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The recent JCGS paper Hubert, Rousseeuw and Verdonck (2012) follows the Rousseeuw Yohai

paradigm of replacing an impractical brand name robust estimator by a practical Fake-brand

name estimator that is not yet backed by breakdown or large sample theory. A Fake-brand name

estimator produces some easily computed trial fits and then uses a criterion from the brand name

estimator to select one of the trial fits to create the final Fake-brand name estimator. Hence

the brand name MCD estimator is replaced with a Fake-MCD estimator, such as Det-MCD, that

selects the trial fit that has the dispersion estimator with the smallest determinant. Most of the

literature follows the Rousseeuw Yohai paradigm, using estimators like Fake-MCD, Fake-LTS,

Fake-MVE, Fake-S, Fake-LMS, Fake-τ , Fake-Stahel-Donoho, Fake-Projection, Fake-MM, Fake-

LTA, Fake-Constrained M, ltsreg, lmsreg, cov.mcd, cov.mve or OGK that are not backed by

theory. Maronna, Martin and Yohai (2006, ch. 2, 6) and Hubert, Rousseeuw and Van Aelst

(2008) provide references for the above estimators.

Problems with these estimators have been pointed out many times. See, for example, Huber

and Ronchetti (2009, pp. xiii, 8-9, 152-154, 196-197) and Hawkins and Olive (2002) with discussion

by Hubert, Rousseeuw and Van Aelst (2002) and Maronna and Yohai (2002).

MCD was shown to be
√

n consistent and asymptotically normal by Cator and Lopuhaä (2010),

but MCD takes too long to simulate for p > 2 and too long to compute for p > 5 variables. The

three fastest MCD algorithms are the Agulló (1998) and Pesch (1999) branch and bound algorithms

that take a few hours to compute for n = 100 and p = 4, and the Bernholt and Fischer (2004)

∗David J. Olive is Associate Professor, Department of Mathematics, Southern Illinois University, Mailcode 4408,

Carbondale, IL 62901-4408, USA. E-mail address: dolive@.siu.edu.

1



MCD algorithm with complexity higher than O(np2/2).

For many years, Fake-brand name estimators used the classical estimator computed from K

randomly selected elemental sets (of size h = p for regression and h = p + 1 for multivariate

location and dispersion) as the trial fits. Here K is some fixed number such as K = 500 that does

not depend on the sample size n. Let dn be the number of n cases that have been replaced by

arbitrarily bad contaminated cases, then the contamination fraction is γn = dn/n. Zero breakdown

estimators have γn → 0 as n → ∞. Elemental concentration estimators use elemental fits as starts

and apply concentration steps to produce trial fits called attractors.

It is a massive error to claim without proof, as done by Hubert, Rousseeuw and Van Aelst

(2008), that Fake-MCD efficiently computes MCD. Although Hubert, Rousseeuw and Verdonck

(2012) has a section called “Deterministic MCD Algorithm” and page 619 claims MCD became ef-

ficient with FASTMCD, Table 1 and p. 635 prove that neither DetMCD nor FASTMCD computes

MCD, since if the two estimators were computing MCD, their objective functions would be equal.

Since the FASTMCD objective function is sometimes the smallest and the DetMCD objective

function is sometimes the smallest, neither estimator can be MCD. Note that Hubert, Rousseeuw

and Verdonck (2012) and Rousseeuw and Van Driessen (1999) fail to show that FASTMCD or

Det-MCD compute the MCD estimator, are asymptotically equivalent to MCD, have a limiting

distribution, are consistent or are high breakdown! Hence the p. 619 claim that MCD has been

applied in various fields is FALSE. FASTMCD, which HAS NO THEORY, has been applied in

various fields. Thus the impractical MCD estimator has been replaced by the practical FASTMCD

and DetMCD estimators that are not backed by theory. Since FASTMCD is neither fast nor the

MCD estimator, a more descriptive name is Fake-MCD.

Page 619 notes that FASTMCD needs to draw many elemental subsets to obtain one that is

outlier free. Actually 500 are drawn and the outlier resistance decreases rapidly as the number of

variables p increases. This claim can be seen in table 2 of Rousseeuw and Van Driessen (1999),

where the p = 30 entry is almost certainly p = 20. Also p = 20 agrees with the approximate

amount of outliers an elemental concentration algorithm can tolerate given in Hawkins and Olive

(2002) if p+1 replaces p.

