases in slice s. Then plot the resulting step

function. For binary data the step function is simply the sample proportion in each slice.

The response plot for the beta-binomial GAM is similar.

The lowess curve and step function are simple nonparametric estimators of the conditional

mean function ρ(AP ). If the lowess curve or step function tracks the logistic curve (the

estimated conditional mean function) closely, then the logistic conditional mean function is

a reasonable approximation to the data. For the GLM, this plot is a graphical approximation

of the logistic regression goodness of fit tests described in Hosmer and Lemeshow (2000, pp.

147-151).

Example 2.2. For binary data, Kay and Little (1987) suggest examining the two distri-

butions x|Y = 0 and x|Y = 1. Use predictor x if the two distributions are roughly symmetric

with similar spread. Use x and x2 if the distributions are roughly symmetric with different

spread. Use x and log(x) if one or both of the distributions are skewed. The log rule says

add log(x) to the model if min(x) > 0 and max(x)/min(x) > 10. The Gladstone (1905-6)

data is useful for illustrating these suggestions. The response was gender with Y = 1 for

male and Y = 0 for female. The predictors were age, height and the head measurements

circumference, length and size. When the GAM was fit without log(age) or log(size), the Ŝj

for age, height and circumference were nonlinear. The log rule suggested adding log(age),
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and log(size) was added because size is skewed. The GAM for this model had plots of Ŝj(xj)

that were fairly linear. Figure 2 shows the response plot, made in R, for this binary GAM.

Note that the step function tracks the logistic curve closely. When EAP = 0, the estimated

probability of Y = 1 (male) is 0.5. When EAP > 5 the estimated probability is near 1, but

near 0 for EAP < −5. The response plot for the binomial GLM, not shown, is similar.

2.1. Plots for the Poisson and Negative Binomial GAMs

For Poisson regression, the response plot is a plot of EAP versus Y with Ê(Y |AP ) =

exp(EAP ) and lowess added as visual aids. If the conditional mean function is a reasonable

approximation to the data, then the lowess curve should be close to the exponential curve,

except possibly for the largest values of the EAP . The response plot for the negative binomial

GAM is similar.

For the Poisson models, judging the conditional mean function (exponential curve) from

the response plot may be rather difficult for large counts for two reasons. First, the expo-

nential curve increases rapidly. Secondly, for real and simulated Poisson GLM and GAM

data, it was observed that lowess often underestimates the exponential curve in the upper

right corner of the response plot because lowess downweights the largest Y values too much.

Two new plots for the Poisson GAM transform the data towards a linear model, then

make the response plot and residual plot for the transformed data. The transformation is

motivated by the minimum chi–square estimator (α̂M , β̂M) for Poisson regression which is

found from the weighted least squares (WLS) regression of log(Zi) on xi with weights wi = Zi

where Zi = Yi if Yi > 0 and Zi = 0.5 if Yi = 0. Equivalently, use the least squares (OLS)

regression (without intercept) of
√

Zi log(Zi) on
√

Zi(1, x
T
i )T . Then the plot of the “fitted

values”
√

Zi(α̂M + β̂
T

Mxi) versus the “response”
√

Zi log(Zi) should have points that scatter

about the identity line. Agresti (2002, pp. 611-612) discusses when the minimum chi–square

estimator and Poisson regression maximum likelihood estimator (MLE) are consistent. Since

the two estimators are often close for many data sets, the plotted points in a plot of
√

ZiESP

versus
√

Zi log(Zi) should also scatter about the identity line.

The above reasoning motivates the following two new plots. The weighted forward re-
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sponse plot is a plot of
√

ZiEAP versus
√

Zi log(Zi). The weighted residual plot is a plot of
√

ZiEAP versus the “WLS” residuals rWi =
√

Zi log(Zi) −
√

ZiEAP . These plots can also

be used for the negative binomial GAM.

If the counts Yi are large and Ê(Y |AP ) = exp(EAP ) is a good approximation to the con-

ditional mean function E(Y |AP ), then the plotted points should scatter about the identity

line and r = 0 lines in roughly evenly populated bands. When the counts Yi are small, the

WLS residuals can not be expected to be approximately normal. Often the larger counts are

fit better than the smaller counts and hence the residual plots have a “left opening mega-

phone” shape. This fact makes residual plots for the Poisson GAM rather hard to use, but

cases with large WLS residuals may not be fit very well by the model. Both the weighted

forward response and residual plots perform better for simulated Poisson regression data

with many large counts than for data where all of the counts are less than 10.

