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Abstract

Regression is the study of the conditional distribution of the response Y given

the predictors x. In a 1D regression, Y is independent of x given a single linear

combination α + βTx of the predictors. Special cases of 1D regression include

multiple linear regression, logistic regression, generalized linear models and single

index models. Plots can be very useful for model description and as diagnostics. For

example, a sufficient summary plot of α + βTxi versus Yi can be used to explain

the model to students and consulting clients. An estimated sufficient summary

plot of α̂ + β̂
T
xi versus Yi can be used as a diagnostic for goodness of fit and as a

diagnostic for the test Ho : β = 0.
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1 INTRODUCTION

Regression is the study of the conditional distribution Y |x of the response Y given

the k × 1 vector of nontrivial predictors x. In a 1D regression model (or regression

with 1–dimensional structure), Y is conditionally independent of x given a single linear

combination βT x of the predictors, written

Y x|βT x. (1.1)

The class of 1D regression models is very rich. An important class of 1D regression

models has the form

Y = g(α + βT x, e) (1.2)

where g is a bivariate (inverse link) function and e is a zero mean error that is independent

of x. See Li and Duan (1989) and Cook and Weisberg (1999, p. 414). A single index

model uses

Y = g(α + βT x, e) ≡ m(α + βT x) + e, (1.3)

and the multiple linear regression model is an important special case where m is the

identity function: m(α+βTx) = α+βTx. Another important special case of 1D regression

is the response transformation model where

g(α + βT x, e) = t−1(α + βT x + e) (1.4)

and t−1 is a one to one (typically monotone) function so that t(y) = α + βT x + e.

Generalized linear models (GLM’s) are also a special case of 1D regression, and two of

the most important GLM’s are the logistic and loglinear regression models. The logistic
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regression model states that Y1, ..., Yn are independent random variables with

Yi ∼ binomial(mi, ρ(xi)) where

P (success|xi) = ρ(xi) =
exp(α + βTxi)

1 + exp(α + βTxi)
. (1.5)

The loglinear regression model states that Y1, ..., Yn are independent random variables

with

Yi ∼ Poisson(µ(xi)) where µ(xi) = exp(α + βTxi). (1.6)

Assume that the data has been collected and that a 1D regression model (1.1) has

been fitted. Suppose that the sufficient predictor

SP = α + βT x = α + βT
RxR + βT

OxO (1.7)

where the r × 1 vector xR consists of the predictors in the reduced model. Then the

investigator will often want to check whether the model is useful and to perform inference.

Several things to consider are listed below.

i) Explain the 1D regression model to consulting clients, students or researchers.

ii) Goodness of fit: show that the model provides a simple, useful approximation for

the relationship between the response variable Y and the predictors x.

iii) Check for lack of fit of the model.

iv) Test Ho : β = 0, that is, check whether the predictors x are needed in the model.

v) Test Ho : βO = 0, that is, check whether the reduced model can be used instead

of the full model.

vi) Use variable selection to find a good submodel.
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vii) Estimate the mean function E(Yi|xi) = µ(xi) = diτ (xi) or estimate τ (xi) where

the di are known constants.

The 1D regression models offer a unifying framework for many of the most used

regression models. By writing the model in terms of the sufficient predictor SP =

α + βTx, many important topics valid for all 1D regression models can be explained

compactly. For example, (1.7) can be used to motivate the test for whether the reduced

model can be used instead of the full model. Similarly, the sufficient predictor can be

used to explain models for variable selection and to unify the interpretation of coefficients,

interactions and factors. For example, if x1, ..., xi−1, xi+1, ..., xk can be held fixed, then

a unit increase in xi changes the sufficient predictor SP by βi. If SP = α + β1x + β2x
2,

then

d

dx
SP = β1 + 2β2x.

Some notation from the regression graphics literature will be useful. Dimension re-

duction can greatly simplify our understanding of the conditional distribution Y |x. If a

1D regression model is appropriate, then the k–dimensional vector x can be replaced by

the 1–dimensional scalar βTx with “no loss of information.” A sufficient summary plot

(SSP) is a plot that contains all the sample regression information about the conditional

distribution of Y |x. For 1D regression, if Y x|βT x then Y x|aα + cβT x for any

constants a and c 6= 0. The quantity aα + cβT x is called a sufficient predictor (SP), and

a plot of a SP versus Y is a SSP. If a consistent estimator b̂ of cβ can be found for some

nonzero c, then an estimated sufficient summary plot (ESSP) is a plot of the estimated

sufficient predictor (ESP) aα̂ + b̂
T
xi versus Yi. For parametric models such as GLM’s,
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we will use a = c = 1, but for semiparametric models such as the single index model

(1.3) where m is unknown, β is not identifiable although often many estimators of cβ

exist where c is unknown. For semiparametric 1D regression models, a = 0 is a common

choice, and in the econometrics literature, often c is chosen so that b̂ = (1, b̂2, ..., b̂k)
T .