False claims that impractical high breakdown estimators such as MCD can be computed with a

practical estimator like FAST-MCD that have no theory have plagued the field of Robust Statistics
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for nearly 30 years, and it will be difficult to make progress until papers that give theory to the

estimator that is actually used, as done in Olive and Hawkins (2010), are published, and papers

that give no theory are rejected or retracted.

The following theorem shows that the estimators from Rousseeuw (1984), Rousseeuw and

Leroy (1987) and Rousseeuw and van Zomeren (1990) are zero breakdown and inconsistent. These

elemental basic resampling estimators use the PROGRESS algorithm where K ≤ 30000 and the

default is K = 3000. The theorem also shows that a variant of the Rousseeuw and Van Driessen

(1999) Fake-MCD estimator that uses K = 500 elemental starts is zero breakdown. (If we let

K ≡ Kn → ∞, then the elemental estimator is zero breakdown if Kn = o(n). A necessary

condition for the elemental basic resampling estimator to be consistent is Kn → ∞.)

Theorem 1: a) The elemental basic resampling algorithm estimators are inconsistent. b) The

elemental concentration and elemental basic resampling algorithm estimators are zero breakdown.

Proof: a) Note that you can not get a consistent estimator by using Kh randomly selected

cases since the number of cases Kh needs to go to ∞ for consistency except in degenerate situations.

b) Contaminating all Kh cases in the K elemental sets shows that the breakdown value is

bounded by Kh/n → 0, so the estimator is zero breakdown. QED

The Det-MCD estimator chooses six intelligently chosen starts for concentration. This idea

is not new, and Det-MCD is also described in Verdonck, Hubert, and Rousseeuw (2010). Olive

(2004, p. 100) suggests that a simple modification to the median ball algorithm (MBA) estimator

is to use several starts such as (MED(X), diag([MAD(X1)]
2, ..., [MAD(Xp)]

2)) where MED(X)

is the coordinatewise median and MAD(Xi) is the median absolute deviation of the ith variable;

OGK; (MED(X), I) where I is the identity matrix resulting in the median ball (MB) estimator;

and the classical sample mean and covariance matrix estimator (x, S) resulting in the Devlin,

Gnanadesikan and Kettenring (1981) DGK estimator (called iterative trimming in Rousseeuw

and Leroy (1987, p. 254) who suggest that the breakdown value of DGK is at most 1/p). Similar

methods are described in Gnanadesikan and Kettenring (1972) and Gnanadesikan (1977, p. 134).

The Olive Hawkins paradigm is to develop practical robust estimators backed by large sample

and breakdown theory. Olive (2012
∮

4.4; 2014
∮

9.2, 10.7) and Olive and Hawkins (2010, 2011)

develop the practical
√

n consistent robust estimators FCH, RFCH, RMVN, and HBREG, using

concentration on a few intelligently chosen starts. Also see Zhang, Olive and Ye (2012). This
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theory is sketched below where D2
i (T, C) is the ith squared Mahalanobis distance.

The following theorem implies that applying k concentration steps to a high breakdown start

(T
−1, C−1) results in a high breakdown attractor (Tk, Ck). Hence the Olive (2004) MB estimator

is high breakdown. Note that the number of steps is fixed, e.g., use k = 5 concentration steps.

It is not known whether the result holds if concentration is iterated to convergence as done for

the Det-MCD estimator. It is also not clear that any of the six starts for Det-MCD are high

breakdown. Croux, Dehon, and Yadine (2010) appear to show that the sign covariance matrix

estimator is high breakdown, and it may be possible to adapt their proof for one of the Det-MCD

starts.

Theorem 2. Suppose (T, C) is a high breakdown estimator where C is a symmetric, positive

definite p×p matrix if the contamination proportion dn/n is less than the breakdown value. Then

the concentration attractor (Tk, Ck) is a high breakdown estimator if the coverage cn ≈ n/2 and

the data are in general position.

The assumption below gives the class of distributions for which FCH, RFCH and RMVN have

been shown to be
√

n consistent. Distributions where the MCD functional is unique are called

“unimodal,” and rule out, for example, a spherically symmetric uniform distribution.