Example 2.3. The species data is from Cook and Weisberg (1999, pp. 285-286) and

Johnson and Raven (1973). The response variable is the total number of species recorded

on each of 29 islands in the Galápagos Archipelago. Predictors include area of island, are-

anear = the area of the closest island, the distance to the closest island, the elevation, and

endem = the number of endemic species (those that were not introduced from elsewhere).

A scatterplot matrix of the predictors suggested that log transformations should be taken.

Exploration suggested that log(endem) and log(areanear) were the important predictors,

and the corresponding Poisson GAM was fit with R. Figure 3 shows four plots, and the re-

sponse plot and weighted forward response plot in Figure 3a and 3c suggest that the Poisson

conditional mean function is a good approximation to the data. In the response plot, lowess

is shown as a jagged curve to distinguish lowess from the exponential curve. The weighted

residual plot in Figure 3d has the common left opening megaphone shape, and suggests that

there may be two clusters of data. This example and the explanation of the OD plot in

Figure 3b will be continued in section 4.

3. Plots for Response Transformations

The applicability of regression models can be expanded by allowing a response trans-
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formation, and this section extends the Olive (2004) graphical method for linear model

response transformations to response transformations for regression models with additive

errors Y = m(x) + e, including the single index GAM with additive error Y = m(AP ) + e.

An important class of response transformation models adds an additional unknown trans-

formation parameter λo, such that

Yi = tλo
(Zi) ≡ Z

(λo)
i = m(xi) + ei (9)

where m(xi) = E(Yi|xi). If λo was known, then Yi = tλo
(Zi) would follow model (9) with

p predictors. The function m depends on λo, and the p predictors xj are assumed to be

measured with negligible error. Assume that the zero mean constant variance iid errors ei

follow a unimodal distribution that is not highly skewed, and assume that the fitted values

Ŷ = m̂(x) take on many values. The residuals are r = Y − Ŷ .

Next, two important response transformation models are given. Assume that all of the

values of the “response” Zi are positive. A power transformation has the form Y = tλ(Z) =

Zλ for λ 6= 0 and Y = t0(Z) = log(Z) for λ = 0 where

λ ∈ ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1}.

The modified power transformation family

tλ(Zi) ≡ Z
(λ)
i =

Zλ
i − 1

λ
(10)

for λ 6= 0 and Z
(0)
i = log(Zi). Often Z

(1)
i is replaced by Zi for λ = 1. Generally λ ∈ Λ where

Λ is some interval such as [−1, 1] or a coarse subset such as ΛL. This family is a special case

of the response transformations considered by Tukey (1957).

A graphical method for response transformations computes the “fitted values” Ŵi using

Wi = tλ(Zi) as the “response.” Then a transformation plot of Ŵi versus Wi is made for each

of the seven values of λ ∈ ΛL with the identity line added as a visual aid. Vertical deviations

from the identity line are the “residuals” ri = Wi − Ŵi. Then a candidate response trans-

formation Y = tλ∗(Z) is reasonable if the plotted points follow the identity line in a roughly
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evenly populated band. Then take λ̂o = λ∗, that is, Y = tλ∗(Z) is the response transforma-

tion. Curvature from the identity line suggests that the candidate response transformation

is inappropriate. Note that this procedure can be modified to create a graphical diagnostic

for a numerical estimator λ̂ of λo by adding λ̂ to ΛL. For linear models, the method proposed

by Box and Cox (1964) is widely used.

After selecting the transformation, the usual checks on the model should be made. If

more than one value of λ ∈ ΛL gives a linear plot, take the simplest or most reasonable

transformation or the transformation that makes the most sense to subject matter experts.

Also check that the corresponding “residual plots” of Ŵi versus ri = Wi−Ŵi look reasonable.

Response transformations for the additive model Y = AP +e are among the most difficult

for regression models with additive errors since additive models are very flexible and tend

to fit more than one candidate response transformation well. Rule out poor models with

transformation and residual plots. For each remaining competing model, check the Ŝj and

whether any of the predictors can be deleted.

Example 2.1 continued. Chambers and Hastie (1993, pp. 251, 516) examine the ozone

data using additive models with Z = ozone concentration or Z1/3 as the response. Figure 4

shows four transformation plots made with Splus. The reciprocal transformation can be ruled

out since the variability of the plotted points increases with EAP and one case is fit poorly.