See Horowitz (1998, pp. 14-16).

Sections 2 and 3 will illustrate uses for graphs such as the SSP and ESSP. These plots

are especially useful if the sufficient predictor α + βT xi takes on many values and if the

mean function E(Yi|xi) is of interest.

2 A Graphical Aid for Model Description

To help explain the model, use the sufficient summary plot (SSP) of SP = α + βTxi

versus Yi with the mean function added as a visual aid. If k = 1, then Y x|x and

the plot of xi versus Yi is a SSP and has been widely used to explain the simple linear

regression (SLR) model and the logistic regression model with one predictor. See Agresti

(2002, cover illustration and p. 169) and Collett (1999, p. 74). Replacing x by SP has

two major advantages. First, the plot can be made for k ≥ 1 and secondly, the possible

shapes that the plot can take is greatly reduced. For example, in a plot of xi versus Yi,

the plotted points will fall about some line with slope β and intercept α if the SLR model

holds, but in a plot of SP = α + βT xi versus Yi, the plotted points will fall about the

identity line with unit slope and zero intercept if the multiple linear regression model

holds.

We used artificial data sets to illustrate the plots since if k > 1, β must be known
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to make a SSP. The multiple linear regression (MLR), logistic regression (LR) and the

loglinear regression (LLR) models were used for illustration. The artificial MLR data

used α = −1, β = (1, 2, 3, 0, 0)T , ei ∼ N(0, 1), x ∼ N5(0, I), and n = 100 cases. For

the artificial LR data set, P (Y = j) = 0.5 and x|Y = j ∼ Nk(µj , I) for j = 0, 1. The

data set used µ1 = (1, 1, 1, 0, 0)T , µ0 = 0, and 200 cases, half of which had Yi = 1.

Then α = −0.5µT
1 µ1 = −1.5 and β = (1, 1, 1, 0, 0)T = µ1. See Hosmer and Lemeshow

(2000, pp. 43-44). The artificial LLR data set used n = 100, x ∼ N5(1, I/4) and

Yi ∼ Poisson(exp(α + βTxi)) where α = −2.5 and β = (1, 1, 1, 0, 0)T .

Figure 1 corresponds to the SSP for the MLR data. Notice that the identity line

with unit slope and zero intercept corresponds to the mean function since the identity

line is the line Y = SP = α + βT x = E(Y |x). The vertical deviation of Yi from the

line is equal to ei = Yi − (α + βT xi). For a given value of SP , Yi ∼ N(SP, 1). Hence if

SP = 0 then Yi ∼ N(0, 1), and if SP = 5 then Yi ∼ N(5, 1). Imagine superimposing the

N(SP, 1) curve at various values of SP . If all of the curves were shown, then the plot

would resemble a road through a tunnel. For the artificial data, each Yi is a sample of

size 1 from the normal curve with mean α + βTxi.

Figure 2 corresponds to the SSP for the LR data. Unlike the SSP for multiple linear

regression where the mean function is always the identity line, the mean function

ρ(SP ) =
exp(SP )

1 + exp(SP )

can take a variety of shapes depending on the range of the SP. If Y is binary then

Y |SP = 0 ∼ binomial(1,0.5), Y |SP = −5 ∼ binomial(1,ρ ≈ 0.007), and Y |SP = 5 ∼

binomial(1,ρ ≈ 0.993). Hence if the range of the SP is in the interval (−∞,−5), then
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the mean function is flat and ρ(SP ) ≈ 0. If the range of the SP is in the interval (5,∞),

then the mean function is again flat but ρ(SP ) ≈ 1. If −5 < SP < 0 then the mean

function increases slowly and then rapidly. If −1 < SP < 1 then the mean function looks

roughly linear. If 0 < SP < 5 then the mean function first increases rapidly and then

slowly. Finally, if −5 < SP < 5 then the mean function has the characteristic “ESS”

shape shown in Figure 2.