Assumption (E1): The x1, ..., xn are iid from a “unimodal” elliptically contoured ECp(µ,Σ, g)

distribution with nonsingular covariance matrix Cov(xi) where g is continuously differentiable with

finite 4th moment:
∫

(xTx)2g(xTx)dx < ∞.

Theorem 3, Lopuhaä (1999). Suppose (T, C) is a consistent affine equivariant estimator of

(µ, sΣ) with rate nδ where s > 0 and 0 < δ ≤ 0.5. Assume (E1) holds. Then the classical estimator

(T0, C0) applied to the cases with D2
i (T, C) ≤ h2 is a consistent affine equivariant estimator of

(µ, aΣ) with the same rate nδ where a > 0. The constant a depends on the positive constants s,

h2, p and the elliptically contoured distribution, but does not otherwise depend on the consistent

start (T, C).

Let δ = 0.5. Applying the above theorem iteratively for a fixed number k of steps produces a

sequence of estimators (T0, C0), ..., (Tk, Ck) where (Tj, Cj) is a
√

n consistent affine equivariant

estimator of (µ, ajΣ) where the constants aj > 0 depend on s, p, h and the elliptically contoured

distribution, but do not otherwise depend on the consistent start (T, C) ≡ (T
−1, C−1).

Concentration applies the classical estimator to cn ≈ n/2 cases with D2
i (T, C) ≤ D2

(cn)(T, C).
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Olive and Hawkins (2010) show that if (T, C) is a
√

n consistent affine equivariant estimator

of (µ, sΣ) then (T, C̃) ≡ (T, D2
(cn)(T, C) C) is a

√
n consistent affine equivariant estimator of

(µ, bΣ) where b = D2
0.5(µ,Σ) is the population median of the population squared distances, and

that D2
i (T, C̃) ≤ 1 is equivalent to D2

i (T, C) ≤ D2
(cn)(T, C)). Hence Lopuhaä (1999) theory

applied to (T, C̃) with h = 1 is equivalent to theory applied to the concentration estimator using

the affine equivariant estimator (T, C) ≡ (T
−1, C−1) as the start. Since b does not depend on

s, concentration produces a sequence of estimators (T0, C0), ..., (Tk, Ck) where (Tj, Cj) is a
√

n

consistent affine equivariant estimator of (µ, aΣ) where the constant a > 0 is the same for each

j. Then Olive and Hawkins (2010) show that the DGK and MCD are
√

n consistent estimators

of (µ, aMCDΣ). Note that the DGK estimator is practical to compute but has a much lower

breakdown value than the impractical MCD estimator. Boente (1987) has some large sample

theory for estimators similar to DGK except that a continuous weight function is used instead of

zero one weighting.

Hence a fixed number of concentration steps applied to a
√

n consistent affine equivariant start

results in a
√

n consistent attractor. For Det-MCD, a similar result is needed when the start is

not affine equivariant and concentration is iterated to convergence. It is not clear that any of the

Det-MCD starts are
√

n consistent. Proofs for OGK are not given. Boente and Fraiman (1999)

claim that the sign covariance matrix is consistent, also see Taskinen, Koch, and Oja (2012).

Theorem 4, Olive and Hawkins (2010). Assume (E1) holds. a) Then the DGK estimator

and MCD estimator are
√

n consistent affine equivariant estimators of (µ, aMCDΣ).

b) The FCH, RFCH and RMVN estimators are
√

n consistent estimators of (µ, ciΣ) for

c1, c2, c3 > 0 where ci = 1 for multivariate normal data. If the clean data are in general posi-

tion, then TFCH is a high breakdown estimator and CFCH is nonsingular even if nearly half of the

cases are outliers.

It will be a massive undertaking to modify the theory to show whether Det-MCD has any

good large sample or breakdown properties. For applications comparing estimators from the Olive

Hawkins paradigm with those from the Rousseeuw Yohai paradigm, see Alkenani and Yu (2012),

Ng and Wilcox (2010), Özdemira and Wilcox (2012), Park, Kim and Kim (2012), Wilcox (2012),

and Reyen, Miller and Wegman (2009) who simulate the OGK and MBA estimators for p = 100

and n up to 50000. The OGK complexity is O[p3 + np2 log(n)] while that of MBA, FCH, RFCH
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and RMVN is O[p3 + np2 + np log(n)]. These four estimators are roughly 100 times faster than

Fake-MCD and also much faster than Det-MCD.
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