Similarly λ = −1/2 and λ = −1/3 can be ruled out. With the remaining transformations,

the transformation and residual plots have plotted points that scatter about the identity

line and the r = 0 line in roughly evenly populated bands except possibly for the case that

appears in the lower left corner of the three remaining transformation plots in Figure 4.

Figure 5 shows the residual plots of the four remaining models. No transformation Y = Z

may be best since the predictor solar radiation does not seem to be needed for this model,

and the other transformations fit the case in the lower left corner poorly.

4. The OD Plot for Checking Overdispersion

Overdispersion occurs when the actual conditional variance function is larger than the

model conditional variance function. Overdispersion can occur if the model is missing factors,
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if the response variables are correlated, if the population follows a mixture distribution, or

if outliers are present.

A GAM has conditional mean and variance functions EM (Y |AP ) and VM (Y |AP ) where

the subscript M indicates that the function depends on the model. Then overdispersion

occurs if V (Y |x) > VM (Y |AP ). Let E(Y |x) and V (Y |x) denote the actual conditional

mean and variance functions. Then the assumptions that E(Y |x) = EM (Y |x) ≡ m(AP )

and V (Y |x) = VM (Y |AP ) ≡ v(AP ) need to be checked.

First check that the assumption E(Y |x) = m(AP ) is a reasonable approximation to

the data using the response plot with lowess and the estimated conditional mean function

ÊM (Y |x) = m̂(AP ) added as a visual aid.

If the conditional mean function is adequate, then we suggest checking for overdispersion

using the OD plot of the estimated model variance V̂M (Y |AP ) versus the squared residu-

als V̂ = [Y − ÊM (Y |AP )]2. The notation “OD” is used since the plot is a diagnostic for

overdispersion, and this new plot is an extension of the plot that has been used by Winkel-

mann (2000, p. 110) for the Poisson regression model where V̂M (Y |SP ) = ÊM (Y |SP ) =

exp(ESP ). For binomial and Poisson regression, the OD plot can be used to complement

tests and diagnostics for overdispersion such as those given in Cameron and Trivedi (1998),

Collett (1999, ch. 6), and Winkelmann (2000).

For Poisson regression, Winkelmann (2000, p. 110) suggested that the plotted points

in the OD plot should scatter about the identity line and that the OLS line should be

approximately equal to the identity line if the Poisson regression model is appropriate. But

in simulations, it was found that the following two observations make the OD plot much

easier to use.

First, recall that a normal approximation is good for the Poisson distribution if the count

Y is not too small. Notice that if Y = E(Y |AP ) + 2
√

V (Y |AP ), then [Y − E(Y |AP )]2 =

4V (Y |AP ). Hence if the estimated conditional mean and variance functions are both good

approximations, the plotted points in the OD plot for a Poisson GAM will scatter about a

wedge formed by the V̂ = 0 line and the line through the origin with slope 4: V̂ = 4V̂ (Y |AP ).
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Only about 5% of the plotted points should be outside the wedge. Similar remarks apply

to the negative binomial GAM, and to the binomial GAM if the counts are neither too big

nor too small. OD plots can also be made for quasi-binomial and quasi-Poisson regression

models.

Second, the evidence of overdispersion increases from slight to high as the scale of the

vertical axis increases from 5 to 10 times that of the horizontal axis. (The scale of the vertical

axis tends to depend on the few cases with the largest V̂ (Y |AP ), and P [(Y − Ê(Y |AP ))2 >

10V̂ (Y |AP )] can be approximated with a normal approximation or Chebyshev’s inequality.)

There is considerable evidence of overdispersion if the scale of the vertical axis is more than

10 times that of the horizontal, or if the percentage of points above the slope 4 line through

the origin is much larger than 5%.

Hence the identity line and slope 4 line are added to the OD plot as visual aids, and

one should check whether the scale of the vertical axis is more than 10 times that of the

horizontal. It is easier to use the OD plot to check the variance function than the response

plot since judging the variance function with the straight lines of the OD plot is simpler than

judging two curves. Also outliers are often easier to spot with the OD plot.