Figure 3 corresponds to the SSP for the LLR data. Notice that Y |SP = 0 ∼

Poisson(1), and in general, Y |SP ∼ Poisson(exp(SP)). The shape of the mean func-

tion µ(SP ) = exp(SP ) for loglinear regression depends strongly on the range of the SP

because the plotting software attempts to fill the vertical axis. Hence if max(Yi) is less

than 3 then the exponential function will be rather flat, but if there is a single large

count, then the exponential curve will look flat in the left of the plot but will increase

sharply in the right of the plot.

3 Graphical Aids for Goodness and Lack of Fit

The estimated sufficient summary plot (ESSP) is a plot of the estimated sufficient pre-

dictor ESP = α̂ + β̂
T
xi versus Yi. This plot can be used as a diagnostic for goodness of

fit by adding the estimated parametric mean function and an estimated nonparametric

mean function to the plot. The interpretation of the ESSP is almost the same as that

of the SSP, but the SP is replaced by its estimator, the ESP. Adding the horizontal line

Y = µ̂ (often using µ̂ = Y ) to the plot is a diagnostic for the test of Ho : β = 0 versus

HA : β 6= 0. A plot of the residuals versus the ESP is often used as a diagnostic for lack
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of fit.

Figure 4 gives the ESSP, also called the forward response plot, for the MLR data.

Ordinary least squares (OLS) is often used to estimate (α,β), and the estimated mean

function is the identity line. Now the vertical deviation of Yi from the line is equal to the

residual ri = Yi − (α̂ + β̂
T
xi). The residual plot is not shown but resembles Figure 10.

3.1 Logistic Regression

Figure 5 shows the ESSP for the LR data set with the estimated mean function

ρ̂(ESP ) =
exp(ESP )

1 + exp(ESP )

added as a visual aid. This plot is very useful as a goodness of fit diagnostic. Divide

the ESP into J “slices” each containing approximately n/J cases. Compute the sample

mean = sample proportion of the Y ′s in each slice and add the resulting step function

to the ESS plot. This is done in Figure 5 with J = 10 slices. This step function is a

simple nonparametric estimator of the mean function ρ(SP ). If the step function follows

the estimated LR mean function (the logistic curve) closely, then the LR model fits the

data well. The plot of these two curves is a graphical approximation of the goodness of

fit tests described in Hosmer and Lemeshow (1980, 2000, pp. 147–156).

For binary data the Yi only take two values, 0 and 1, and the residuals do not behave

very well. Let V be a linear combination of the predictors that is (approximately)

uncorrelated with the estimated sufficient predictor ESP. Then a binary response plot

is a plot of the ESP versus V where different plotting symbols are used for Y = 0

and Y = 1. Instead of using residual plots, we suggest using the binary response plot,
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introduced by Cook (1996). Also see Cook (1998, Ch. 5) and Cook and Weisberg (1999,

Section 22.2).

To make a binary response plot for logistic regression, sliced inverse regression (SIR)

can be used to find V . SIR is a regression graphics method (see Li 1991 and Cook 2004)

and the first SIR predictor β̂
T

SIR1x is used as the ESP while the second SIR predictor

β̂
T

SIR2x is used as V . (Other regression graphics methods may provide a better plot, but

the first SIR predictor is often highly correlated with the LR ESP α̂+ β̂
T
x.) After fitting

SIR and LR, check that

|corr(SIRESP,LRESP)| > 0.95.

If the LR model holds, then Y is independent of x given the SP. If the absolute correlation

is high, then this conditional independence is approximately true if the SP is replaced by

either the SIR or LR ESP.

To check whether the LR model is good, consider the symbol density of +’s and 0’s

in a narrow vertical slice where 0 is used if Y = 0 and + is used if Y = 1. This symbol

density should be approximately constant (up to binomial variation) from the bottom to

the top of the slice. (Hence the +’s and 0’s should be mixed in the slice.) The plot would

be easier to interpret if the LR ESP was used on the horizontal axis instead of the SIR

ESP since then the approximate probability of the symbol + could be computed. For

example, if there are nJ points in narrow slice J and if the ESP ≈ −5, then the points in

the slice resemble a sample of nJ cases from a binomial (1, 0.007) distribution and almost

none of the points should be +’s. If the ESP ≈ 0, then the points resemble a sample

of nJ cases from a binomial (1, 0.5) distribution and about half of the points should be
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+’s. Moreover the proportion of +’s should be near 0.5 in the bottom, middle and top

of the narrow slice. If the ESP ≈ 5, then the points resemble a sample of nJ cases from

a binomial (1, 0.993) distribution and almost all of the points should be +’s.