Section 1 gives EM (Y |AP ) = m(AP ) and VM (Y |AP ) = v(AP ) for several models. Often

m̂(AP ) = m(EAP ) and v̂(AP ) = v(EAP ), but additional parameters sometimes need to

be estimated. Hence v̂(AP ) = miρ(EAPi)(1 − ρ(EAPi))[1 + (mi − 1)θ̂/(1 + θ̂)], v̂(AP ) =

exp(EAP ) + τ̂ exp(2 EAP ), and v̂(AP ) = [m(EAP )]2/ν̂ for the beta-binomial, negative

binomial and gamma GAMs, respectively. The beta-binomial regression model is often used

if the binomial regression is inadequate because of overdispersion, and the negative binomial

GAM is often used if the Poisson GAM is inadequate.

For GLMs, numerical summaries are also available. The deviance G2 and Pearson good-

ness of fit statistic X2 are used to assess the goodness of fit of the Poisson regression model

much as R2 is used for multiple linear regression. For Poisson regression (and binomial

regression if the counts are neither too small nor too large), both G2 and X2 are approxi-

mately chi-square with n − p − 1 degrees of freedom. Since a χ2
d random variable has mean
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d and standard deviation
√

2d, the 98th percentile of the χ2
d distribution is approximately

d +3
√

d ≈ d +2.121
√

2d. If G2 or X2 > (n− p− 1) +3
√

n − p − 1, then overdispersion may

be present.

Example 2.3 continued. Figure 3b shows the OD plot for the Poisson GAM fails

to indicate overdispersion. The Poisson GLM with log(endem) and log(areanear) was fit,

but the deviance and Pearson X2 statistics suggested overdispersion was present since both

statistics were near 71.4 with 26 degrees of freedom. The residual plot (not shown) also

suggested increasing variance with increasing fitted value. A negative binomial regression

suggested that only log(endem) was needed in the model, and had a deviance of 26.12 on 27

degrees of freedom. The residual plot for this model was roughly ellipsoidal. The negative

binomial GAM with log(endem) had an Ŝ that was linear.

The response plot with the exponential and lowess curves added as visual aids is shown

in Figure 6. The interpretation is that Y |x ≈ negative binomial with E(Y |x) ≈ exp(EAP ).

Hence if EAP = 0, E(Y |x) ≈ 1. The negative binomial and Poisson GAM have the same

conditional mean function. If the plot was for a Poisson GAM, the interpretation would be

that Y |x ≈ Poisson(exp(EAP )). Hence if EAP = 0, Y |x ≈ Poisson(1).

Figure 7 shows the OD plot for the negative binomial GAM with the identity line and

slope 4 line through the origin added as visual aids. The plotted points fall within the “slope

4 wedge,” suggesting that the negative binomial regression model has successfully dealt with

overdispersion. Here V̂M (Y |AP ) used τ̂ = 1/37.

5. EE Plots

An EE plot is a plot of EAP1 versus EAP2, and is useful for comparing two competing

models. Olive and Hawkins (2005) used two EE plots for 1D regression variable selection.

The EE plot of the submodel ESP versus the full model ESP was used to check whether the

submodel could be used instead of the full model. If the EE plot of the OLS ESP versus the

GLM ESP had plotted points that clustered tightly about some line, then some fast variable

selection methods, originally meant for multiple linear regression, could be used to suggest

interesting submodels for the GLM. Next, two applications of EE plots are described.
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5.1. An EE Plot for Checking the GLM

One useful application of a GAM is for checking whether the corresponding GLM has the

correct form of the predictors xj in the model. Suppose a GLM and the corresponding GAM

are both fit where at least one general Sj(xj) was used. Since the GLM is a special case of

the GAM, the plotted points in the EE plot of EAP versus ESP should follow the identity

line with very high correlation if the fitted GLM and GAM are roughly equivalent. If the

correlation is not very high and the GAM has some nonlinear Ŝj(xj), update the GLM, and

remake the EE plot. For example, update the GLM by adding terms such as x2
j and possibly

x3
j , or add log(xj) if xj is highly skewed.

Example 5.1. Wood (2006, pp. 82-86) describes heart attack data where the response

Y is the number of heart attacks for mi patients suspected of suffering a heart attack. The

enzyme ck (creatine kinase) was measured for the patients and it was determined whether

the patient had a heart attack or not. A binomial GLM with predictors x1 = ck, x2 = [ck]2

and x3 = [ck]3 was fit and had AIC = 33.66. The binomial GAM with predictor x1 was fit in

R, and Figure 8 shows that the EE plot for the GLM was not too good. The log rule suggests

using ck and log(ck), but ck was not significant. Hence a GLM with the single predictor

log(ck) was fit. Figure 9 shows the EE plot, and Figure 10 shows the response plot where

the Zi = Yi/mi track the logistic curve closely. There was no evidence of overdispersion and

the model had AIC = 33.45. The GAM using log(ck) had a linear Ŝ, and the correlation of

the plotted points in the EE plot, not shown, was one.