The symbol density often changes greatly as the narrow slice is moved from the left

to the right of the plot, e.g. from 0% to 100% if the correlation between the SIR and LR

ESP is near 1 or from 100% to 0% if the correlation is near −1. If there are one or more

wide slices where the symbol density is not constant from top to bottom, then the LR

model may not be good (e.g. a more complicated model may be needed). If it is difficult

to quickly find slices where the symbol density is not mixed, then the binary response

plot should not be used as evidence that the model is bad. If only a few isolated points

need to be changed to make a good plot, then the model is often good and the points

correspond to an unlikely outcome; however, the isolated points could be “outliers” in

that x is outlying or the value of Y was misclassified.

Figure 6 shows the binary response plot for the artificial data. The correlation between

the SIR and LR ESP’s was near −1. Hence the slice symbol density of +’s decreases from

nearly 100% in the left of the plot to 0% in the right of the plot. The symbol density

is mixed in most of the slices and the plot looks good. For contrast, Figure 7 shows the

binary response plot when only X2 and X5 are in the model. Consider the slice where

the ESP is between −2.4 and −1.7. At the bottom and top of the slice the proportion

of +’s is near 1 but in the middle of the slice there are several 0’s. In the slice where

the ESP is between −1.7 and −0.8, the proportion of +’s increase as one moves from the

bottom of the slice to the top of the slice. Hence there is a large slice from about −2.4
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to −0.8 where the plot does not look good, suggesting that the logistic regression model

may be poor.

3.2 Loglinear Regression

Figure 8 shows the ESSP for the LLR data with the estimated mean function

µ̂(ESP ) = exp(ESP )

added as a visual aid. This plot is very useful as a goodness of fit diagnostic. The lowess

curve is a nonparametric estimator of the mean function called a “scatterplot smoother.”

The lowess curve is represented as a jagged curve to distinguish it from the estimated

LLR mean function (the exponential curve) in Figure 8. If the lowess curve follows the

exponential curve closely (except possibly for the largest values of the ESP), then the

LLR model fits the data well.

Simple diagnostic plots for the loglinear regression model can also be made using

weighted least squares (WLS). Let Zi = Yi if Yi > 0, and let Zi = 0.5 if Yi = 0. Then the

minimum chi–square estimator of the parameters (α,β) in a loglinear regression model

are (α̂M , β̂M), and are found from the weighted least squares regression of log(Zi) on

xi with weights wi = Zi. Equivalently, use the ordinary least squares (OLS) regression

(without intercept) of
√

Zi log(Zi) on
√

Zixi. The minimum chi–square estimator tend to

be consistent if n is fixed and all n counts Yi increase to ∞ while the loglinear regression

maximum likelihood estimator tends to be consistent if the sample size n → ∞. See

Agresti (2002, p. 611-612) and Powers and Xie (2000, p. 284). However, the two

estimators are often close for many data sets. This result and the equivalence of the
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minimum chi–square estimator to an OLS estimator suggest the following diagnostic

plots. Let (α̃, β̃) be an estimator of (α,β).

For a loglinear regression model, a weighted forward response plot is a plot of
√

ZiESP =

√
Zi(α̃ + β̃xi) versus

√
Zi log(Zi). The weighted residual plot is a plot of

√
Zi(α̃ + β̃xi)

versus the WLS residuals rWi =
√

Zi log(Zi) −
√

Zi(α̃ + β̃xi).

If the loglinear regression model is appropriate and if the minimum chi–square es-

timators are reasonable, then the plotted points in the weighted forward response plot

should follow the identity line. Cases with large WLS residuals may not be fit very well

by the model. When the counts Yi are small, the WLS residuals can not be expected to

be approximately normal.

Figure 9 shows the diagnostic plots for the artificial data using both the minimum chi–

square estimator and the LLR maximum likelihood estimator. Even though the counts

Yi are small for this data set, the points in both weighted forward response plots follow

the identity line, and neither residual plot has outlying residuals. Also notice that the

larger counts are fit better than the smaller counts and hence the residual plots have a

“left opening megaphone” shape. More research is needed to determine if these plots are

useful for contingency tables.