5.2. The EE Plot for Variable Selection

Variable selection is the search for a subset of variables that can be deleted without

important loss of information. Olive and Hawkins (2005) make an EE plot of ESP (I)

versus ESP where ESP (I) is for a submodel I and ESP is for the full model. This plot can

also be used to complement the hypothesis test that the reduced model I (which is selected

before gathering data) can be used instead of the full model. The obvious extension to GAMs

is to make the EE plot of EAP (I) versus EAP . If the fitted full model and submodel I are

good, then the plotted points should follow the identity line with high correlation (≥ 0.95
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as a benchmark).

To justify this claim, assume that there exists a subset S of predictor variables such that

if xS is in the model, then none of the other predictors is needed in the model. Write E for

these (‘extraneous’) variables not in S, partitioning x = (xT
S , xT

E)T . Then

AP = α +
p
∑

j=1

Sj(xj) = α +
∑

j∈S

Sj(xj) +
∑

k∈E

Sk(xk) = α +
∑

j∈S

Sj(xj). (11)

The extraneous terms that can be eliminated given that the subset S is in the model have

Sk(xk) = 0 for k ∈ E.

Now suppose that I is a candidate subset of predictors and that S ⊆ I . Then

AP = α +
p
∑

j=1

Sj(xj) = α +
∑

j∈S

Sj(xj) = α +
∑

k∈I

Sk(xk) = AP (I),

(if I includes predictors from E, these will have Sk(xk) = 0). For any subset I that includes

all relevant predictors, the correlation corr(AP, AP(I)) = 1. Hence if the full model and

submodel are reasonable and if EAP and EAP(I) are good estimators of AP and AP(I), then

the plotted points in the EE plot of EAP(I) versus EAP will follow the identity line with

high correlation.

A referee pointed out that the Sj are estimated using backfitting with Splus and splines

with R, and that the diagnostics are more likely to be useful when splines are used. For

1D regression, suppose S ⊆ I , the xi are bounded in probability, and consistent estimators

β̂
P→ β are used. Let xi = (xT

I,i, x
T
O,i)

T and β = (βT
I , 0T )T . Then ‖xT

I,iβ̂I − xT
i β̂‖ =

‖xT
i [(β̂

T

I , 0T )T − β̂]‖ ≤ ‖xi‖ ‖(β̂T

I , 0T )T −β +β− β̂‖. Hence supi=1,...,n ‖xT
I,iβ̂I −xT

i β̂‖ P→ 0

and corr(ESP(I), ESP)
P→ 1 as n → ∞.

For the binary logistic GAM, the EAP will not be a consistent estimator of the AP if

the estimated probability ρ̂(AP ) = ρ(EAP ) is exactly zero or one. The following example

will show that GAM output and plots can still be used for exploratory data analysis. The

example also illustrates that EE plots are useful for detecting cases with high leverage and

clusters of cases. Numerical diagnostics, such as analogs of Cook’s distances (Cook 1977),

tend to fail if there is a cluster of two or more influential cases.
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Example 5.2. The ICU data, available from the STATLIB URL (http://lib.stat.cmu.edu/

DASL/Datafiles/ICU.html), is used to study the survival of 200 patients following admis-

sion to an intensive care unit with logistic regression. Also see Hosmer and Lemeshow (2000,

pp. 23-25). The response variable was STA (0 = Lived, 1 = Died). The 19 predictors

were primarily indicator variables describing the health of the patient at time of admission,

including CAN = is cancer part of the present problem? (0 = No, 1 = Yes), and TYP =

type of admission (0 = Elective, 1 = Emergency). Two factors had 3 levels and were fit

with two indicator variables: RACE (1 = White, 2 = Black, 3 = Other) and LOC = level

of consciousness at admission (0 = no coma or stupor, 1 = deep stupor, 2 = coma). The

three continuous predictors were AGE, SYS = systolic blood pressure at ICU admission, and

HRA = heart rate at ICU admission.

A binary logistic GAM was fit in R with unspecified functions for AGE, SYS and HRA

and linear functions for the remaining 16 variables. Output suggested that functions for

SYS and HRA are linear but the function for AGE may be slightly curved. Several cases

had ρ̂(AP ) equal to zero or one, but the response plot in Figure 11 suggests that the full

model is useful for predicting survival. Note that the ten slice step function closely tracks

the logistic curve.