3.3 A Diagnostic for Testing Ho : β = 0

The ESSP is also a useful visual aid for describing the ANOVA F or deviance test for

Ho : β = 0 versus HA : β 6= 0, that is, the test for whether the predictors x are needed

in the given model. For MLR, LLR and the binary LR models, if the predictors are not
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needed in the model, then E(Yi|xi) should be estimated by the sample mean Y . If the

predictors are needed, then E(Yi|xi) should be estimated by the appropriate function of

the ESP = α̂ + β̂
T
xi. If it is clear that no horizontal line fits either the data or the

estimated nonparametric mean function as well as the estimated mean function (as in

Figures 4, 5 and 8), then the predictors are needed.

Figures 10, 11 and 12 show the ESSP when only X4 and X5 were used as predictors

for the MLR, LR and LLR data sets respectively. Since Y is independent of these two

predictors by construction, the horizontal line should fit either the data or the nonpara-

metric estimated mean function about as well as the estimated mean function. In Figure

10, the horizontal line Y = Y fits the data about as well as the identity line. In Figure

11, the horizontal line fits the step function about as well as the logistic curve, suggesting

that ρ̂(xi) ≡ ρ̂ = Y should be used instead of the LR estimator

ρ̂(xi) =
exp(α̂ + β̂

T
xi)

1 + exp(α̂ + β̂
T
xi)

.

In Figure 12, the horizontal line fits the lowess curve about as well as the exponential

curve, suggesting that µ̂(xi) ≡ µ̂ = Y should be used instead of the LLR estimator

µ̂(xi) = exp(α̂ + β̂
T
xi).

It is easy to find data sets where the ESSP looks like Figure 10, 11 or 12 but the

p–value for the ANOVA F or deviance test is very small. In this case, the model is statis-

tically significant, but the investigator needs to decide whether the model is practically

significant.
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4 Conclusions

Plots for goodness of fit and lack of fit should be made immediately after fitting a 1D

regression model and before performing inference. The plots in Section 3 are illustrative,

and work for other models as well. For example, if a single index model holds where m

is unknown, the OLS estimator b̂ ≈ cβ for many data sets (see Li and Duan, 1989). The

ESSP is a plot of b̂
T
xi versus Yi and can be used to visualize m. Add a lowess smooth to

the plot. If no horizontal line fits the data as well as the lowess smooth, then x is needed

in the single index model. See Simonoff and Tsai (2002) for formal tests of hypotheses.

Similar plots may be useful in other settings. For example, if the reduced model is

good, then the EE plot of ESP (R) = α̂R + β̂
T

RxRi versus ESP = α̂+ β̂
T
xi should follow

the identity line closely. As a rule of thumb, models with corr(ESP,ESP (R)) > 0.95

are interesting. After performing variable selection, often there are several competing

submodels that all look good. Making a scatterplot matrix of the different ESP’s along

with the response Y may be useful.

Of course the plots need to be used with caution. If the number of parameters k is

too large, then the model may “overfit” the data. If all of the predictors are factors, as

in experimental design and contingency tables, the ESP may not take on many values

and the interpretation of the plots changes. If the model or fitting method (e.g. OLS or

SIR or maximum likelihood) is inappropriate, then the ESSP may be greatly inferior to

an ESSP made with appropriate methods.

Using the ESSP as a goodness of fit diagnostic is not new. Several authors suggested

using the forward response plot to visualize the coefficient of determination R2 in MLR.
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For example, see Chambers, Cleveland, Kleiner and Tukey (1983, p. 280). Brillinger

(1983) suggested that the forward response plot of the OLS fitted values α̂+ β̂
T
xi versus

Yi can be used to look for the functional form m for single index models while Cook

and Weisberg (1997, 1999, p. 397, 514, and 541) call the ESSP a model checking plot.

Cook and Weisberg (1999, p. 121) adds a horizontal line to a plot of xi versus Yi as a

diagnostic for β = 0 in the simple linear regression model.
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Figure 2: SSP for LR Data
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Figure 4: Forward Response Plot for MLR Data
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Figure 5: ESS Plot for LR Data
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Figure 7: The Binary Response Plot for a Poor LR Model
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Figure 8: ESSP for Loglinear Regression
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Figure 9: Diagnostic Plots for Loglinear Regression
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Figure 10: Forward Response Plot when Y is Independent of the Predictors
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Figure 11: LR ESS Plot When Y Is Independent Of The Predictors
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Figure 12: LLR ESSP when Y is Independent of the Predictors
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