A binary logistic regression was also fit. The response plot, not shown, was similar to

Figure 11, and Figure 12 shows the EE plot of EAP versus ESP. The plot shows that the

near zero and near one probabilities are handled differently by the GAM and GLM, but the

estimated success probabilities P̂ (Y = 1|x) for the two models are similar. Note that four

clusters of data are present in the EE plot.

Hence we used the GLM, and variable selection suggested the submodel using AGE,

CAN, SYS, TYP and LOC. Several estimated success probabilities were zero or one. Hence

the full model and submodel maximum likelihood estimators did not exist. The EE plot of

ESP(sub) versus ESP(full) in Figure 13 shows 4 clusters of data and that the plotted points

did not cluster tightly about the identity line. The lowest cluster of points and the case on

the right nearest to the identity line correspond to black patients. The main cluster and
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upper right cluster correspond to patients who are not black. Figure 14 shows the EE plot

when RACE is added to the submodel. Then all of the points cluster about the identity

line. Although variable selection did not suggest that RACE is important, possibly since

the GLM MLEs corresponding to the full model and submodels do not exist, the two EE

plots suggest that RACE is important. Also the RACE variable could be replaced by an

indicator for black. This example shows the plots can be used to quickly improve and check

the models obtained from variable selection.

6. Conclusions

Following Cook and Weisberg (1999, p. 396), a residual plot is a plot of a function of

the predictors versus the residuals, while a model checking plot is a plot of a function of

the predictors versus the response. Hence any residual or response plot for GAMs can be

regarded as a special case of known plots. Residual plots are widely used, but model checking

plots are rarely used unless there is only one predictor.

Several useful plots for 1D regression can be extended to generalized additive models by

replacing the ESP by the EAP. Although residual plots are important, the response plot is

more important since regression is the study of Y |AP . Hence response plots are also called

estimated sufficient summary plots. See Cook (1998, p. 10).

The graphical response transformation method in section 3 is similar to the Cook and

Olive (2001) method for linear models where the “transformation plot” of Ẑi versus Wi is

made for each of the seven values of λ ∈ ΛL. Cook and Weisberg (2004) give a graphical

method for multiple linear regression, noting that an inverse response plot of Z versus Ẑ can

often be used to visualize tλ0
. Then the transformation plot of Ẑ versus Z can be used to

visualize t−1
λ0

. An advantage of this procedure is that the family of transformations need not

be picked in advance, but the predictors need to be well behaved, and it may be difficult to

generalize this method to experimental designs and additive models.

1D regression analogs of the plots in this paper are discussed in Olive (2010), as are

plots for experimental design models, generalized least squares models and survival regres-

sion models. Some data sets can be found at (www.math.siu.edu/olive/regbk.htm) and
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(www.math.siu.edu/olive/regdata.txt). The regpack R/Splus functions found at (www.math.

siu.edu/olive/regpack.txt) include lrplot which makes response and OD plots for binomial

regression; lrplot2 which makes the response plot for binary regression; prplot which makes

the response, weighted forward response, weighted residual and OD plots for Poisson re-

gression; and prsim which makes the last 4 plots for simulated Poisson or negative binomial

regression models.

R/Splus code to reproduce the figures of this paper can be found at (www.math.siu.edu/

olive/ppgamcode.txt). The Venables and Ripley (2010) library MASS was used for the neg-

ative binomial family. The Lesnoff and Lancelot (2010) R package aod is useful for fitting

negative binomial regression and has function betabin for beta-binomial regression.
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Figure 1: Visualizing the Additive Model for the Ozone Data
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Figure 2: Visualizing the Binomial GAM for the Gladstone Data
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Figure 3: Plots for the Poisson GAM for the Species Data

EAP

Z
**

(-
1
)

0.2 0.3 0.4 0.5 0.6

0
.2

0
.4

0
.6

0
.8

1
.0

EAP

lo
g
(Z

)

0.6 0.8 1.0 1.2 1.4 1.6

0
.0

0
.5

1
.0

1
.5

EAP

Z
**

(1
/3

)

1.3 1.4 1.5 1.6 1.7

1
.0

1
.2

1
.4

1
.6

EAP

Y

2.0 2.5 3.0 3.5 4.0 4.5 5.0

1
2

3
4

5

Figure 4: Transformation Plots for the Ozone Data
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